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SUMMARY

Tactile shape recognition requires the perception of object surface angles. We investigate how 

neural representations of object angles are constructed from sensory input and how they reorganize 

across learning. Head-fixed mice learned to discriminate object angles by active exploration 

with one whisker. Calcium imaging of layers 2–4 of the barrel cortex revealed maps of object­

angle tuning before and after learning. Three-dimensional whisker tracking demonstrated that the 

sensory input components that best discriminate angles (vertical bending and slide distance) also 

have the greatest influence on object-angle tuning. Despite the high turnover in active ensemble 

membership across learning, the population distribution of object-angle tuning preferences 

remained stable. Angle tuning sharpened, but only in neurons that preferred trained angles. 

This was correlated with a selective increase in the influence of the most task-relevant sensory 

component on object-angle tuning. These results show how discrimination training enhances 

stimulus selectivity in the primary somatosensory cortex while maintaining perceptual stability.

In Brief

Tactile shape recognition requires the perception of object surface angles. Kim et al. show how 

excitatory neurons in the primary somatosensory cortex construct object-angle representations 

from sensory input components. Task-relevant sensory components gain influence on object-angle 

tuning across angle discrimination training, coincident with selective sharpening of trained angle 

representations.
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INTRODUCTION

Tactile recognition of the shape of objects is essential for skilled interactions with the 

world. Whether with hands (Gibson, 1962) or with whiskers (Carvell and Simons, 1990), 

active tactile shape perception involves purposeful interaction with objects in search of 

shape-relevant tactile features (Katz, 1925; Lederman and Klatzky, 1987). Interactions with 

these features cause deformation and stresses within the sensing tissue (Sripati et al., 2006; 

Whiteley et al., 2015), driving primary sensory afferent activity (Adrian and Zotterman, 

1926; Coste et al., 2012; Furuta et al., 2020; Hensel and Boman, 1960; Severson et al., 

2017; Zucker and Welker, 1969). From these patterns of actively gathered sensory input, the 

brain produces tactile perception, yielding rich internal representations of the external world 

(Bensmaia et al., 2008; Bodegård et al., 2001; Fitzgerald et al., 2004; Fortier-Poisson and 

Smith, 2016; Isett et al., 2018; Pruszynski and Johansson, 2014; Pubols and Leroy, 1977). 

How these representations are assembled from sensory input, organized within the cortex, 

and altered to meet behavioral demands is poorly understood.

A primary component of tactile shape recognition is perception of the local orientation 

angle of object surfaces. In humans, active exploration with individual fingertips provides 

sufficient information to perceive surface angles (Pont et al., 1999; Wijntjes et al., 2009). In 

mice, the means by which surface angles are determined with whiskers is unknown. It could 

require the integration of touch across multiple whiskers (Brown et al., 2020) via labeled 

line (Knutsen and Ahissar, 2009) or latency cues (Szwed et al., 2003). Alternatively, each 

whisker could function like a fingertip, providing sufficient information to perceive surface 

angles during active touch. The speed and accuracy with which mammals can identify 

complex shapes with whiskers (Anjum et al., 2006; Catania et al., 2008) suggest that each 

whisker conveys rich information about local object features, including horizontal (Cheung 

et al., 2019; Mehta et al., 2007) and radial location (Bagdasarian et al., 2013; Pammer et al., 

2013; Solomon and Hartmann, 2011), texture (Jadhav et al., 2009), and surface angles. Here, 

we investigate how sensory components of single-whisker touch allow the discrimination of 

object angles.

For object features or sensory components to influence behavior, they must have neural 

correlates. Neurons in the primary somatosensory cortex (S1) of anesthetized rodents encode 

direction-specific responses to passive whisker deflections (Andermann and Moore, 2006; 

Bruno et al., 2003; Kremer et al., 2011; Kwon et al., 2018; Lavzin et al., 2012; Simons 

and Carvell, 1989). S1 activity is required for active object orientation discrimination 

with multiple whiskers (Brown et al., 2020). Thus, S1 is a likely location of the neural 

representations of object angles and underlying sensory input. We map representations of 

deflection direction and object angles in S1 of anesthetized and behaving mice. From this, 

we demonstrate how whisker features of passive and active touch construct object-angle 

tuning during active tactile sensing.

Representations of stimulus features in primary sensory cortices can change across 

association learning, although the nature of these changes varies across studies. Reports 

from chronic imaging across stimulus discrimination training show that the proportion of 

stimulus-selective neurons increases (Chen et al., 2015; Poort et al., 2015), the selectivity of 
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individual neurons increases (Khan et al., 2018; Poort et al., 2015), or the representations 

remain stable (Peron et al., 2015). These differences may be due to variations in stimulus 

control or task design. Here, we identify which aspects of the cortical representations of 

stimulus features and sensory input are plastic and which are stable across discrimination 

training. This reveals how training reshapes both stimulus feature and sensory input 

encoding in a task-relevant manner.

RESULTS

Single Whiskers Provide Sufficient Tactile Information to Discriminate Surface Angles of 
Touched Objects

We hypothesized that active touch with a single whisker provides mice with sufficient 

information to discriminate the surface angles of touched objects. To test this hypothesis, 

we developed a novel lick left/right whisker-guided object-angle discrimination task. We 

trimmed mice to a single whisker (C2) and investigated whether they could learn to 

discriminate the angle of a smooth pole, randomly presented at 45° and 135° from the 

horizontal plane on an anteroposterior axis beside the face while head-fixed (Figure 1A). 

Mice were water-restricted for motivation. Following an object sampling period (1 s), 

correctly licking first to the right (45° object angle) or left (135°) port during an answer 

period (up to 3 s) released a small (2–4 μL) water reward (Figure S1A). The anteroposterior 

location of the pole was jittered (2 mm range) during every trial to ensure that mice were 

discriminating object angles, rather than detecting the presence of objects at a particular 

elevation or location.

The behavior proceeded through acclimation, 2-angle training, 7-angle testing, and control 

stages based on the rate of progress of each mouse (Figure S1B). Operant aspects of the 

task were stable across training sessions (Figures S1C–S1F). Six of 12 mice reached expert 

performer criteria of >75% correct in 3 consecutive 2-angle training sessions (Figure 1B). 

Before and after training to expert level on 2-angle discrimination, mice were tested on a 

complementary 7-angle discrimination task to gauge their discrimination acuity (45°–135° 

at 15° increments, randomly presented). Water rewards matched the angle orientation of 

the 2-angle training (45°–75° right, 90° random, and 105°–135° left port). In the naive 

7-angle test, mice performed at chance (Figure 1C). Two-angle expert mice performed at 

70.0% ± 2.7% on the follow-up 7-angle test. Moreover, there was a significant difference 

in choice even for 15° angle differences (Figure 1D). This shows that head-fixed mice 

can discriminate object angles with a single whisker to at least 15° of precision without 

dedicated training in fine-angle discrimination. To exclude the possibility that mice used 

other unknown whisker-dependent cues on angle discrimination, we jittered the radial 

distance of the object within a 5-mm range for expert mice. This had no significant effect 

on 2-angle discrimination performance (Figure 1E). Finally, trimming the whisker caused 

performance to fall to chance in all of the mice across 3 days of whisker-free training, 

indicating that mice relied on whisker tactile stimuli to solve the task (Figure 1E).

Which features of whisker-object interactions allow single whiskers to discriminate object 

angles? We recorded whisker motion and object interaction from 2 perspectives at 311 

fps, traced both views, and generated 3-dimensional (3D) reconstructions of whisker 

Kim et al. Page 3

Neuron. Author manuscript; available in PMC 2021 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trajectories (average error rate 1.0 ± 0.0 frames per trial; <0.08%) with semi-automated 

contact detection (Figures S2A–S2D; STAR Methods, Touch Frame Detection). From these 

reconstructions, we quantified 12 sensory features of whisker-object interactions during 

the 7-angle test sessions (Figures 2A, 2B, S2E, S2F; STAR Methods, Whisker Feature 

Analysis). These included 6 features of whisker motion at touch onset: azimuthal angle at 

base (θ), elevation angle at base (ϕ), horizontal curvature (κH), vertical curvature (κV), base­

to-contact path distance (arc length), and touch count in a trial. These also included 6 force­

generating features of whisker dynamics during touch: maximum change in azimuthal (push 

angle; maxΔθ) and elevation angle (vertical displacement; maxΔϕ), maximum change in 

horizontal (horizontal bending; maxΔκH) and vertical curvature (vertical bending; maxΔκV), 

slide distance along object, and touch duration during a protracting whisk (Figures 2A and 

2C). Whisker features were selected from those encoded in S1 or the trigeminal ganglion 

(Hires et al., 2015; Peron et al., 2015; Ranganathan et al., 2018; Szwed et al., 2003, 2006) 

and their vertical or spatial counterparts. Whisker features at touch onset are used by mice 

to determine the horizontal location of objects (Cheung et al., 2019), but here they showed 

little relationship to the touched object angle (Figure 2C, left 2 columns). In contrast, most 

whisker features during touch co-varied with the object angle in both naive and expert 

sessions, suggesting a stable utility for discrimination (Figure 2C, right 2 columns).

