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Abstract

A common workflow in data exploration is to learn a low-dimensional representation of the data, 

identify groups of points in that representation, and examine the differences between the groups 

to determine what they represent. We treat this workflow as an interpretable machine learning 

problem by leveraging the model that learned the low-dimensional representation to help identify 

the key differences between the groups. To solve this problem, we introduce a new type of 

explanation, a Global Counterfactual Explanation (GCE), and our algorithm, Transitive Global 

Translations (TGT), for computing GCEs. TGT identifies the differences between each pair of 

groups using compressed sensing but constrains those pairwise differences to be consistent among 

all of the groups. Empirically, we demonstrate that TGT is able to identify explanations that 

accurately explain the model while being relatively sparse, and that these explanations match real 

patterns in the data.

1. Introduction

A common workflow in data exploration is to: 1) learn a low-dimensional representation 

of the data, 2) identify groups of points (i.e., clusters) that are similar to each other in that 

representation, and 3) examine the differences between the groups to determine what they 

represent. We focus on the third step of this process: answering the question “What are the 
key differences between the groups?”

For data exploration, this is an interesting question because the groups often correspond 

to an unobserved concept of interest and, by identifying which features differentiate the 

groups, we can learn something about that concept of interest. For example, consider 

single-cell RNA analysis. These datasets measure the expression levels of many genes 

for sampled cells. Usually the cell-type of each of those cells is unknown. Because gene 

expression and cell-type are closely related, the groups of points that can be seen in a low-

dimensional representation of the dataset often correspond to different cell-types (Figure 1). 
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By determining which gene expressions differentiate the groups, we can learn something 

about the connection between gene expression and cell-type.

One common approach for answering this question is manual interpretation. One simple way 

to do this, that we will use as a naive baseline, is to calculate the Difference Between the 

Mean (DBM) value of each feature in the original input space between a pair of groups. 

For example, consider using DBM to explain the differences between the cells in Group 3 

and Group 17 from Figure 1. In this case, DBM’s explanation contains many hundreds of 

non-zero elements, which is far too many to be understood by a person (Figure 2). If we 

make DBM’s explanation sparse by thresholding it to include only the k largest changes, it 

is no longer an effective explanation because it no longer reliably maps points from Group 

3 to Group 17 (Figure 3). More generally, manual interpretation can be time-consuming and 

typically ad-hoc, requiring the analyst to make arbitrary decisions that may not be supported 

by the data.

Another, more principled, method is statistical hypothesis testing for the differences between 

features across groups (Shaffer, 1995). However, the trade-off between the power of these 

tests and their false positive rate becomes problematic in high-dimensional settings.

Both manual interpretation and statistical testing have an additional key shortcoming: they 

do not make use of the model that learned the low dimensional representation that was used 

to define the groups in the first place. Intuitively, we would expect that, by inspecting this 

model directly, we should be able to gain additional insight into the patterns that define the 

groups. With this perspective, answering our question of interest becomes an interpretable 

machine learning problem. Although there are a wide variety of methods developed in this 

area (Ribeiro et al., 2016; Lundberg & Lee, 2017; Wang & Rudin, 2015; Caruana et al., 

2015; Ribeiro et al., 2018; Zhang et al., 2018), none of them are designed to answer our 

question of interest. See Section 2 for further discussion.

To answer our question of interest, we want a counterfactual explanation because our goal 

is to identify the key differences between Group A and Group B using the low-dimensional 

representation and the most natural way to do this is to find a transformation that causes 

the model to assign transformed points from Group A to Group B. Additionally, we want 

a global explanation because we want to find a explanation that works for all of the points 

in Group A and because we want the complete set of explanations to be consistent (i.e., 
symmetrical and transitive) among all the groups. See Section 3.2 for further discussion 

of our definition of consistency in this context. Hence, our goal is to find a Global 

Counterfactual Explanation (GCE). Although the space of possible transformations is very 

large, we consider translations in this work because their interpretability can be easily 

measured using sparsity.

