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Abstract

Resting-state functional MRI (rsfMRI) provides important information for studying and mapping 

the activities and functions of the brain. Conventionally, rsfMRIs are often registered to structural 

images in the Euclidean space without considering cortical surface geometry. Meanwhile, a 

surface-based representation offers a relaxed coordinate chart, but this still requires surface 

registration for group-wise data analysis. In this work, we investigate the performance of two 

existing surface registration methods in a surface-based rsfMRI analysis framework: FreeSurfer 

and Hierarchical Spherical Deformation (HSD). To minimize registration bias, we establish shape 

correspondence using both methods in a group-wise manner that estimates the unbiased average of 

a given cohort. To evaluate their performance, we focus on neuroanatomical alignment as well as 

the amount of distortion that can potentially bias surface tessellation for secondary level rsfMRI 

data analyses. In the pilot analysis, we examine a single timepoint of imaging data from 100 

subjects out of an aging cohort. Overall, HSD establishes improved shape correspondence with 

reduced mean curvature deviation (10.94% less on average per subject, paired t-test: p <10−10) 

and reduced registration distortion (FreeSurfer: average 41.91% distortion per subject, HSD: 

18.63%, paired t-test: p <10−10). Furthermore, HSD introduces less distortion than FreeSurfer in 

the areas identified in the individual components that were extracted by surface-based independent 

component analysis (ICA) after spatial smoothing and time series normalization. Consequently, 

we show that FreeSurfer capture individual components with globally similar but locally different 

patterns in ICA in visual inspection.
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1. INTRODUCTION

Resting-state fMRI (rsfMRI) provides a non-invasive method for studying the brain in 

a task-negative state. It has been extensively used to investigate mapping of functional 

organizations and connectivity in neurodevelopment or aging and disease-related research 

(e.g., Alzheimer’s disease, autism spectrum disorder, etc.)1–4. Given its overall effectiveness 

and successes, one of the potential challenges faced by this volumetric approach is 

the highly convoluted folds of the cortex. Thus, their representation in Euclidean space 

cannot fully encode geodesics along cortical geometry. For example, volumetric spatial 

smoothing, a standard preprocessing for rsfMRI analyses, could mix up time series signals 

between two gyri (or sulci) that might be functionally distinct5–7. With advances in 

cortical surface reconstruction, pioneering studies proposed surface-based rsfMRI analysis 

frameworks5,8,9 that circumvent volumetric representations. Such frameworks generally 

involve surface registrations for spatial alignment. Considering the potential influence of 

analytical variability and flexibility on the conclusions of fMRI analyses10, the performance 

of surface registration has not been fully investigated with respect to how the choices in 

surface-based registration affect rsfMRI data analysis.

Surface registration optimally aligns one or multiple cortical surfaces to a target surface. Of 

many different registration approaches, spherical registration11–19 is widely used due to its 

simple parametrization without violation of the spherical topology of the cortex. In many 

cortical surface-based shape analyses20–23, surface registration generally optimizes shape 

correspondence to a specific template. Despite its popularity, such a pair-wise approach 

often introduces a bias in the template choice. More specifically, such dependence on 

a single reference could introduce large registration distortion due to neuroanatomical 

variability specifically computed in the chosen template. This distortion can consequently 

influence surface area changes that yield distorted surface tessellation for the secondary 

level data analysis; sampling of the surface data is biased with respect to the surface 

area distortion as shown in Figure 1. Therefore, group-wise (or template-free) spherical 

registration11,24–26 can offer a more plausible solution for an rsfMRI data analysis to 

minimize the influence of the template choice.

In this paper, we evaluate the performance of two group-wise registration methods in 

a surface-based rsfMRI framework: FreeSurfer and Hierarchical Spherical Deformation 

(HSD). We focus on those methods since FreeSurfer registration is widely used in 

many surface-based analyses and HSD minimizes registration distortion while optimizing 

global rigid alignment and local non-rigid deformation simultaneously. Motivated by our 

recent validation of surface registration methods19, we evaluate performance in terms 

of neuroanatomical feature alignment (deviation from mean curvature) and registration 

distortion (triangle area change) achieved by these two methods. Unlike our recent work on 

an adult cohort with FreeSurfer surface reconstruction, we focus on an elderly cohort with 
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MaCRUISE surface reconstruction27. To evaluate the impact of these methods on functional 

interpretation, we conduct spatial independent component analysis (ICA) on rsfMRI data via 

the established correspondence using the two methods. We show that individual components 

(networks) extracted by ICA based on the two registration methods, despite a general 

similarity in terms of overall patterns, show visible local differences quantitatively and 

qualitatively in the areas identified in the components captured by ICA.