Do these 12 whisker features provide sufficient information to discriminate the object 

angle to 15° resolution? We built multinomial generalized linear models (GLMs) with lasso 

regularization to predict 7 object angles using all 12 trial-averaged whisker features as input 

parameters (STAR Methods, Whisker Feature Analysis – GLM). These GLMs correctly 

identified the presented object angles before (65.5% ± 5.2%) and after (74.2% ± 4.5%) task 

mastery (Figures 2D and 2E), compared to 14.3% correct in shuffled data. The average 

errors in angle prediction were 7.29° ± 1.15° and 5.57° ± 1.23°, respectively, compared 

to 33°–34° in shuffled data (Figure 2F). There was no significant difference in prediction 

capability between naive and expert test sessions (Figures 2E and 2F), confirming that the 

sensory input provided similar angle-discriminative information before and after training. 

Ideal observers using these model predictions to choose between lick right (predicted 45°–

75°) and left (predicted 105°–135°) achieved 90.3% correct rate, which is significantly 

higher than the performance of mice on those angles in the expert test sessions (78.8% 

correct; Figures 2G and S2G). We conclude that these 12 features provide sufficient 

information to accurately discriminate object angles to at least 15°.

To identify the features that are the most important for discriminating object angles, we 

removed each feature and assessed the degradation in model fitting (fraction deviance 

explained; STAR Methods, Whisker Feature Analysis – Feature Importance) using the 

remaining 11 features (i.e., “leave-one-out”). This approach identified slide distance and 

vertical bending as the 2 most important features for object-angle prediction (Figure 2H). 

The relative importance of these 2 features remained in expert sessions (Figure 2H), further 

supporting the stability in sensory information content before and after 2-angle training.
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Touch Evokes Object-Angle Representations in S1

The ability of mice to discriminate object angles with a single whisker (Figure 1) implies 

the existence of neural representations of touched object angles in the brain. Where are 

these found, and is specialized training required for them to emerge? To investigate this, we 

performed 2-photon volumetric calcium imaging with GCaMP6s in excitatory neurons of 

layers 2–4 (L2–4) of the barrel cortex (alternating blocks of 4 planes at 6–8 volumes/second) 

during naive 7-angle test sessions (n = 12 mice, average of 444 ± 49 active neurons in 

L2/3 C2, 821 ± 75 in L2/3 non-C2, 136 ± 32 in L4 C2, and 182 ± 38 in L4 non-C2 

per mouse; TetO-GCaMP6s × CaMKIIα-tTA; STAR Methods, Two-Photon Microscopy). 

Imaging was targeted to the C2 whisker barrel column and surround via intrinsic signal 

imaging and calcium responses during passive deflection. We used suite2p (Pachitariu et al., 

2017) for cell segmentation and neuropil correction and MLspike (Deneux et al., 2016) for 

spike inference. Active neurons were identified by region of interest (ROI) morphology and 

calcium trace kinetics (STAR Methods, Imaging Data Processing).

To identify touch-responsive neurons, we built an “object model”—a Poisson GLM with 

lasso regularization for each neuron that fit the inferred spike counts for each imaging frame 

in the session using 5 behavioral classes (i.e., touch, whisking [Figure S3A], licking, sound, 

and reward [Figure 3A]; STAR Methods, GLM for Neuronal Activity – ‘Object Model’). 

This model separated the effects of touch from non-touch classes on inferred spikes. Among 

the active neurons, 36.8% ± 3.3% were fit by the GLM (i.e., goodness-of-fit >0.1 for the 

whole session; Figure S3B). Each fit neuron was assigned 0, 1, or more classes based on 

a leave-one-out approach. Exclusively touch was the most common class among the fit 

neurons. Of all of the active neurons, 23.5% ± 2.8% were responsive to touch. Whisking and 

mixed touch and whisking made up most of the rest of the fit neurons, with <1% of active 

neurons well fit to licking, sound, or reward (Figure 3B).

We next tested the extent to which touch-responsive neurons encoded the angle of touched 

objects. Angle tuning was determined by one-way analysis of variance (ANOVA) of 

responses across angles, and confirmed by a shuffling test to minimize false positives (STAR 

Methods, Object-Angle Tuning Calculation). To prevent potential signal contamination from 

behavioral outcome (e.g., water rewards), calculations were restricted to touch frames before 

the first lick in the answer period (i.e., the answer lick). Among touch-responsive neurons, 

78.0% ± 2.3% showed significantly greater touch-evoked activity in response to ≥1 object 

angles. These angle-tuned neurons were heterogeneously distributed across L2–4 within and 

around the primary barrel column (Figures 3C and S3C).

Angle-tuned responses fell into 4 types based on a post hoc test (Figure 3C): (1) specific (the 

preferred angle was significantly different from all others), (2) broad (≥2 adjacent angles 

were similar between themselves but significantly different from the rest), (3) complex 

(≥2 non-adjacent angles were similar between themselves but significantly different from 

the rest), and (4) non-selective (no response was significantly different from another). A 

substantial number of neurons were selective to each of the 7 angles, tiling the tested angle 

space (Figure 3D).
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To confirm that angle tuning did not result from behavior classes other than touch, we 

compared the angle tuning preferences from inferred spikes to preferences calculated from 

the object model. The population distributions were nearly identical (Figures S3D and S3E). 

Angle tuning preferences from touch-only object models (removing behavioral classes other 

than touch from the model after fitting; STAR Methods, Object-Angle Tuning Calculation) 

were again nearly identical (Figures S3D and S3E) to those from inferred spikes, indicating 

that angle tuning preference was independent of neuronal responses to behaviors other than 

touch, such as whisking and licking.

Because L2/3 receives strong input from L4 (Hooks et al., 2011; Lefort et al., 2009), we 

hypothesized that there would be a greater proportion of complex angle-tuned neurons in 

L2/3 than in L4. To our surprise, there was no significant difference either in the relative 

proportion of specific, broad, complex, and non-selective angle tuning (Figure 3F; STAR 

Methods, Cortical Depth Estimation) or in the distribution of preferred angles across layers 

(Figure 3G). We confirmed these results in a pair of Scnn1a-Tg3-Cre mice that exclusively 

expressed GCaMP6s in L4 after injecting Cre-dependent GCaMP6s virus (LeMessurier et 

al., 2019; Madisen et al., 2015) (Figures S3F and S3G). We speculate that this homogeneity 

in tuning across layers may be particular to single-whisker tactile exploration as the lateral 

integration of touch information across multiple whiskers is not present.

Whisker Features That Best Discriminate Object Angles Also Best Drive Angle Tuning in 
S1

Our prior analysis showed that object-angle discriminability is most influenced by 2 tactile 

features, slide distance and vertical bending during touch (Figure 2H). We hypothesized that 

these 2 features would have the greatest influence on the object-angle-tuned responses found 

in S1. To test this hypothesis, we first built a “whisker model” for each touch-responsive 

neuron (Figure 4A) by swapping the touch input parameters of the object model (Figure 

3A) with the 12 whisker features we previously used to predict the object angle (Figures 

2C and 2D). These 2 models had performed similarly in fitting session-wide inferred spikes 

of touch-responsive neurons (Figure S4A), justifying using this whisker model for further 

analysis.

To quantify the impact of each whisker feature on angle tuning, we built angle tuning curves 

based on the output of the whisker model. On average, there was a high correlation (R 

= 0.78 ± 0.02) between angle tuning from inferred spikes and the whisker model (Figure 

S4B). Removing behavior classes other than whisker features from the model (i.e., whisker­

only model) had a negligible impact on this correlation (R = 0.78 ± 0.02; Figure S4B), 

demonstrating that angle tuning is primarily constructed from these 12 whisker features. 

To determine the impact of each feature in establishing angle tuning, we calculated the 

reduction in correlation between observed angle tuning curves and these whisker-only model 

reconstructions when single whisker features were removed from the model. We highlight 

this process in 2 example neurons whose tuning was highly dependent on slide distance 

or vertical bending (Figure 4B). Across the population, whisker features during touch had 

much more influence than features at touch onset (Figure 4C). Reflecting their relative 

importance in the 7-angle classification (Figure 2H), vertical bending and slide distance had 
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a greater average impact on angle tuning than any other feature (Figures 4C and S4C). We 

conclude that object-angle tuning in S1 primarily reflects the angle-discriminative features 

of whisker dynamics during object contact.

We examined whether a whisker feature’s impact on tuning was dependent on a neuron’s 

preferred object angle (Figure 4D). Vertical bending had a higher impact on angle tuning 

in neurons that preferred extreme angles. Slide distance had a higher impact on neurons 

preferring intermediate angles (75°–105°). Horizontal bending also emerged as an influential 

feature for these intermediate angles. Thus, the diversity of angle tuning preferences reflect 

an angle-specific relationship with whisker features.

Is each neuron sensitive to only 1 whisker feature, or do multiple features combine to 

create a higher-order representation of the external world? To answer this, we examined the 

number of whisker features that had a strong impact on angle tuning in each neuron. We 

defined strongly affecting features as those whose removal reduced the correlation between 

model and observed angle tuning curve by at least 0.1 (Figure S4D). Across the population, 

67.5% of angle-tuned neurons had at least 1 whisker feature with a strong impact on angle 

tuning, 19.3% ± 0.9% of neurons had ≥2 features, and 5.1% had ≥3 features (Figure S4D). 

These multi-feature neurons were unevenly distributed across angle preferences. Neurons 

preferring intermediate angles (75°–105°) were more likely to be strongly affected by >1 

whisker feature (Figure 4E). The proportion of multi-feature neurons was similar across 

layers (Figure S4E). We conclude that the diverse selectivity of S1 neurons for features of 

the external world (e.g., object angle) is established by the heterogeneous sampling of ≥1 

features of sensory input (e.g., whisker features).