Contributions:

To the best of our knowledge, this is the first work that explores GCEs. Motivated by the 

desire to generate a simple (i.e., sparse) explanation between each pair of groups, we derive 

an algorithm to find these explanations that is motivated by compressed sensing (Tsaig & 

Donoho, 2006; Candès et al., 2006). However, the solutions from compressed sensing are 
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only able to explain the differences between one pair of groups. As a result, we generalize 

the compressed sensing solution to find a set of consistent explanations among all groups 

simultaneously. We call this algorithm Transitive Global Translations (TGT).

We demonstrate the usefulness of TGT with a series of experiments on synthetic, UCI, and 

single-cell RNA datasets. In our experiments, we measure the effectiveness of explanations 

using correctness and coverage, with sparsity as a proxy metric for interpretability, and we 

compare the patterns the explanations find to those we expect to be in the data. We find the 

TGT clearly outperforms DBM at producing sparse explanations of the model and that its 

explanations match domain knowledge. 1

2. Related Work

Most of the literature on cluster analysis focuses on defining the clusters; the interpretation 

methods discussed in that literature are primarily manual inspection/visualization or 

statistical testing (Jiang et al., 2004). Consequently, the focus of our related work will 

be on interpretable machine learning. Although interpretability is often loosely defined and 

context specific (Lipton, 2016), we categorize existing methods along two axes in order to 

demonstrate how a GCE differs from them. Those axes are the explanation’s level and its 

form.

The first axis used to categorize explanations is their level: local or global. A local 
explanation explains a single prediction made by the model (Ribeiro et al., 2016; Lundberg 

& Lee, 2017; Plumb et al., 2018). Kauffmann et al. (2019) studies a problem closely related 

to ours of explaining why a point was assigned to its cluster/group. A global explanation will 

explain multiple predictions or the entire model at once (Wang & Rudin, 2015; Caruana et 

al., 2015; Ribeiro et al., 2018).

The second axis we use to categorize explanations is their form: feature attribution, 

approximation, or counterfactual. A feature attribution explanation assigns a value 

measuring how each feature contributed to the model’s prediction(s) (Lundberg & Lee, 

2017; Sundararajan et al., 2017). Importantly, it is necessary to define a baseline value 

for the features in order to compute these explanations. An approximation explanation 

approximates the model being explained using a function that is simple enough to be 

considered directly interpretable (e.g., a sparse linear model or a small decision tree) across 

some neighborhood, which could be centered around a point or could be the entire input 

space (Ribeiro et al., 2016; Plumb et al., 2018; Wang & Rudin, 2015; Caruana et al., 2015; 

Ribeiro et al., 2018). A counterfactual explanation finds a transformation of the input(s) such 

that the transformed version of the input is treated in a specific way by the model (Zhang et 

al., 2018; Dhurandhar et al., 2018; Goyal et al., 2019; Dhurandhar et al., 2019).

For various reasons, it would be challenging to use other types of explanations to construct 

a GCE. Local explanations would have to be aggregated in order to produce an explanation 

that applies to a group of points and it would be nontrivial to ensure that the resulting 

1Code for all algorithms and experiments is available at https://github.com/GDPlumb/ELDR
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“aggregated group explanations” are consistent (i.e., symmetrical and transitive). For feature 

attribution and local approximation explanations, it is difficult to guarantee that the baseline 

value or neighborhood they consider is defined broadly enough to find the transformation 

we want. For global approximation explanations, we might not be able to approximate a 

complex model well enough to find the transformation we want because of the accuracy-

interpretability trade-off that stems from the complexity constraint on the explanation model 

(Lipton, 2016). For a concrete example of these difficulties, see the Appendix A.1. This 

example uses Integrated Gradients (Sundararajan et al., 2017) which is a local feature 

attribution method that produces symmetrical and transitive explanations with respect to a 

single class.

3. Global Counterfactual Explanations

We will start by introducing our notation, more formally stating the goal of a GCE, and 

defining the metrics that we will use to measure the quality of GCEs. We do this under 

the simplifying assumption that we have only two groups of points that we are interested 

in. Then, in Section 3.1, we will demonstrate the connection between finding a GCE and 

compressed sensing. We use that connection to derive a loss function we can minimize to 

find a GCE between a single pair of groups of points. Finally, in Section 3.2, we will remove 

our simplifying assumption and introduce our algorithm, TGT, for finding a set of consistent 

GCEs among multiple groups of points.