2. METHODS

Herein, we present a general description of our surface-based rsfMRI analysis pipelines with 

group-wise registration (see Figure 2) and evaluation criteria for both registration methods.

2.1 Preprocessing

Cortical surfaces were reconstructed from T1-weighted magnetic resonance (MR) images 

using MaCRUISE27 and each hemisphere was mapped onto a sphere2. We visually inspected 

the original scans and their reconstructed surfaces. To map the volumetric data of rsfMRI 

onto cortical surfaces, we first computed the temporal average of raw rsfMRI volumes of 

each subject and aligned it to its T2-weighted MR image. We then computed the affine 

transformations from the temporal average to T2-weighted images and from T2-weighted to 

T1-weighted images. Once the two transformation matrices were obtained, we determined 

the direct transformation from rsfMRI to its T1-weighted image. Since the cortical surfaces 

were generated using native T1-weighted images, we computed the closest voxels that 

contain vertices of the cortical surfaces. However, the reconstructed cortical surfaces do 

not necessarily guarantee unique voxel-to-vertex matching (normally, more than one vertex 

belongs to a single voxel) even if they perfectly trace the white- and gray-matter boundary. 

This potentially degenerates vertex-to-voxel mapping without a voxel-wise resampling 

scheme. Therefore, the probability of a given vertex was obtained by tri-linear resampling of 

the associated voxel for sub-voxel accuracy.

2.2 Surface Registration Methods

Group-wise registration allows a correspondence across more than two images while 

avoiding the need for a fixed reference image or template16,24,29. As discussed, we focus 

on group-wise surface registration to reduce the potential bias of rsfMRI data processing 

caused by selecting a specific surface template. In this work, we use the following methods: 

FreeSurfer28 and Hierarchical Spherical Deformation (HSD)19. For fair comparisons, we 

use the same set of cortical features as registration metrics in a coarse-to-fine resolution 

(this is also known as optimal features in the two pipelines): mean curvature of the inflated 

surfaces, sulcal depth (or average convexity) of the cortical surfaces, and mean curvature of 

the cortical surfaces11,16,19. These features support global agreements with mean curvature 

of the inflated surfaces and local agreement with finer features. This approach also helps to 

prevent the registration from being trapped in local optima 11,16,19.

Although FreeSurfer’s registration is generally designed for pair-wise registration to its 

specific template, the software supports a group-wise pipeline*. In brief, the first round of 

the registration process starts by selecting a reference subject as the initial template (group 
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representative), to which all subjects are rigidly registered for global alignments of the 

whole data. All registered subjects are then used as the input to produce a second template 

by aligning the cortical features. The registration process is iterative and gradually refines 

the template until the process converges. Since an arbitrary reference must be chosen as the 

starting point, the orientation of the resultant template will be dependent on that first choice, 

but in theory, the representative shape remains the same regardless of that choice. In our 

experiments, three iterations of this process were sufficient for convergence.

In HSD, we use a multi-resolution approach to optimize the aforementioned four different 

geometric features as suggested in the original paper19. Briefly, we resample cortical 

features via icosahedral subdivision to different levels of resolution ranging from 2,562 

vertices to 163,842 vertices from the original cortical surface mesh that normally consists 

of around 160k vertices. At each level, the method optimizes rigid to non-rigid deformation, 

which gradually refines the group representative while keeping distortion as low as possible. 

As both rigid and non-rigid deformation are updated simultaneously, the method does not 

require an iterative registration process (see Lyu et al.19 2019 for details). Hence, we 

establish a shape correspondence in a single pass. Note that the parameters of HSD were 

not tunned specifically for the dataset used in this paper. We did, however, follow suggested 

FreeSurfer’s and HSD’s parameters for healthy controls19,28.

2.3 Surface-Based Group fMRI ICA

Surface-based fMRI signals were represented as vertex-based scalar maps. Spatial 

smoothing was performed on the cortical surfaces with a standard Gaussian kernel (full 

width at half maximum=6 mm), and time-series standard normalization was conducted 

separately for each subject. Then, the rsfMRI data on the surfaces were resampled using 

registered spheres from FreeSurfer’s and HSD’s registration results with respect to a 

tessellation of spherical mesh via icosahedral subdivision (10,242 vertices). We performed 

temporal concatenation of the surface data, followed by independent component analysis 

(ICA) after temporal dimension reduction using principal component analysis (PCA)30 to 

30. We chose known patterns that are commonly observed in both left and right hemispheres 

and then threshold identified patterns to exclude weak (noisy) signals.