To what extent do active touch processes influence object-angle tuning? To address this 

question, we mapped calcium responses to passive whisker deflections in 8 directions under 

light isoflurane anesthesia (Figures 5A–5C) in 9 mice before their naive 7-angle active test 

sessions (Figures 5D–5F; 5.8 ± 4.3 days before; 72 planes from L2–4). Across all of the 

passive deflection-responsive neurons, the 8-angle vector sum of deflection responses was 

broadly distributed (Figure S5A). However, the average response to vertical deflections was 

28.8% higher than horizontal deflections (Figure S5B), which is consistent with a recent 

report in L2/3 of S1 in mice (Kwon et al., 2018). In a subset of planes (37 planes over 9 

mice), we were able to identify the same neurons in matched fields of view between the 

passive deflection sessions and naive 7-angle test sessions (Figure 5G). Of 2,532 neurons 

active in both sessions, 1,059 neurons (41.8%) were significantly tuned to the passive 

deflection direction, while 502 neurons (19.8%) were significantly tuned to the object angle 

(Figure 5H). Only 64.1% (322/502) of these object-angle-tuned neurons exhibited tuning 

to the deflection direction, while only 30.4% (322/1,059) of the deflection-direction-tuned 

neurons were also tuned to the object angle. The partial overlap between these 2 classes 

shows that tuning to the passive deflection direction is neither necessary nor sufficient to 

produce object-angle-tuned responses during active touch.

Within co-tuned units, there was a weak relationship between the passive deflection 

direction and the object angle preference. The average response to downward deflections 

was slightly higher for neurons preferring the 45° object angle (Figure 5I). Similarly, 
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45°-preferring neurons had a tendency to prefer down and back passive deflections, while 

135°-preferring neurons had a slight bias to up and back (Figures 5J, 5K, and S5C). This 

is consistent with the expected direction of forces applied during the active touch of those 

object angles. However, the relatively small magnitude of the bias and the diversity of 

passive deflection-direction preferences across object-angle tuning leads us to conclude that 

active processes during object angle discrimination profoundly reshape deflection-direction 

tuning preferences across the S1 population.

S1 Maintains Angle Tuning Preferences Despite Changes in Active Ensemble Membership 
across Training

Mice improve discrimination task performance with training (Figure 1), and mice have a 

robust representation of object angles in S1 neurons (Figure 3). Discrimination performance 

could be enhanced by changes in the object angle representations in S1. However, 

primary sensory cortical representations may need to remain steady to support perceptual 

stability. We investigated the relationship between discrimination training and object angle 

representations in S1 by comparing the activity patterns of the same neurons in 7-angle 

test sessions before and after 2-angle discrimination training to expert performance (11,351 

neurons from 6 mice with paired sessions separated by an average of 16 ± 2 sessions; 

Figures 6A and S6; STAR Methods, Matching Planes across Sessions).

The most prominent change was in the composition of the ensemble of active neurons 

during a session. Only 39.1% ± 3.8% of tracked neurons were active in both naive 

and expert sessions (i.e., persistent neurons; Figure 6B), with more superficial imaging 

planes showing slightly higher turnover than deeper planes (Figure S7A). The proportion 

of turnover was largely independent of touch-responsive category (i.e., non-touch, non­

selective touch, angle-tuned touch; Figures S7B and S7C). Persistent neurons had 

significantly higher activity than transient neurons before and after training (Figure 6C).

Despite the high turnover rate, the proportion of active neurons that were angle tuned was 

stable (Figure 6D). There was also no significant change in the proportion of preferred 

object angles before and after training (Figures 6E and 6F). This was true in both L2/3 

and L4 (Figure S7E) and for both for the transient and persistent populations (Figure 

S7F). Moreover, the persistently angle-tuned neurons had stable angle preferences, with 

83.8% ± 1.7% changing their preferred angle ≤15° (Figure 6G). Thus, despite the high 

turnover of active ensemble membership, L2–4 of S1 provide a similar pool of object 

angle preferences to draw from, which could support perceptual stability with appropriate 

population sampling.

Angle Selectivity Increases in Neurons Tuned to Trained Object Angles

Were there any changes in the neural representations of object angles in S1 that could 

support improved discrimination performance? Across mice, the angle selectivity of touch 

neurons significantly increased following 2-angle training (Figure 7A). This was due, in 

part, to a significant reduction in the proportion of non-selective touch neurons in S1 (Figure 

7B). A greater proportion of non-selective touch neurons became angle tuned with training 

than vice versa (Figure 6B). The selectivity increase was also seen in angle-tuned neurons, 
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but only in neurons that preferred 45° or 135° (Figures 7C, 7D, and S7G). Thus, changes in 

object feature encoding were specific to trained angles, rather than a general sharpening of 

object-angle tuning.

How was this sharpening in angle tuning achieved? Since object angles can be discriminated 

by whisker features (Figure 2), and they are used to create object-angle tuning in S1 

neurons (Figure 4), we suspected that 2-angle discrimination training (Figure 8A) may 

change the encoding of whisker features in S1. During 2-angle training, vertical bending 

had distinct distributions for 45° and 135° trials, while slide distance did not (Figure 

8B). After training, vertical bending discriminated choice on 2-angle sessions, while slide 

distance did not (Figure 8C). We built binomial GLMs to predict either object angles or 

choice from all 12 whisker features. As expected from the 7-angle prediction (Figures 

2D-E), object angles could be well predicted from these 12 whisker features before and 

after training (Figure 8D). However, choice could be predicted only in expert sessions 

(Figure 8D), reflecting the learned association between object angles and choices after 

training. Using leave-one-out methods, we found that vertical bending was the dominant 

choice-predictive feature in expert 2-angle training sessions (Figure 8E). This remained 

true in choice prediction in expert 7-angle test sessions (Figure S8A), suggesting that mice 

applied the same discrimination rule learned in training to those test sessions. Thus, while 

both slide distance and vertical bending were useful for 7-angle decoding (Figures 2C, H) 

and neuronal tuning (Figure 4C), only 1 of those features, vertical bending, was relevant to 

the trained task.

The relevance of whisker features for 2-angle discrimination (Figure 8B) was correlated to 

training-related changes in their encoding during 7-angle test sessions (Figure 8F). Training 

significantly increased the importance of vertical bending in predicting inferred spike trains 

of 7-angle test sessions, and significantly decreased the importance of slide distance (Figures 

8G and S8B). It also significantly increased the impact of vertical bending on angle tuning, 

while significantly reducing the impact of slide distance (Figures 8H and S8C). Finally, 

training also increased the proportion of neurons where vertical bending had a major impact 

on angle tuning, while decreasing the proportion of slide distance (Figures S8D and S8E). 

We conclude that discrimination training selectively enhanced the cortical representation of 

task-relevant features of sensory input while degrading the representation of task-irrelevant 

features, resulting in improved neural selectivity for trained stimuli that persisted in related 

discrimination tasks.

DISCUSSION

Calcium imaging allowed us to observe the reorganization of neural representations of 

object angles and sensory features across weeks of training. However, this approach has 

limitations. Whisker dynamics and single touch responses in S1, particularly L4, are much 

faster than the indicator decay rate and imaging volume rate (Chen et al., 2013; Hires et 

al., 2015). This limits our mapping to a “rate code” for object angle and sensory features 

averaged across touches, while spike timing and synchrony could also play significant roles 

in driving perception and behavior (Zuo et al., 2015). We used a GCaMP6s mouse line 

(Wekselblatt et al., 2016) that has high single-spike SNR, low ΔF/F0 variability, and a linear 
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relationship in calcium response to 1–4 action potentials within a 200-ms window in vivo 
(Huang et al., 2020), which is well suited for the observed firing rates of excitatory neurons 

in L2–4 of S1 during active touch (Hires et al., 2015; O’Connor et al., 2010). However, 

GCaMP6s is dim in the absence of activity, so determining whether a neuron fell silent or 

simply went out of focus required corroborating evidence. Our matched depth and optical 

sectioning calibration (Figure S6), inferred spikes per session distribution (Figure S7D), and 

consistency with prior reports of turnover (Chen et al., 2015; Gonzalez et al., 2019; Ziv et 

al., 2013) support that our observed turnover in active ensemble membership across training 

reflects true changes in population activity.

One of our goals was to investigate how object feature and sensory input encoding changes 

during stimulus-reward association learning. Possible confounders include activity changes 

due to operant learning or motor strategy refinement and shifts in reward anticipation or 

attention across training. We controlled for operant learning by stepwise training (Figure 

S1B), mapping neural responses only after operant task components were solidified (Figures 

S1D–S1F). In contrast to prior tactile tasks (Chen et al., 2015; Peron et al., 2015), 

object-angle discrimination resulted in stable motor engagement and gathering of sensory 

information before and after training (Figure 2). Compared to go/no-go tasks (Chen et al., 

2015; Khan et al., 2018; Poort et al., 2015), our 2-choice task balanced reward anticipation 

across the presented stimuli and disambiguated choice from attentional lapses. In this 

context, the proportion of active neurons that discriminated task-relevant object features 

was stable across training (Figure 6D), consistent with Peron et al. (2015), but in contrast 

to Chen et al. (2015), Khan et al. (2018), and Poort et al. (2015). Training on 2-angle 

discrimination while testing on 7-angles revealed that increased neural selectivity to the 

trained stimulus feature (Khan et al., 2018; Poort et al., 2015) was specific to the stimuli 

presented during training (45° and 135°), and did not generalize across stimulus feature class 

(object angle; Figure 7C). Tracking how these changes are distributed across S1 neurons 

that target different brain regions (Chen et al., 2015; Yamashita and Petersen, 2016) across 

phases of learning could reveal distinct circuit mechanisms for refining shape perception and 

tactile-guided behaviors.