Notation:

Let r:ℝd ℝm denote the function that maps the points in the feature space into a lower-

dimensional representation space. The only restriction that we place on r is that it is 

differentiable (see the Appendix A.2 for more discussion on r). Suppose that we have 

two regions of interest in this representation: Rinitial, Rtarget ⊂ ℝm. Let Xinitial and Xtarget 

denote their pre-images. Then, our goal is to find the key differences between Xinitial and 

Xtarget in ℝd and, unlike manual interpretation or statistical testing, we will treat this as an 

interpretable machine learning problem by using r to help find those key differences.

Defining the Goal of GCEs:

At a high level, the goal of a GCE is to find a transformation that takes the points in Xinitial 

and transforms them so that they are mapped to Rtarget by r; in other words, r treats the 

transformed points from Xinitial as if they were points from Xtarget. Formally, the goal is to 

find a transformation function t:ℝd ℝd such that:

r(t(x)) ∈ Rtarget ∀x ∈ Xinitial (1)

Because we are using t as an explanation, it should be as simple as possible. Since they are 

very simple and their complexity can be readily measured by their sparsity, we limit t to a 

translation:

t(x) = x + δ (2)
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Measuring the Quality of GCEs:

To measure the quality of a GCE we use two metrics: correctness and coverage. Correctness 

measures the fraction of points mapped from Xinitial into Rtarget. Coverage measures 

the fraction of points in Rtarget that transformed points from Xinitial are similar to. 

Mathematically, we define correctness as:

cr(t) = 1
Xinitial

∑
x ∈ Xinitial

1 ∃x′ ∈ Xtarget ∣ r(t(x)) − r x′ 2
2 ≤ ϵ (3)

And coverage as:

cv(t) = 1
Xtarget

∑
x ∈ Xtarget

1 ∃x′ ∈ Xinitial ∣ r(x) − r t x′ 2
2 ≤ ϵ (4)

Clearly, correctness is a necessary property because an explanation with poor correctness 

has failed to map points from Xinitial into Rtarget (Equation 1). However, coverage is also a 

desirable property because, intuitively, an explanation with good coverage has captured all 

of the differences between the groups.

Defining these metrics requires that we pick a value of ϵ.2 Observe that, if Xinitial = Xtarget 

and t(x) = x, then cr(t) = cυ(t) and we have a measure of how similar a group of points is to 

itself. After r has been learned, we increase ϵ until this self-similarity metric for each group 

of points in the learned representation is between 0.95 and 1.

A Simple Illustration:

We will now conclude our introduction to GCEs with a simple example to visualize the 

transformation function and the metrics. In Figures 4, 5, and 6, the data is generated from 

two Gaussian distributions with different means and r(x) = x. We use DBM between Group 

1 and Group 0 to define the translation/explanation. In Figure 4, the two distributions have 

an equal variance and, as a result, the translation is an effective explanation with good 

correctness and coverage. In Figures 5 and 6, Group 0 has a smaller variance than Group 

1. Because a simple translation cannot capture that information3, the translation has poor 

coverage from Group 0 to Group 1 while its negative has poor correctness from Group 1 

to Group 0. This illustrates the connection between correctness and coverage that we will 

discuss more in Section 3.2.

3.1. Relating GCEs and Compressed Sensing

We will now demonstrate how the problem of finding a GCE between a pair of groups is 

connected to compressed sensing. We start with an “ideal” loss function that is too difficult 

to optimize and then make several relaxations to it.

2We use an indicator based on l2 distance and the points themselves for two reasons. First, it is necessary for the definition of 
coverage. Second, it makes it easier to define Rtarget for representations that are more than two-dimensional.
3This is true regardless of how the translation is found (e.g., TGT or DBM). So this example also motivates the usefulness of more 
complex transformation functions.
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In principle, Equations 1, 3, or 4 define objective functions that we could optimize, but they 

are discontinuous and hence difficult to optimize. To progress towards a tractable objective, 

first consider a continuous approximation of correctness (Equation 3):

lossmin(t) = 1
Xinitial

∑
x ∈ Xinitial

min
x′ ∈ Xtarget

r(t(x)) − r x′ 2
2

(5)