2.4 Evaluation Criteria

In our evaluation of the performance of FreeSurfer and HSD, we considered two metrics: 

vertex-wise deviation from mean curvature and triangle area distortion. For neuroanatomical 

alignment, we standardized the mean curvature map of each subject individually via z-score 

normalization as mean curvature depends on the scale of the surfaces. We then re-tessellated 

the mean curvature maps to the respective registered spheres. An average mean curvature 

map was computed from all re-tessellated maps. Finally, we computed the squared distance 

between the resampled individual map and the average, which captures the deviation from 

the group representative. Formally, the vertex-wise deviation can be written as:

* https://surfer.nmr.mgh.harvard.edu/fswiki/SurfaceRegAndTemplates 
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∑i = 1
N ℎi − ℎ 2

N , (1)

where N is the total number of subjects, h is the normalized mean curvature, and h is the 

average mean curvature across N subjects. To measure registration distortion, we measure 

area distortion as the exponential absolute log ratio between triangle area before and after 

registration given by:

exp log Δg
Δℎ

− 1, (2)

where Δh and Δg are the triangle area before and after registration, respectively. This metric 

captures the portion of area distortion starting from 0 (no distortion). We excluded vertices 

in the artificial separation between the left and right hemispheres.

3. RESULTS

3.1 Data Acquisition

A subset of the Baltimore Longitudinal Study of Aging (BLSA) dataset31,32 was used 

for our experiments. MRI imaging was acquired on a 3T scanner (Philips, Achieva), 

using an 8-channel head coil. Structural MRI images were acquired using a three­

dimensional T1-weighted MPRAGE (magnetization prepared rapid gradient-echo imaging) 

sequence with 170 slices (TR/TE/TI= 6.8/3.2/845.7msec, FA=8°, FOV=192×256×256mm3, 

resolution=1.2×1×1mm3). A dual-echo sequence was used to collect a T2-weighted image 

that was coplanar to the functional scans and consisted of approximately 50 slices (voxel 

size, 0.94×0.94×3.00mm3; in-plane matrix size, 240×210; TR=3s; TE=8ms; FA=90°). The 

parameters of the echoplanar imaging (EPI) resting-state fMRI were: TR/TE=2000/30msec, 

flip angle=75°, FOV=240×240mm2, spatial resolution=3×3×4mm3, 37 slices covering the 

whole cerebrum; 180 volumes were acquired over 6 minutes. Participants were instructed 

to remain still with eyes open and focused on a fixation point. The resting state scan was 

the first functional sequence in the scanning session. Quality assurance (QA) was performed 

after surface reconstruction and spherical mapping in order to exclude subjects whose 

surface reconstruction failed. As a preliminary study, 100 scan sessions were chosen from 

100 random unique subjects (one session per subject). These 100 subjects were then used as 

input data for our pipelines.

3.2 Registration Evaluation

The feature alignment can be reduced by registration methods as small as possible, which 

often increases area distortion simultaneously. To demonstrate the potential influence of 

distortion and the trade-off between feature alignment and area distortion, we computed 

the mean curvature alignment after FreeSurfer and HSD as shown in Figure 3. Overall 

HSD provides a template with slightly sharper mean, establishes better feature alignment in 

terms of curvature deviation, and maintains a lower level of registration distortion. Figure 

4 illustrates the global deviation per subject achieved by the two registration methods 

with significant distortion improvement of HSD over FreeSurfer. The average vertex-wise 
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deviation displays a generally linear trend with a strong linear correlation between the 

two methods (r=0.988). This implies that the two registration methods estimate similar 

average cortical folding patterns, in which the cortical feature alignment introduces similar 

matching errors. The slope is slightly lower than one, indicating that HSD reduced more 

errors (deviation) in feature alignment than FreeSurfer. We also observe greater spread for 

FreeSurfer in average distortion, suggesting that HSD achieves a notably lower and more 

stable level of registration distortion. Indeed, after performing paired t-test of both metrics 

(p<10−10), we see significantly lower deviation and registration distortion when using HSD 

versus FreeSurfer.