How is representational stability maintained in the face of active ensemble turnover (Figure 

6)? The simplest explanation is that the neurons in S1 maintain object feature preferences 

across learning, independent of active ensemble participation. This would be consistent with 

primary visual cortex neurons maintaining stimulus selectivity before and after monocular 

deprivation (Rose et al., 2016) and CA1 neurons maintaining place preference across weeks 

despite variation in active ensemble participation (Ziv et al., 2013; Gonzalez et al., 2019). 

This possibility is supported by the remarkable stability of angle preference in persistently 

angle-tuned neurons (Figure 6G). The combination of active ensemble variability with stable 

object preference could reflect the changing intrinsic excitability of excitatory neurons 

(Barth et al., 2004; Desai et al., 1999; Yiu et al., 2014) or local inhibitory networks that 

enforce firing rate homeostasis (Dehorter et al., 2015; Gainey et al., 2018; Goldberg et al., 

2008). As long as population tuning preferences remain stable (Figures 6E–6G), changes in 

activity may average out and allow downstream neurons to maintain consistent selectivity.
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Why were 45° and 135° overrepresented in the S1 population tuning? Preferred angle 

distributions were unaffected by 2-angle training, so the overrepresentation does not reflect 

a preference shift toward reward-predictive stimuli. It is possible that all angles 0°–180° 

are equally represented, with <45° and >135° pooled into the 2 most extreme bins, or 

deflections out of the plane of whisking and body movement could be more likely to 

represent behaviorally relevant objects. The significantly larger average responses and bias 

in preferred directions to vertical compared to horizontal passive deflections (Figures 5I, 

S5A, and S5B) provide some support for this possibility. Combining this weak directional 

bias in passive tuning with active touch processes, such as sticking and slipping along the 

pole (Huet and Hartmann, 2016; Isett et al., 2018), could further increase the prevalence of 

tuning to extreme angles, since they are associated with the longest slide distances (Figure 

2C).

Tactile shape perception is normally accomplished by the simultaneous touch of multiple 

digits or whiskers along a contour during free exploration. To understand tactile 3D shape 

perception requires knowing the capability and limitations of single touch sensors in local 

surface perception and how they are encoded in the brain. Humans can perceive surface 

angles with single fingertips (Pont et al., 1999; Wijntjes et al., 2009). However, the central 

representations of surface angles remain unknown. We show that mice are also able to 

discriminate surface angles with single whiskers and map the S1 representations involved in 

this perceptual process. However, important questions remain. Whether the spatial pattern 

of follicle strain and mechanosensor activation evoked by whisker motion and bending is 

sufficient to explain the S1 representation, or if efference copy also shapes it remains to be 

explored. A comprehensive understanding of tactile 3D shape representation and perception 

will require investigating how signals from multiple whiskers are integrated in S1 and 

beyond, as well as the identification of where and how body orientation invariant shape 

representations emerge.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Samuel Andrew Hires (shires@usc.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The datasets generated during this study and code 

used to analyze data and generate figures are available at https://github.com/hireslab/

Pub_S1AngleCode.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—We used 2–4 months old male (n = 4) and female (n = 8) CaMKII-tTA × 

tetO-GCaMP6s mice (#007004 and #024742, respectively; The Jackson Laboratory), and 

2 male Scnn1a-Cre mice (#009613; The Jackson Laboratory). Mice were maintained on 

a 12:12 reversed light:dark cycle. Six mice were singly housed after surgery due to the 
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incompatibility with cage mates. After water restriction, health status was assessed every 

day following a previously reported guideline (Guo et al., 2014). All procedures were 

performed in accordance with the University of Southern California Institutional Animal 

Care and Use Committee Protocol 20731.

METHOD DETAILS

Cranial window surgeries—Before each surgery, buprenorphine-SR and ketoprofen 

were injected subcutaneously at 0.5 and 5 mg/kg, respectively. Animals were anesthetized 

using isoflurane (3% induction, 1%–1.5% maintenance). On the first surgery, a straight 

head bar was attached on the skull. We performed intrinsic optical signal imaging (ISI) of 

the C2 whisker representation using a piezo stimulator and 635 nm LED light under light 

isoflurane anesthesia (0.8 – 1.0%) at least 3 days after the surgery. All whiskers except C2 

were trimmed before ISI and remained trimmed throughout the experiments. On the second 

surgery, a 2 × 2 mm square of skull centered at C2 location was removed and replaced by 

a glass window which was made by fusing a 2 × 2 mm glass and a 3 × 3 mm glass (both 

0.13–0.17 mm thickness) with ultraviolet curing glue (Norland optical adhesive 61, Norland 

Inc.). We confirmed C2 location about 3 days after the cranial window surgery with a second 

ISI session. Water restriction started 3–10 days after the second ISI.

Virus injections—In 3 male and 1 female CaMKII-tTA × tetO-GCaMP6s mice, AAV1­

CaMKIIα0.4-NLS-tdTomato-WPRE (custom made by Vigene Biosciences, MD, USA) 

was injected during the cranial window procedure. For Scnn1a-Cre mice, AAV1-Syn-Flex­

GCaMP6s-WPRE-SV40 (a gift from Douglas Kim & GENIE Project (Addgene viral prep 

# 100845-AAV1; http://addgene.org/100845; RRID: Addgene_100845)) was injected. We 

pulled a glass capillary (Wiretrol® II, Drummond) into 10–20 μm in tip diameter using a 

micropipette puller (Model P-97, Sutter Instrument), and beveled the tip to about 30°. After 

filling the capillary with mineral oil (M5904, Sigma-Aldrich), we withdrew virus solution 

(titrated to 1012 GC/mL using 0.001% Pluronic F-68 in saline) from the tip using a plunger. 

Care was taken not to introduce an air gap between mineral oil and virus solution. We 

injected virus solution at the 4 corners of a 200 μm square whose center matched to that 

of identified C2 region, 50 nL per site over 5 min. We waited for 2 min after each virus 

injection before withdrawing. Depth of the pipette tip was 400 μm for Scnn1a-Cre mice, and 

200 and 400 μm for others.

Behavioral task—We developed a 2-choice task for object surface angle discrimination 

with a single whisker (Figures 1 and S1). In the 2-angle training sessions, a smooth black 

pole with 0.6 mm diameter (a plunger for glass capillary, Wiretrol® II, painted with black 

lubricant, industrial graphite dry lubricant, the B’laster Corp.) was presented in each trial on 

the right side of a head-fixed mouse, coming from the front, with an angle of either 45° or 

135°. The pole was positioned 5–8 mm laterally from the face. The lateral distance from the 

face was kept consistent within a mouse across sessions, except for “Radial jitter” sessions, 

where it varied 0–5 mm more lateral from the trained position. The rotation axis of the pole 

was orthogonal to the body axis in the horizontal plane, and the angle was rotated in the 

sagittal plane such that 45° (pointing caudal) made the whisker move down upon protracting 

sliding touch, while 135° (pointing rostral) made it go up (Figure 1A). Mice were given 
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3–4 μl of water reward for correct trials (i.e., when they licked the right lick port for 45° 

and left for 135°). The amount of water reward was adjusted to target 600 trials performed 

per session (553 ± 147 trials, mean ± SD). Wrong answers were not punished, except for 

a few sessions of impulsive licking (5.3 ± 3.1 sessions in 4 mice, mean ± SD). In these 

sessions we punished mice with 2 s time-outs for wrong answers. The time-out could be 

re-triggered by additional licks during this time-out period. Pole presentation was followed 

by a 1 s sampling period, where licking was ignored, and then a 3 s answer period, where 

licking triggered trial outcome. The pole retracted 1 s after an answer lick, defined as the 

first lick during the answer period time. The behavioral task was controlled and time-synced 

by MATLAB-based BControl software (C. Brody, Princeton University). Pole rotation was 

controlled using an Arduino and a micro servo (SG92R, TowerPro), and planar pole position 

was controlled by a set of 2 motorized actuators (Zaber), each moving in anterior-posterior 

axis and medio-lateral axis, respectively. The pole was presented using a pneumatic slide 

(Festo).

We trained mice in a stepwise manner to control for operant learning (Figures S1B–S1F). 

After 7–10 days of water restriction, we confirmed C2 location and defined imaging field-of­

view (FOV) and planes (below, Two-Photon Microscopy section). We then acclimated mice 

to head fixation and water reward from a lick port. After 1–3 days, each mouse underwent 

1–2 days of sound cue-pole-water reward association training (“Pole timing” sessions). A 

piezo sound cue was given at the beginning of each trial, and water reward was given upon 

mouse’s licking 1 s after the pole presentation. At this training point, a single lick port was 

present at the center, and the angle of the pole was 90°. Chronic two-photon imaging started 

from this session (reference FOV from this session; see Matching Planes across Sessions 

(Figure S6)). Once they learned the structure of task and reward timing (<5% of miss trials 

in more than 100 consecutive trials; up to 2 sessions), we introduced 2 lick ports (separated 

by 3 mm). Learning rates (Figure 1B) were measured from this session.