This loss could be optimized by gradient descent using auto-differentiation software, 

although doing so might be difficult because of the min operation. Consequently, we 

consider a simplified version of it:

lossmean (t) = 1
Xinitial

∑
x ∈ Xinitial

r(t(x)) − rtarget 2
2

(6)

where ri = 1
Xi

∑x ∈ Xir(x). 4

Next, we are going to make use of our restriction of t to a translation, δ, and assume, for 

now, that r is a linear mapping: r(x) = Ax for A ∈ ℝm × d. Although this assumption about r 
will not be true in general, it allows us to connect a GCE to the classical compressed sensing 

formulation. Under these constraints, we have that:

lossmean + linear (δ) = 1
Xinitial

∑
x ∈ Xinitial

A(x + δ) − rtarget 2
2

(7)

By setting its derivative to zero, we find that solving Aδ = rtarget − rinitial  yields an optimal 

solution to Equation 7. Observe that this is an undetermined linear system, because m < d, 

and so we can always find such a δ.

Recall that, in general, we want to find a sparse δ. This is partially because we need 

the explanation to be simple enough to be understood by a person, but also because 

the explanation is hopefully modeling real world phenomena and these phenomena often 

have nice structure (e.g., sparsity). Then, because we are finding a GCE by solving 

Aδ = rtarget − rinitial 5, we can see that rtarget − rinitial  is the model’s low-dimensional 

measurement that we are trying to reconstruct using the high-dimensional but sparse 

underlying signal, δ. This is exactly the classical compressed sensing problem formulation. 

As a result, we will add l1 regularization to δ as an additional component to the loss function 

as is done in both linear and non-linear compressed sensing (Blumensath, 2013).

Consequently, we could consider finding a GCE by minimizing the linear compressed 

sensing loss:

4Note that lossmin clearly optimizes for correctness and it does not directly penalize coverage. However, because lossmean 
encourages r(t(x)) to be close to rtarget, it is optimizing for correctness at the expense of coverage. In Section 3.2, we will discuss 

why this is not as harmful as it seems in our setting where t is a symmetrical translation.
5Note that DBM solves this but does not consider sparsity.
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losscs(δ) = A xinitial + δ − rtarget 2
2 + λ δ 1 (8)

where xi = 1
Xi

∑x ∈ Xix. Or, by removing the assumption that r(x) = Ax, minimizing the 

more general version that we use for our experiments:

loss(δ) = r xinitial + δ − rtarget 2
2 + λ δ 1 (9)

3.2. Computing GCEs

We have thus far limited ourselves to explaining the differences between l = 2 groups of 

points labeled as X0 (“initial”) and X1 (“target”), and focused on learning an explanation 

t0→1 from X0 to X1. However, this is not a realistic setting because this labeling was 

arbitrary and because we usually have l > 2.

Unfortunately, the naive solution of using compressed sensing to independently produce 

explanations for all O(l2) pairs of groups will fail to satisfy two desirable properties related 

to the internal consistency of the explanations. For instance, we would like t0→1 to agree 

with t1→0, a property we call symmetry. Additionally, we would like t0→2 to agree with the 

combined explanations t0→1 and t1→2; we call this transitivity. Formally, symmetry requires 

that ti j = tj i−1  and transitivity requires that ti k = tj k ∘ ti j for any j.

Our approach to finding a consistent (i.e., symmetrical and transitive) set of explanations 

is to enforce the consistency constraints by-design. We do this by computing a set of 

explanations relative to a reference group. We assume that X0 is the reference group and 

find a set of basis explanations t1, . . . , tl−1, where ti = t0→i. We then use this set of 

basis explanations to construct the explanation between any pair of the groups of points.6 

Algorithm 2 describes how ti→j can be constructed from t1, . . . , tl−1.

Algorithm 1

TGT: Calculating GCEs with a Reference Group. Note that, because λ is applied to all of 

the explanations, we cannot tune it to guarantee that each explanation is exactly k-sparse.