3.3 Surface-based rsfMRI ICA

To explore the effects of registration distortion on secondary level analysis, we inspected 

the individual components extracted by two separate ICA based on the same surface-based 

rsfMRI signals. We chose the four components that have apparent spatial patterns and 

appear in both hemispheres. In qualitative evaluation, we found both methods capture 

similar global patterns. However, owing to registration distortion, there are discernible local 

dissimilarities (Figure 5). For example, in the first component (IC-1), using HSD resulted 

in greater spread over the parietal lobe when compared to the first component when using 

FreeSurfer. These differences are likely due to differing amounts of registration distortion 

introduced by the two methods. For quantitative investigation, we projected the detected 

components back to the individual surfaces, and measured the average area distortion per 

component. As expected, the statistics show significantly large distortion of each component 

(p<10−10) after paired t-test of each component with multi-comparison correction by false 

discovery rate33 (q=0.05) as displayed in Figure 6.

4. CONCLUSIONS

In this work, we compared the performance of FreeSurfer’s group-wise registration and 

Hierarchical Spherical Deformation (HSD) for a surface-based rsfMRI analysis framework. 

We showed that HSD establishes a better shape correspondence in terms of neuroanatomical 

feature alignment, maintains lower registration distortion overall, and results in lower 

curvature deviation. We showed that the global deviation per subject achieved by the two 

methods has a strong correlation with improved feature alignment in HSD, while global 

distortion tends to vary more widely in FreeSurfer. Moreover, due to the different levels of 

registration distortion achieved by the two methods, the components (networks) extracted by 

surface-based rsfMRI ICA yielded globally similar patterns but with local differences in the 

brain areas comprising the components. Quantitative investigation showed the HSD method 

resulted in significantly lower amounts of distortion within the areas of each component. 

These results suggest that when using surface-based registration, differences in the amount 

of registration-based distortion may influence second-level rsfMRI data analyses.
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Figure 1: 
Importance of reduced bias in the template choice. In the zoomed-in region, a biased 

template (e.g., a template that does not represent the subject well) can be more likely to 

expand (distort) the original area than a well-picked (or study specific) template. The sulcus 

in the zoomed-in region becomes wider with the biased template because the cohort used 

in this template has different gyral patterns from those of the input, which results in the 

expansion of the sulcal region of the input. Depending on the template choice, the secondary 

level data analysis can be affected by distorted surface areas.
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Figure 2: 
A schematic overview of our pipelines. The full pipelines are divided into two parts: group­

wise registrations to obtain a group template for surfaces and mapping of fMRI signals onto 

surfaces.
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Figure 3: 
Visualization of features after registration mapped on to average registered inflated white 

matter surfaces (left hemisphere). Generally, mean curvature alignment and its deviation in 

both methods show similar global patterns, but locally, HSD has more concentrated and 

pronounced mean curvature alignment, narrower deviation patterns, and overall maintains 

lower registration distortion as displayed (zoomed-in boxes) in the central sulcus (left) and 

the cingulate sulcus (right).

Yu et al. Page 11

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Scatter plots for average vertex-wise deviation per subject (left) and average triangular 

distortion (exponential absolute log ratio) per subject (right). Each dot represents an 

individual subject from the 100 subjects selected for our processing. Vertex-wise deviation 

shows a strong linear correlation with overall improved performance, whereas wider 

distribution of the area distortion in FreeSurfer is observed. This indicates that FreeSurfer 

and HSD achieves comparable performance in feature alignment, while HSD maintains a 

significantly lower level of registration distortion than FreeSurfer.
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Figure 5: 
Visual assessment of top 4 independent components identified in rsfMRI by surface-based 

ICA. Top: left hemisphere, bottom: right hemisphere. The components generally appear 

similar but their local patterns are different. IC-1(b) captured by HSD is more dispersed 

over the parietal lobe than that by FreeSurfer; IC-4 captured by HSD is more concentrated 

along frontal sulcus than that by FreeSurfer. This discrepancy is possibly due to registration 

distortion, by which surface tessellation shrinks/expands cortical area.
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Figure 6: 
Average distortion in activated regions in each individual component. The black error bars 

are standard deviations across 100 subjects. Paired sample t-tests were conducted for each 

component from both hemispheres with multi-comparison correction by FDR (q=0.05). 

HSD achieves a lower level of registration distortion across all individual components in 

both hemispheres than FreeSurfer (p<10−10). This suggests the locally different patterns as 

shown in Figure 5.
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