To reduce biased licking to one side of the lick ports, we varied the probability of each pole 

presentation based on correct rate history. Consecutive same-angle presentation was limited 

to 5 times. We introduced 0–2 mm of jitter in anterior-posterior pole position to prevent 

solving the task by the presence of the pole at specific spatial coordinates. The pole was 

presented near the coronal plane of the C2 whisker base. We adjusted pole height in each 

mouse depending on their whisking geometry to approximately center the distribution of 

touch points to 0° whisker azimuth.

Mice were deemed experts when their performance surpassed 75% correct rate for 

3 consecutive sessions. Miss trials (11.7 ± 10.8%, mean ± SD) were ignored for 

performance calculations, but included in other analyses (for object-angle tuning and 

whisker feature encoding). Before and after learning, we tested discrimination and angle 

tuning representations with varying object angles, 45° to 135° at 15° intervals (7-angle 

sessions, Figures 1C and S1B). The 90° pole was randomly rewarded. In these test sessions, 

we used pseudo-random pole presentations, to evenly distribute the number of trials in each 

object angle.
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Whisker video recording and tracking—We used a CMOS camera (Basler acA800–

500um), a telecentric lens (0.09X½” GoldTL™ #58–259, Edmund optics), a mirror and an 

LED backlight to simultaneously image both front- and top-views of the whisker (Figures 

S2A and S2B). The mirror was tilted in two axes: 45° relative to the horizontal plane to 

capture top-down view (Figure S2B), and 13.3° relative to the coronal plane to capture the 

whole whisker in front view (Figure S2A). The latter is corresponding to the angle between 

mouse’s face and body axis. We removed hair from right side face and upper front trunk to 

prevent hair from blocking front view whisker, using a hair removal lotion (Magic razorless 

cream shave, Softsheen-Carson). We recorded whisker motion using StreamPix software 

(NorPix Inc.), and used BControl and Ardunio to trigger the camera in 311 Hz (about 10× of 

two-photon resonance imaging frequency of a single plane).

We used the MATLAB version of Janelia whisker tracker (Clack et al., 2012) to track 

the whisker. We masked whiskers 1 mm from the face to minimize tracking errors near 

the face (Pammer et al., 2013), both in front and top-down views. Based on the property 

of telecentric lens and the geometric relationship of two views, we could reconstruct 3D 

whisker shape. The reference points to match the two views were whisker base points, which 

are the intersections between the whisker and the face mask in each view. In each frame, 

we visited each point of top-down view whisker trace, and matched the corresponding point 

in the front view based on the tilt angle of the mirror, resulting in 3D Cartesian coordinates 

(Figure S2C). Touch point, arc length along the whisker from the mask to the touch point, 

and whisker curvature at 3 mm along the whisker from the mask were calculated after 3D 

reconstruction.

Touch frame detection—Touch detection on a vertical pole (90°) can be accomplished 

from pole-to-whisker distance and whisker curvature with semi-automated (Pammer et al., 

2013) or automated (Severson et al., 2017) curation. This method cannot be applied for 

angled poles, however, because the shadow of the angled pole precludes pole-to-whisker 

distance calculation. Therefore, we devised a new analytic method for detecting touch 

frames from simultaneous 2-view whisker videography.

Non-touch frames can be detected based on the two view frame-by-frame changes in 

whisker position relative to the pole angle, using constraints imposed by pole geometry. 

For example, when the pole is tilted at 45° angle (Figure 1A; blue pole), if the whisker-pole 

intersection point moves back at the top-view and does not go up at the front view, one can 

be sure the whisker is not in contact with the pole at the latter frame. If the whisker-pole 

intersection point moves up at the front view, it is not determined from the video.

To visualize this concept, we defined 2 artificial axes from the whisker video: one (x) along 

the top-view pole edge and the other (y) along the front-view pole edge (Figure S2D). 

Origins of each axis could be defined at any arbitrary points along each pole edge, and we 

defined them at the edges of the image. For each frame we calculated the intersection point 

between the whisker and the pole edge as an (x,y,z) triple, where x equals the intersection 

between whisker trace and pole edge along the pole axis in the top-view, y is the equivalent 

for the front-view, and z is the position of pole base. Plotting the (x,y,z) intersection point 

for each frame of the same presented object angle in the session revealed an empty space 
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corresponding to the pole (Figure S2D, red arrow) flanked by two dense parallel hyperplanes 

(‘touch planes’) produced by protraction (touching the rear side of the pole) or retraction 

touch (touching the front side of the pole). Frames where the intersection point (x,y,z) 

fell upon either ‘touch planes’ were candidate touch frames. The touch plane orientation 

was calculated by finding the two angles which maximized the variance in the location of 

the projection of all intersection points onto a rotating hyperplane, using Radon transform 

twice sequentially. The plane was then translated in its orthogonal direction to maximize the 

number of intersection points that fell within the plane.

We verified this approach by comparing the touch frame detection between our method and 

two-dimensional whisker tracking from the top-view of the 90° pole. The overall match was 

98.21 ± 0.92% of touch frames, 0.50 ± 0.21% false positive, 1.28 ± 0.85% false negative, 

with 1.43 ± 0.57 frames of touch onset error and 1.45 ± 0.56 frames of touch offset error 

(mean ± SD, n = 5).

Whisker feature analysis—We investigated which whisker variables (i.e., sensory input 

components), among 12 whisker features listed in the Results section, might have influenced 

mice to discriminate the pole angle and to decide which side to lick.

The definition and calculation of each whisker feature (Figures 2A–2C) is as follows:

1. Azimuthal angle at base (θ; in °): The angle of whisker at base compared to the 

mediolateral axis, when looked down at from the top. Whisker at base is where 

the whisker intersects with the face mask. Positive value means more protracted.

2. Vertical angle at base (φ; in °): The angle of whisker at base compared to the 

mediolateral axis, when looked back at from the front. Positive value means 

higher, more dorsal position.

3. Horizontal curvature (κH; in mm−1): Curvature of top-down projected whisker 

shape, at 3 mm away from the whisker base along the 3D shape of the whisker. 

Negative value means that the apex of the curve is pointing anterior.

4. Vertical curvature (κV; in mm−1): Curvature of the whisker at × mm away from 

the whisker base along the 3D shape of the whisker, when looked back from 

the front at the angle of θ, i.e., the plane of the whisker projection is parallel to 

the azimuthal angle at follicle (θ). We used this projected shape of whisker to 

calculate κV. Positive value means the apex of the curve is pointing upward.

5. Arc length (in mm): Length of the whisker segment between the whisker base 

and the whisker-pole intersection point.

6. Touch count (number of protraction touches in a trial, for behavior analyses in 

Figures 2 and 8; number of protraction touches in a frame, for fitting neural 

activity): In the rare case of multiple protraction whisks while in continuous 

contact with the pole, each whisk was as a protraction touch. A protraction whisk 

is defined by a whisk of amplitude >2.5° (See ‘active whisking’ in section GLM 

for Neuronal Activity - ‘Object Model’).
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7. Push angle (maximum change in azimuthal angle; maxΔθ; in °): max(θ(t) - 
θ(0)), where θ(0) means θ at touch onset, and θ(t) means θ during each 

‘protraction touch’ frame at time t. The value is always positive because of the 

definition of ‘protraction touch’.

8. Vertical displacement (maximum change in elevation angle; maxΔφ; in °): 

sign(φ(tmax) - φ(0)) X max(|φ(t) − 4(0)|), where sign(φ(t) - φ(0)) means the 

sign of φ at each frame during ‘protraction touch’ at time t minus φ at touch 

onset, and tmax means the time point t where |φ(t) - φ(0)| was at the maximum. 

The value can be either positive (when whisker went up) or negative (when 

whisker went down). We first calculated the absolute value of difference between 

φ at each frame and touch onset. Then we took the maximum absolute value 

multiplied by its corresponding sign.

9. Horizontal bending (maximum change in horizontal curvature; maxΔκH; in 

mm−1): max(κH(t) - κH (0)). Values are negative during ‘protraction touch’, with 

rare exceptions.

10. Vertical bending (maximum change in vertical curvature; maxΔκV; in mm−1): 

sign(κV(tmax) - κV(0)) X max(| κV(t) - κV(0)|). Values can be both positive and 

negative.

11. Slide distance (distance slid along the object during a protracting whisk; in 

mm): Travel distance along the object from the onset of touch to the peak of 

the protraction whisking during each ‘protraction touch’. The onset of touch is 

defined at each protraction touch.

12. Touch duration (time spent touching object during a protracting whisk; in s): 

Duration of each ‘protraction touch’.

Whisker feature analysis – GLM—We built either binomial (for choice and 2-angle 

prediction) or multinomial (7-angle prediction) generalized linear model (GLM) with lasso 

regularization (0.95 alpha of elastic-net, to make the model behave similarly to lasso while 

preventing wild behavior with if input variables are highly correlated; Friedman et al., 

2010; Runyan et al., 2017), using standardized 12 whisker features as input parameters 

and either choice or object angle as the target. We used the MATLAB version of glmnet 

(Friedman et al., 2010). For each session, the model was trained on 70% of randomly 

selected trials. Training data was stratified based on target feature (choice or object angle). 

The regularization parameter of the elastic-net was calculated in 5-fold cross-validation, and 

the model performance was tested in the remaining 30% of trials.

We iterated this procedure 10 times to reduce errors from random assignment in the training 

set (reasoning and validation of this iteration are noted in the calcium imaging analysis 

section below). We averaged coefficients from 10 iterations for the final model.