Input: Model: r

  Group Means: xi(feature space) and ri(representation space) for i = 0, . . . , l − 1

  l1 Regularization Weight: λ

  Learning Rate: α

Initialize: δ1, . . . , δl−1 to vectors of 0

while not converged do

 Sample i ≠ j from {0, . . . , l − 1}

 Construct ti→j (δi→j) using Algorithm 2

6Importantly, the transitivity constraint also ensures that our choice of how we label the groups or which group is the reference group 
does not influence the optimal solution of our algorithm.
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 Calculate objective: υ = loss(δi→j) using Equation 9

 Update the components of δi→j using Algorithm 3

end while

Return: δ1, . . . , δl−1

Algorithm 2

How to construct any explanation between an arbitrary pair of groups, ti→j, using the set of 

basis explanations relative to the reference group, t1, . . . , tl−1

Input: i, j

if i == 1 then

 Return: tj

else if j == 1 then

 Return: ti−1

else

 Return: tj ∘ ti−1

end if

Algorithm 3

How to update the basis explanations, δ1, . . . , δl−1, based on the performance of δi→j. This 

splits the signal from the gradient between the basis explanations used to construct δi→j. 

Note that it does not maintain any fixed level of sparsity.

Input: i, j, α (learning rate), ∇υ (gradient of the loss function)

if i == 1 then

 δj = δj − α∇υ

else if j == 1 then

 δi = δi + α∇υ

else

 δj = δj − 0.5α∇υ

 δi = δi + 0.5α∇υ

end if

Overview of TGT.

We now have all of the pieces necessary to actually compute a GCE: a differentiable loss 

function to measure the quality of ti→j, l1 regularization to help us find the simplest possible 

explanation between Xi and Xj, and a problem setup to ensure that our explanations are 

consistent across X0, . . . ,Xl−1. At a high level, TGT will proceed to sample random “initial” 

and “target” groups from the set of all groups, construct that explanation from the set of 

basis explanations (Algorithm 2), and then use Equation 9 as a loss function to use to 

update the explanation using gradient descent (Algorithm 3). Pseudo-code for this process 
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is in Algorithm 1.7 The main hyper-parameter that requires tuning is the strength of the l1 

regularization, λ.

Why can we prioritize correctness in Equation 9?

In the previous subsection, we noted that the Equation 9 prioritizes correctness over 

coverage. Because Algorithm 1 randomly chooses the “initial” and “target” groups many 

times, it updates the basis explanations based on both cr(δi→j) and cr(δj→i). When t is a 

translation and the explanations are symmetrical, we can see that cr(δj→i) is closely related 

to cυ(δi→j). This is because they only differ in whether they add δj→i to a point in Xj 

or subtract δj→i from a point in Xi in their respective indicator functions. Further, if we 

consider r(x) = Ax, then they are identical metrics (this is consistent with the example from 

Figure 5). Collectively, this means that Algorithm 1 implicitly considers both cr(δi→j) and 

cυ(δi→j) while computing the explanations.

3.3. Controlling the Level of Sparsity

Because neither TGT nor DBM is guaranteed to produce a k-sparse explanation, we will 

threshold each of the explanations to include only the k most important features (i.e., the 

k features with the largest absolute value) for our experiments. This is done after they 

have been calculated but before their quality has been evaluated. Importantly, TGT has a 

hyper-parameter, λ, which roughly controls the sparsity of its explanations; as a result, we 

will tune λ to maximize correctness for each value of k.

The fact that λ is tuned for each value of k raises an interesting question: “Does TGT use a 

subset of the features from its k2-sparse explanation for its k1-sparse explanation when k1 < 

k2?”. Naturally, we would like for the answer to be “yes” because, for example, it does not 

seem like a desirable outcome if a 2-sparse explanation uses Features A and B but a 1-sparse 

explanation uses Feature C.

Suppose we have two explanations between Group i and Group j: e1 which is k1-sparse and 

e2 which is k2-sparse with k1 < k2. To address this question, we define the similarity of e1 

and e2 as:

similarity e1, e2 = ∑ e1[i] 1 e2[i] ≠ 0
e1 1

(10)

This metric captures how much of e1’s explanation uses features that were also chosen by 

e2.8 So a score of 1 indicates that e1 uses a subset of the features of e2 and a score of 0 

indicates that it uses entirely different features. Because DBM does not solve a different 

optimization problem to achieve each level of sparsity, its similarity measure is always 1. 

When we run experiments with a list of sparsity levels k1, . . . ,km, we will plot similarity(e1, 

7The pseudo-code leaves out some of the details of the optimization process such as how often we sample new “initial” and “target” 
groups and how convergence is defined. For those details, see the code on GitHub.
8Note that this metric also includes the run to run variance of TGT.
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e2), . . . , similarity(em−1, em) to measure how similar TGT’s explanations are as the level of 

sparsity increases.

4. Experimental Results

Our experimental results are divided into two sections. In the first section, we demonstrate 

that TGT is better at explaining the model than DBM is when we restrict the explanations to 

varying degrees of sparsity. In the second section, we move beyond assessing whether or not 

TGT explains the model and demonstrate that it also appears to capture real signals in the 

data.

4.1. TGT’s Efficacy at Explaining the Model

From an interpretable machine learning perspective, our goal is help practitioners understand 

the dimensionality-reduction models they use in the data exploration process. We measure 

the quality of GCEs using correctness (Equation 3) and coverage (Equation 4) at varying 

degrees of sparsity (Figure 7).

We use the model from (Ding et al., 2018)9 on the UCI Iris, Boston Housing, and Heart 

Disease datasets (Dua & Graff, 2017) and a single-cell RNA dataset (Shekhar et al., 2016) 

and use its a visualization of its two-dimensional representation to define the groups of 

points. Figure 1 shows this representation and grouping for the single-cell RNA dataset; 

similar plots for all of the datasets are in the Appendix A.3. This model learns a non-linear 

embedding using a neural network architecture which is trained to be a parametric version of 

t-SNE (Maaten & Hinton, 2008) that also preserves the global structure in the data (Kobak 

& Berens, 2018).

Next, because the acceptable level of complexity depends on both the application and the 

person using the explanation, we measure the effectiveness of the explanations produced by 

TGT and DBM at explaining the model across a range of sparsity levels.

Explanation effectiveness at different levels of sparsity.—Figure 7 shows the 

results of this comparison. We can see that TGT performed at least as well as DBM and 

usually did better. Further, we can see that TGT’s explanations are quite similar to each 

other as we ask for sparser explanations. Note that all of these metrics are defined for a 

single pair of groups and so these plots report the average across all pairs of groups.

Exploring a Specific Level of Sparsity.—Figure 7 shows that TGT’s performance: is 

almost as good when k = 1 as when k = 4 on Iris, drops off sharply for k < 5 on Boston 

Housing, and drops off sharply for k < 3 on Heart Disease. Further, on the single-cell RNA 

dataset, it shows that TGT significantly outperforms DBM when k = 250 (Appendix A.4 

Figure 16) and that this comparison becomes more favorable for TGT for smaller k. The 

level of sparsity where the metrics drop off indicates the minimum explanation complexity 

9We use this model because previous analysis showed that its representation identifies meaningful groups on the single-cell RNA 
dataset (Ding et al., 2018).
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required for these methods to explain the model. See Figure 8 for an example of the pairwise 

correctness and coverage metrics for these levels of sparsity.

Figure 3 shows that DBM does not produce a good 250-sparse explanation for the difference 

between Group 3 and Group 17 from Figure 1. For the sake of an easy comparison, Figure 

9 shows a similar plot that uses TGT’s 250-sparse explanation; it is clearly a much better 

explanation.

4.2. TGT’s Efficacy at Capturing Real Signals in the Data

In the previous section, we demonstrated that TGT provides accurate explanations of the 

model that learned the low-dimensional representation. However, in practice, there could be 

a mismatch between what the model itself learns and the true underlying structure in the 

data. In this section, we evaluate empirically whether or not TGT provides explanations that 

match underlying patterns in the data.

We begin with an experiment on a synthetic dataset with a known causal structure and 

demonstrate that TGT correctly identifies this structure. This also serves as an intuitive 

example of why a sparser explanation can be as effective as a less-sparse explanation. Next, 

we leverage the labels that come with the UCI datasets to compare TGT’s explanations to 

some basic domain knowledge. Finally, we modify the UCI datasets and demonstrate that 

TGT is able to identify those modifications. Together, these results indicate that TGT is 

identifying real patterns in the data.