For binomial models, we used Matthew’s correlation coefficient (MCC) as a performance 

measure to prevent effects from unequal samples (Figure 8D). For multinomial models 

(Figures 2D and 3E), the performance was measured by the averaged correct rate of 
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prediction across object angles after bootstrapping (sampling with replacement) 100 samples 

per presented object angle. We averaged performance from 10,000 bootstrapping per mouse, 

and calculated shuffled data performance from bootstrapping after randomly permuting 

presented object angles (average from 10,000 processes). Differences between presented 

and predicted object angles were calculated from the same bootstrapping and shuffled data 

(Figure 2F).

Whisker feature analysis - Feature importance—We calculated variable importance 

by comparing ‘leave-one-out’ models to the ‘full model’. A ‘full model’ is a GLM using 

all 12 features. From this trained ‘full model’, removing one feature without retraining 

(equivalently, setting the corresponding coefficient to 0) results in a ‘leave-one-out’ model. 

When comparing ‘leave-out-out’ models to the ‘full model’, we used fraction deviance 

explained (%DE; Agresti, 2013), a generalized version of fraction variance explained for 

exponential family regression models. The reduction in %DE in each ‘leave-one-out’ model 

from the ‘full model’ is defined as feature importance. A feature that leads to larger 

reduction in % DE has higher impact on the ‘full model’ compared to the ones that lead 

to smaller reduction. This method is similar to methods of shuffling each feature in the 

trained model (Breiman, 2001a, 2001b; Fisher et al., 2019), but prevents random effects of 

shuffling which can lead to enhanced false negative results. The overall results were not 

affected by changing the model approach from feature removal to feature shuffling.

Two-photon microscopy—We used a two-photon microscope (Neurolabware) which 

consists of a Pockels cell (350–105-02 KD*P EO modulator, Conoptics), a galvanometer 

scanner (6215H, Cambridge Technology), a resonant scanner (CRS8, Cambridge 

Technology), an objective (W Plan-Apochromat 20×/1.0, Zeiss), a 510 nm emission 

filter (FF01–510/84–50, Semrock), and a GaAsP photomultiplier tube (H10770B-40, 

Hamamatsu). We used 80 MHz 940 nm laser (Insight DS+, Spectra-Physics) for GCaMP6s 

excitation. The scope was controlled by a MATLAB-based software Scanbox with custom 

modifications. In each session, we took interleaved volumetric calcium imaging to cover 

L2/3 to L4 (100–450 μm from pia), using an electrically tunable lens (ETL; EL-10–30-TC­

NIR-12D, Optotune). Each volumetric imaging consisted of 4 planes, either 44 or 53 μm 

apart, spanning 131 (4 mice) or 165 μm (8 mice), respectively. Resulting imaging frequency 

was 6.07 (4 mice) or 7.72 (8 mice) volumes per second depending on the size of the FOV 

(650 × 796 or 512 × 796). Pixel resolution was either 0.7 (4 mice) or 0.82 μm (8 mice) per 

pixel. Laser power was controlled at each plane respectively. Every 5 trials, we alternated the 

objective position to cover another volume. Average power after the objective was about 70 

mW for upper volume and 150 mW for lower volume. To further reduce heating (Podgorski 

and Ranganathan, 2016), we blanked the laser between trials with inter-trial interval of 3 s, 

which resulted in average duty cycle of about 60%.

To confirm C2 location, we imaged at around 400 μm depth while stimulating the C2 

whisker using a piezo actuator in mice anesthetized with 0.7%–1.0% isoflurane. Stimulation 

consisted of 4 s of 5 Hz, with inter-trial interval of 10 s. Subtracting averaged GCaMP6s 

signal during baseline (3 s before stimulation) from that during stimulation gave a clear C2 

region.

Kim et al. Page 17

Neuron. Author manuscript; available in PMC 2021 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Imaging data processing—We used Suite2p (Pachitariu et al., 2017) for cell region-of­

interest (ROI) selection and calcium trace extraction, and MLspike (Deneux et al., 2016) 

for spike deconvolution. Neuropil signal was subtracted by a lower value between the 

coefficients of 0.7 or minimum value of soma signal divided by neuropil signal, to prevent 

negative signal (Pluta et al., 2017). Baseline fluorescence (F0) was calculated by the 5th 

percentile of 100 s of rolling window (600–780 frames over about 8000 frames in total; 

Sofroniew et al., 2015). Active cells were further classified as those having 95th percentile 

of ΔF/F0 larger than 0.3. One action potential value for MLspike was set to 0.3 as well 

(Chen et al., 2013; Sofroniew et al., 2015). No ROI which had neuron-like morphology and 

at least 1 observed inferred spike failed to pass this activity criteria. The noise parameter for 

MLspike was calculated as a standard deviation of a ‘no signal’ period. ‘No signal’ periods 

were reconstructed from concatenating 5-frames sliding windows having standard deviation 

less than 5th percentile from the session, allowing overlap.

For analyzing imaging data from passive whisker deflection experiments under light 

anesthesia (Figure 5), we used ΔF/F0 for analysis because there were no confounding effects 

from behavior. In this case, F0 was calculated as a median of 10 s rolling window. ROIs were 

manually selected based on morphology and fluorescence traces calculated by Suite2p.

GLM for neuronal activity - ‘Object model’—We used Poisson GLM with lasso 

regularization (elastic net with 0.95 alpha) to fit inferred spikes of each neuron using 5 

classes of behavior (Figure 3A). The definitions, calculation methods, and reasoning of 

parameter setting of these classes are as follows:

1. Touch: We used a binary vector of touch frames as touch parameter. Touch is 

further divided into 8 groups – 7 for each angle and 1 for all angles. This input 

(predictor) had 0–2 frame delays. Including more than 2 delays did not improve 

the fitting. Positive delay means spike events followed touch events. A model 

using binary touch performed better at fitting than using touch duration or touch 

count in each frame. Total number of touch predictors was 8 × 3 = 24.

2. Whisking: We used 3 parameters for whisking – number of whisks, whisking 

amplitude, and midpoint (Figure S3A, right bottom). Amplitude is defined by 

q span within a whisking cycle, and midpoint is defined by the center value 

within a whisking cycle. These were quantified by Hilbert decomposition of 

whisker azimuthal angle at base (θ) with a 6–30 Hz band-pass filter (Hill et 

al., 2011). Each whisking period was divided by time points where the phase 

changed from >3 (end of the previous cycle) to <−3 (start of the next cycle; 

phase can range from −π to π). We considered active whisking only when 

max(θ) – min(θ) within each whisking period was larger than 2.5° (Severson et 

al., 2017). Amplitude and midpoint were averaged in each frame. This input had 

−2 to 4 delays. Negative delay means spike events precede whisking events. This 

could conceivably happen from efference copy of motor signal from M1 (Hill et 

al., 2011; Petreanu et al., 2012). Total number of whisking predictors was 3 × 7 = 

21.
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3. Licking: We used number of licks on each side as licking parameters. Dividing 

into lick onset and offset (Allen et al., 2017; Chen et al., 2016) or binarizing lick 

bouts (Pho et al., 2018) did not perform better than number of licks alone. Delays 

were −2 to 1 frames, resulting in 2 × 4 = 8 predictors.

4. Sound: There were three sources of salient sound in our behavior task set up – 

a piezo beep at the beginning of each trial, and the pneumatic valve controlling 

pole presenting slider during both presenting and retracting. We observed that 

only the pole presenting sound cue resulted in significant impact on model 

fitting. Delays were 0 to 3 frames, resulting in 4 predictors.

5. Reward: We used binary vector of whether a reward was given on left or right 

lick port. Delays were 0 to 4 frames, resulting in 2 × 5 = 10 predictors.

At each session, 70% of trials were randomly selected for training, the regularization 

parameter was calculated from 5-fold cross-validation, and fitting was tested in the 

remaining 30% of trials. Training data was stratified based on touch, choice, angle of the 

object, and the total number of spikes in each trial. Data was standardized before dividing 

into training and test sets.

We repeated this procedure 10 times, and used averaged coefficients as the final model. This 

was because the response is sparse in the barrel cortex, even more when using calcium signal 

as the proxy of neuronal activity (Huang et al., 2020), and randomization can result in false 

negatives. Averaging coefficients from multiple iterations is equivalent to cross-validation, 

and it may result in overfitting. However, we found this method was more conservative 

(when used with threshold of %DE 0.1) than using the statistical test from chi-2 distribution 

of deviance (Agresti, 2013) or the Akaike information criterion.

We used %DE as the measure of fitting (Agresti, 2013). Distribution of %DE was similar 

to that of auditory cortex or posterior parietal cortex of mice during an auditory spatial 

localization task (Figure S3B; Runyan et al., 2017). Threshold of being fit was set to 0.1 

(Figure S3B; Runyan et al., 2017), which roughly corresponded to a correlation coefficient 

of 0.2. This threshold resulted in relatively consistent results from multiple iterations and in 

similar proportion of touch neurons compared to a previous report (Peron et al., 2015).

First, we decided if a neuronal activity was fit using 5 classes of event during the task – 

touch, whisking, licking, sound cue, and reward. If %DE was larger than 0.1, then it was 

defined fit. This suggested that this set of 5 event classes could explain inferred spikes well. 

Then, the predictive classes were defined within fit neurons by the ‘leave-one-out’ method. 