Synthetic Data with a Known Causal Structure.—By specifying the causal structure 

of the data, we can know which differences are necessary in the explanation, since they 

are the casual differences, and which differences are unnecessary, since they are explained 

by the causal differences. We find that TGT correctly identifies the causal structure of this 

dataset and that DBM does not.

We use the following procedure to generate each point in our synthetic dataset:

x1, x2 Bern(0.5) + N(0, 0.2), x3 N(0, 0.5), and x4 x1 + N(0, 0.05). The causal structure of this 

dataset is simple. x1 and x2 jointly cause 4 different groups of points. The explanation for the 

differences between these groups must include these variables. x3 is a noise variable that is 

unrelated to these groups and, as a result, should not be included in any explanation. x4 is 
a variable that is correlated with those groups, since it is caused by x1, but does not cause 

those groups. As a result, it is not necessary to include it in any explanation.

We generate a dataset consisting of 400 points created using this process and train an 

autoencoder (Kramer, 1991) to learn a two dimensional representation of the dataset. A 

visualization of this learned representation is in the Appendix A.3 Figure 14; as expected, 

there are four distinct groups of points in it. Then, we use TGT and DBM to calculate the 

GCEs between these groups. The pairwise and average correctness and coverage metrics for 

these solutions are in the Appendix A.4 Figures 17 and 18; observe that the two methods are 

equally effective at explaining the model.
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When we inspect the explanations ()Table 1), we see that both TGT and DBM use x1 and 

x2, neither use x3, and that DBM uses x4 while TGT does not. This shows that, even in a 

very simple setting, there is good reason to believe that an explanation that is simpler (i.e., 
sparser) than the DBM explanation exists and that TGT might be able to find it.

Qualitative Analysis of the UCI Datasets using the Labels.—Qualitatively, we find 

that TGT’s explanations agree with domain knowledge about these datasets. Specifically: 

On the Iris dataset, its explanations agree with a simple decision tree because they both 

rely mostly on the Petal Width to separate the groups. On the Boston Housing dataset, it 

identifies the differences between a set of inexpensive urban houses vs expensive suburban 

houses as well as equally priced groups of houses that differ mainly in whether or not 

they are on the Charles River. Finally on the Heart Disease dataset, it finds that the 

difference between a moderate and a low risk group of subjects was that the low-risk group’s 

symptoms are explained by something other than heart disease and the difference between 

the moderate and high risk group of subjects is that the former is made up of men and the 

later of women. For full details, see the Appendix A.5.

Quantitative Analysis of Modified Versions of the UCI Datasets.—In order to 

perform a more quantitative analysis, we artificially add a known signal to the dataset 

by choosing one of the groups of points, creating a modified copy of it by translating it, 

and adding those new points back into the dataset. We then ask two important questions 

about TGT’s behavior. First, does TGT correctly identify the modifications we made to the 

original dataset? Second, do TGT’s explanations between the original groups change when 

the modified group is added to the dataset? Details of how we setup these experiments and 

their results are in the Appendix A.6.

We find that TGT does identify the modifications we made and that, in doing so, it does not 

significantly change the explanations between the original groups. Importantly, this result 

remains true even if we retrain the learned representation on the modified dataset.

These results are a strong indicator that TGT finds real patterns in the data because it 

recovers both the original signal and the artificial signal even when the algorithm is rerun or 

the representation is retrained.

5. Conclusion

In this work, we introduced a new type of explanation, a GCE, which is a counterfactual 

explanation that applies to an entire group of points rather than a single point. Next, we 

defined reasonable metrics to measure the quality of GCEs (i.e., correctness and coverage) 

and introduced the concept of consistency (i.e., symmetry and transitivity), which is an 

important additional criteria that GCEs must satisfy. Given that, we defined an algorithm for 

finding consistent GCEs, TGT, that treats each pairwise explanation as a compressed sensing 

problem. Our first experiments empirically demonstrated that TGT is better able to explain 

the model than DBM across a range of levels of sparsity. Our next experiments showed 

that TGT captures real patterns in the data. This was done using a synthetic dataset with 

a known causal structure and by comparing TGT’s explanations to background knowledge 
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about the UCI datasets. As an additional test, we then added a synthetic signal to the 

UCI datasets and demonstrated that TGT can recover that signal without changing its 

explanations between the real groups. Importantly, this result remains true even when the 

representation is retrained.