We removed each group of predictors (e.g., all 24 predictors of ‘touch’) from the ‘object 

model’ without retraining (equivalent of setting all coefficients corresponding to this group 

of predictors to 0), and calculated %DE. If %DE was reduced more than the threshold (0.1) 

from that of the ‘object model’, then that removed behavioral class was assigned to the 

neuron. We note that this method depends on the distribution of input parameters, and may 

be specific to the current task structure. Each fit neuron could be assigned to one or more 

classes, or no class at all (Figure 3B).
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Object-angle tuning calculation—We used analysis of variance (ANOVA) with 

shuffling methods to calculate object-angle tuning at touch. We analyzed touch-responsive 

neurons only. Touch frames were defined as the frames when touch occurred, with delays 

of 0 and 1 frames to capture delayed calcium response to touch. We considered frames 

before the answer lick only, to prevent contamination from behavioral outcome (i.e., water 

reward.). We defined the response as the number of inferred spikes per touch in each 

trial. We quantified the response by subtracting the mean number of inferred spikes during 

baseline (before pole up) from the total number of inferred spikes in all touch frames, 

and then dividing by the number of touches within the trial. We grouped responses into 

each object angle, and ran ANOVA. If the resulting p value was lower than 0.05, at least 

one bin was significantly different from 0, and at least one pair of bins had significantly 

different responses after post hoc analysis (Tukey’s honestly significant difference), it passed 

the first round. Among these neurons, we compared F-statistics (between-group variance / 

within-group variance) of 10,000 shuffled object angles to that of original data. If more than 

5% of them (i.e., 500) had F-statistics larger than the original, then we defined those neurons 

to be not tuned. This second process was to prevent false positive errors, where randomly 

assigning touch responses into 7 bins could result in statistically uneven distribution.

We further considered possible confounding effects from responses to other categories of 

behavior by calculating angle tuning on neuronal activities reconstructed from the ‘object 

model’ (Figures S3D and S3E). We first confirmed that full object models recapitulate 

object-angle tuning, by applying ANOVA and shuffling methods described above. Thus, we 

could use object models to evaluate the role of each parameter in constructing object-angle 

tuning. Specifically, we applied the same methods on the neuronal activities reconstructed 

from touch parameters only, and confirmed that object-angle tuning did not result from 

responses to other categories of behavior, such as whisking and licking.

We defined angle selectivity as max(response) – mean(other 6 responses). We did not 

normalize this subtraction for two reasons: 1) we do not know true baseline firing rate, and 

2) because mean responses across neurons were highly variable, leading to bias toward low 

response neurons with higher angle selectivity if normalized.

Cortical depth estimation—To compare object-angle tuning (Figures 3F and 3G) and 

whisker feature combination (Figure S4E) between L2/3 and L4, we first estimated the 

boundary depth between L2/3 and L4 using L4-specific expression of GCaMP6s (AAV-Flex­

GCaMP6s injection to Scnn1a-Cre mice). We used septa (gap between barrels) contrast as 

the indication of L4. First we identified septa at around 400 μm depth, drew lines across 

multiple septa, and calculated the contrast (standard deviation of intensity across the lines) 

across depth. We estimated L2/3-L4 boundary as the starting point of this contrast, which 

was at around 350 μm.

Before each imaging session, dura was identified from autofluorescence and set to 0 μm. 

Depth of each imaging plane was recorded by the movement of the objective along the 

rotation angle of 35°. Imaging plane tilt angle of the cranial window relative to the object 

lens was approximated in each mouse using dura imaging. The boundary of dura was 

detected from the planes of 2 μm interval z stack imaging, from where no significant 
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fluorescence could be detected to where the whole FOV was under the dura. Using this 

dura estimation across depth, we calculated imaging plane tilt angle by averaging the slope 

of dura depth in x and y directions. Each neuron’s depth was calculated based on its x-y 

position by applying this imaging plane tilt angle to the depth of corresponding imaging 

planes. Neurons residing deeper than 350 μm were defined as L4 neurons, and shallower 

than 350 μm as L2/3 neurons.

GLM for neuronal activity - ‘Whisker model’—To investigate the impact of each 

of the 12 whisker features in angle tuning, we built Poisson GLMs with lasso regression 

to fit each neuron’s inferred spikes using whisker features. In this model, we used 5 

behavioral categories as in the ‘object model’, except that we swapped touch components 

with whisker feature components. Of 12 whisker features listed above, we averaged at touch 
features (except for touch counts), and summed during touch features, in each frame. The 

difference was because during touch features were calculated as changes. Averaging all 

whisker features except touch counts resulted in no significant differences in the result. Each 

feature had 0 to 2 delays as in touch in the object model, resulting in 36 input parameters in 

total. We used ‘leave-one-out’ models to calculate the importance of each whisker feature on 

fitting the session-wide neuronal activity (Figures 8G and S8B).

We calculated angle tuning from ‘whisker model’ (Figure 4B) in the same manner as 

angle tuning using inferred spikes. We first confirmed that ‘whisker-only model’ (removing 

input parameters of other categories of behaviors from the full ‘whisker model’) had 

negligible effect on angle tuning curve (Figure S4B). Further analyses were performed 

on this ‘whisker-only model’ (Figures 4, 8, S4, and S8). To calculate the impact of each 

whisker feature on angle tuning curve, we removed each feature (3 input parameters) from 

the ‘whisker-only model’, calculated angle tuning curve, and then measured the correlation 

with the angle tuning curve from inferred spikes (Figure 4B). Reduction in this correlation 

value compared to that from the whisker-only model was defined as impact on angle tuning 

(Figure 4B).

Passive whisker deflection under anesthesia—To identify the C2 barrel column 

and to compare passive whisker deflection response to active tactile responses (Figure 5), 

we deflected C2 whisker for 4 s at 5 Hz (20 deflections per trial) using a glass capillary 

attached to a stripe piezo actuator (APC International Ltd., PA, USA) controlled by a piezo 

driver (A-301, A.A. Lab Systems Ltd., Israel). The driver was controlled and synched with 

a whisker monitoring camera using BControl, Ephus software (Suter et al., 2010), and 

Arduino. The tip of the glass capillary was positioned at ~2 mm away from the whisker 

base. Whisker tracking during passive deflection showed that deflection cycles resembled 

square waves of 85 ms trough duration, 15 ms of deflection (amplitude of 15°, 1150°/s), 85 

ms peak duration, and 15 ms of return. We deflected the whisker at the angular direction of 

0° (backward) to 315° in 45° steps (Figure 5), 10 trials per angle per volume (total 160 trials 

per session). Each trial lasted for 10 s, typically consisting of 1–3 s baseline, 4 s stimulation, 

and 3–5 s post-stimulation. Intertrial-interval was at least 3 s, during which the imaging laser 

was blocked to reduce heating.
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All passive deflection experiments were performed under light anesthesia (0.5%–0.8% 

isoflurane). Body temperature was monitored and controlled using a thermal blanket 

(Harvard apparatus). Depth of anesthesia was monitored by whisker movement (forward 

stretched whiskers indicating too low anesthesia depth) and breathing rate (lower than ~60 

bpm with gagging indicating too high anesthesia depth).

Passive whisker deflection response analysis—We used CircStat, a MATLAB 

toolbox for circular statistics (Berens, 2009), for calculating the vector sum of mean 

neuronal responses to 8 angular deflections. Confidence intervals were calculated using the 

distribution from 10,000 sets of bootstrapped data (sampling with replacement). Random 

probability was calculated by 10,000 sets of shuffled data, where mean tuned angle 

(direction of vector sum) was shuffled while keeping object-angle tuning the same.

Matching planes across sessions (Figure S6)—To match two-photon imaging 

volume-of-views across training, we compared spatial correlation between multiple depths 

to a reference image before each experiment session. We matched the top FOV of each 

imaging volume (2 per mouse). Reference images were from the first awake experimental 

session (Figure S6A). Before each experimental session, we first roughly matched the area 

following surface vasculature, and the cortical depth from the dura. Then, we applied a 

two-step automatic search (Figures S6B–S6D). First, we took 10 s images from 10 planes 

separated by 10 μm around the roughly matched depth (Figure S6B). Images were registered 

using 2-dimensional Fourier transform (Scanbox, Neurolabware), and then the mean images 

were again registered with the reference image based on intensity (MATLAB imregister 
function). We calculated spatial correlation from each of these 10 registered mean images 

with the reference image, and plotted them against depth (Figure S6D; open circles). We 

then started the second step from the depth where the correlation value was the highest 

(arrow on the top of Figure S6D), and after adjusting x-y position according to the intensity­

based registration. We iterated the above methods using a 2-μm interval (Figures S6C and 

S6D; filled circles). Finally, matching depth was estimated from the peak of a smoothed 

curve of these spatial correlation values (Figure S6D, arrow at the bottom).

Matching the depth of imaging plane is critical in quantifying number of neurons being 

silent (Figures 6A and S7A–S7C), because a neuron could have simply been missed from 

the imaged plane on the other session. To calculate the probability of missing a neuron out 

of imaging plane, we quantified depth range in detecting single cells and relative difference 

of imaging plane depths across sessions (before and after learning; naive and expert 7-angle 

test sessions). Probability of missing a neuron can then be calculated as depth difference 

divided by depth range.