Although we focused on data exploration in this work, similar groups arise naturally 

whenever the model being trained uses an encoder-decoder structure. This technique is 

ubiquitous in most areas where deep learning is common (e.g., semi-supervised learning, 

image classification, natural language processing, reinforcement learning). In these settings, 

identifying the key differences between the groups is an interesting question because we can 

observe that “The model treats points in Group A the same/differently as points in Group 

B”, determine that “The key differences between Group A and Group B are X”, and then 

conclude that “The model does not/does use pattern X to make its decisions”. We believe 

that exploring these applications is an important direction of future work that will require 

more sophisticated transformation functions, optimization procedures, and definitions of the 

groups of points of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A representation learned for a single-cell RNA sequence dataset using the model from (Ding 

et al., 2018). Previous work on this dataset showed that these groups of cells correspond to 

different cell-types (Shekhar et al., 2016). The goal of a GCE is to use this representation to 

identify the changes in gene expression that are associated with a change of cell type.
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Figure 2: 
DBM’s explanation for the difference in gene expression between the cells in Group 3 and 

Group 17. The x-axis shows which feature index (gene expression) is being changed and the 

y-axis shows by how much. Because it is very high dimensional and not sparse, it is difficult 

to use DBM to determine what the key differences actually are between this pair of groups 

(i.e., which genes differentiate these cell-types).
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Figure 3: 
By thresholding DBM’s explanation for the differences between Group 3 and Group 17 

to include only the k largest changes (250 in this case), we can make it sparse enough 

to be human interpretable. However, this simplified explanation is no longer an effective 

explanation. We show this visually: the magenta points are the representations of points 

sampled randomly from Group 3 and the red points are the representations of those points 

after the explanation was applied to them. We can see that the red points are usually not in 

Group 17 (poor correctness) and that they do not cover much of Group 17 (poor coverage). 

These metrics will be defined in Section 3.
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Figure 4: 
Two groups of points and the transformed version of Group 0. The red circles indicate the 

balls of radius ϵ used to calculated the metrics. Observe that the translation has both good 

correctness and coverage.
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Figure 5: 
The same idea as Figure 4, but now Group 0 has a smaller variance than Group 1. Observe 

that the translation has good correctness but poor coverage.
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Figure 6: 
The same setup as in Figure 5, but showing what happens when the negative of the 

translation is applied to Group 1. Observe that it has good coverage but poor correctness.
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Figure 7: 
A comparison of the effectiveness of TGT to DBM at explaining the model (measured by 

correctness and coverage) at a range of sparsity levels. Note that TGT performs at least as 

well as DBM and usually does better. Looking at the similarity metric, we see that TGT 

is fairly consistent at picking a subset of the current features when asked to find an even 

sparser solution.
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Figure 8: 
The pairwise explanation metrics for TGT with: Top Left) 1-sparse explanations on Iris, 

Top Right) 5-sparse explanations on Boston Housing, Bottom Left) 3-sparse explanations on 

Heart Disease, and Bottom Right) 250-sparse explanations on single-cell RNA.
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Figure 9: 
Unlike DBM, TGT is able to produce an effective 250-sparse explanation for the difference 

between Group 3 and Group 17 on the single-cell RNA dataset. This can be seen both 

visually and with the correctness and coverage metrics.
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Table 1:

A comparison of the explanations from TGT and from DBM. Note that they are similar except that TGT does 

not use x4, which is the variable that is not causaly related to the groups.

Explanation Method x 1 x 2 x 3 x 4

0→1 TGT −1.09 0.01 0.03 0.00

DBM −1.02 0.04 0.01 −1.03

0→2 TGT 0.00 0.88 0.00 0.00

DBM −0.01 0.97 0.06 −0.03

0→3 TGT −0.99 0.71 0.00 0.00

DBM −1.02 1.03 −0.01 −1.03
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