To quantify the range of depth that single cells could be detected over, we used rare cases 

of chronically fluorescent neurons while taking z stack images (3 neurons out of 12 mice; 

Figure S6E). By visual inspection from 2-μm interval z stack images, we estimated this 

depth range as ± 20 μm around the midpoint of the cell. This relatively wide range may 

be due to under-filling the objective’s back aperture, which we implemented to reduce 

scattering and increase signal-to-noise ratio when imaging deeper cortical depths (Kondo et 

al., 2017).
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The relative difference of imaging plane depths was calculated similar to processes 

described above (Figure S6D), using a template z stack imaging of each mouse. Across 

imaging planes, the depth difference was 3.2 ± 3.8 μm (mean ± SD; Figure S6F). Thus, the 

probability of missing a neuron was about 3.2/40 = 0.08, assuming equal cell detectability 

across the range (Figure S6E). This is much lower than the proportion of neurons which 

became silent or active in expert sessions (Figures 6B, S6F, and S7A–S7C).

We validated this GCaMP based approach with tdTomato. One of 4 mice expressing 

tdTomato in the nucleus of excitatory neurons reached expert performance. The depth 

difference estimation was similar between the tdTomato-expressing mouse and GCaMP6s­

only mice (Figure S6F). Furthermore, the tdTomato-expressing mouse had similar neuron 

disappearing and appearing rates when compared to other GCaMP6s-only mice (Figure 

S6F). This result, along with the low probability of missing a neuron in our microscope 

system across sessions (Figure S6E) and the similarity with previous reports (Chen et al., 

2015; Gonzalez et al., 2019; Ziv et al., 2013), supports that variability in plane matching 

across paired sessions had an acceptably small impact on quantifying ensemble turnover 

rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using MATLAB. When comparing mouse-averaged 

mean values between naive and expert sessions (n = 6), we used either paired 2-tailed t test 

or Wilcoxon rank test, depending on Lilliefors normality test with a threshold at 0.05. When 

comparing values between pooled neurons from naive and expert sessions (Figures 8G and 

8H), we used paired 2-tailed t test. We did not correct for family-wise error rate. All data 

were presented in mean ± SEM except for those noted otherwise. P values were shown up to 

2 decimal places when larger than or equal to 0.05. In other cases, p values were presented 

as * for < 0.05, ** for < 0.01, and *** for < 0.001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mice can discriminate object surface angle using a single whisker

• Excitatory neurons in primary somatosensory cortex represent touched object 

angles

• Object-angle tuning is most affected by vertical bending and slide distance

• Training increases the influence of task-relevant sensory inputs on angle 

tuning
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Figure 1. Mice Can Learn to Discriminate Object Surface Angles with a Single Whisker
(A) Two-choice object-angle discrimination task design (left). Single trial example of touch, 

imaging, and licking (right).

(B) Learning curves. The error bar represents mean ± SEM number of sessions until mice 

become experts.

(C) Left lick probability in 7-angle test sessions, before (left) and after (right) learning. 

Black: individual mice. Red: means ± SEMs (n = 6 expert mice).

(D) Choice dependence on angle difference, in expert 7-angle test sessions. (n = 6; means ± 

SDs).

(E) Performance of expert mice at different experimental stages (n = 6).

See also Figure S1.
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Figure 2. Vertical Bending and Slide Distance Are the Most Important Whisker Features for 
Object-Angle Discrimination
(A) Whisker features. Dotted: touch start. Solid: touch end. Red: whisker base points. Blue: 

contact points. AP, anteroposterior; DV, dorsoventral; ML, medio-lateral.

(B) Seven-angle test task.

(C) Standardized values of 12 whisker features across 7 angles before (orange) and after 

(cyan) training.

(D) Average performance of multinomial GLMs in predicting object angles from all whisker 

features, in naive (left) and expert (right) 7-angle test sessions.

(E) GLM object-angle prediction accuracy in naive and expert sessions. Black: each mouse. 

Red: means ± SEMs. Gray: shuffled angles.

(F) Angle prediction error as in (E).
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(G) GLM-based ideal observers versus mice performance in expert 7-angle test sessions.

(H) Whisker feature importance in predicting object angles in 7-angle test sessions. 

Significant features highlighted.

Data are shown in means ± SEMs (n = 6). p values are from paired t tests.

See also Figure S2.
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Figure 3. Angle-Tuned Touch-Responsive Excitatory Neurons Are Distributed across L2–4 
Barrel Cortex of Naive Mice
(A) Calcium and inferred spike traces of 20 consecutive trials. Object model fit to inferred 

spikes from below predictors. Temporal delays and total touch (STAR Methods, GLM for 

Neuronal Activity - ‘Object Model’) omitted for clarity.

(B) Average proportion of behavioral classes assigned to each neuron (n = 12 mice). “Other” 

represents licking, sound, and reward alone or in combination with touch or whisking.

(C) An example field-of-view (FOV) of 2-photon calcium imaging. Overlay: all touch­

responsive ROIs. Color: preferred angle of angle-tuned neurons. Black line: non-selective 

touch neurons. White dash: C2 column boundary. Scale bar, 100 μm. (i–iv) Examples 

(yellow arrows in FOV) of specific-, broad-, complex-tuned, and non-selective neurons, 

respectively. (Top) Averaged inferred spikes across trials grouped by object angle. (Bottom) 
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Average number of inferred spikes per touch grouped by object angle. (ii) is also shown in 

(A) and Figure 4A.

(D) Normalized activity of all angle-tuned neurons (12 naive mice), sorted by maximally 

preferred angle.

(E) Proportion of neurons that prefer each object angle.

(F) Proportion of angle tuning types (C) for L2/3 and L4. Uncorrected paired t tests.

(G) Distribution of preferred angle for L2/3 and L4.

Data are shown in means ± SEMs.

See also Figure S3.
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Figure 4. Vertical Bending and Slide Distance Best Explain Object-Angle Tuning Curves of S1 
Excitatory Neurons
(A) Whisker model fit to same neuron and trials as in Figure 3A. Only 3 whisker features 

shown for clarity.

(B) Single-neuron examples of angle tuning from inferred spikes and whisker model 

variations. (Left) Standardized response to object angle from inferred spikes (red), whisker­

only model (gray), vertical bending-removed model (dashed green line), and slide distance­

removed model (dashed blue line). (Right) Angle tuning curve correlation between each 

model and inferred spikes. Example neurons’ angle tuning is dependent on slide distance 

(top) or vertical bending (bottom).

(C) Mean impact of each whisker feature on angle tuning across the population.

(D) Mean impact of each whisker feature during touch on angle tuning, grouped by 

preferred angles.

(E) Proportion of multi-feature neurons within each tuned angle. ANOVA p < 0.001 (F6,76 = 

4.85). Paired t test between mean proportion of 75°–105° and the rest.

Data are shown in means ± SEMs.

See also Figure S4.
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Figure 5. Weak Relationship between Passive Whisker Deflection-Direction and Object-Angle 
Tuning
(A) C2 whisker piezo deflection with glass capillary under light isoflurane anesthesia.

(B) Example neuron response to passive whisker deflection (red arrow in G), sorted by 

deflection direction.

(C) Passive deflection-direction tuning curve from (B). Means ± SEMs of ΔF/F0.

(D) Active touch naive 7-angle test sessions.

(E) Neuronal response during active object touch, sorted by object angle. Same neuron as in 

(B).
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(F) Object-angle tuning curve (means ± SEMs) from (E).

(G) Example FOV and overlaid ROI maps from matched anesthetized (top) and awake 

(center) experiments. The white neurons (bottom) are active in both sessions.

(H) Assortment of passive deflection-direction-tuned (magenta), active object-angle-tuned 

(green), and tuned in both sessions (co-tuned; gray), among all matched co-active neurons 

(white in G).

(I) Mean deflection-direction tuning curves of all co-tuned neurons (gray), overlaid with 

those preferring 45° (red), 75°–105° (green), or 135° (blue) object angle during naive 

7-angle test sessions. Lighter colors are SEMs.

(J) Distribution of mean passive deflection response direction of all co-tuned neurons (gray), 

or preferring 45° (red), 75°–105° (green), or 135° (blue) object angle during naive 7-angle 

test sessions.

(K) Proportion of mean passive deflection response direction within neurons that preferred 

45° or 135° object during naive 7-angle test sessions. Passive directions grouped by upward 

(60°–90°; red), downward (270°–300°; blue), and other directions (gray).

See also Figure S5.

Kim et al. Page 36

Neuron. Author manuscript; available in PMC 2021 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Stable Object Angle Preference Despite Active Ensemble Turnover after 2-Angle 
Discrimination Training
(A) Example FOV (same as Figure 3) of active ROIs from 7-angle test sessions before (left) 

and after (center) 2-angle training. (Right) Overlay with persistently active in white. (Bottom 

left) Magnified view of white dashes above. Scale bars: 100 μm (top), 50 μm (bottom).

(B) Classification flow of 11,351 active neurons in 6 mice from naive to expert 7-angle test 

session.
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(C) Cumulative proportion of rate of inferred spikes from persistent (active in both sessions) 

or transient (active in only 1) neurons in naive or expert 7-angle test sessions. (Inset) Mean 

rate of inferred spikes with paired t tests.

(D) Proportion of active neurons that were angle tuned in naive and expert 7-angle test 

sessions. Paired t test.

(E) Normalized activity of all angle-tuned neurons from 6 expert mice in naive and expert 

7-angle sessions, sorted by maximally preferred angles.

(F) Distribution of preferred angles in naive and expert mice.

(G) Distribution of change in preferred angles in persistently angle-tuned neurons across 

training (black bars). Gray bars: shuffled data.

Data are shown in means ± SEMs.

See also Figures S6 and S7.
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Figure 7. Object Angle Discrimination Training Enhanced Angle Selectivity of S1 Neurons Only 
for Trained Angles
(A) Mean angle selectivity across training, from all touch-responsive neurons. Black circles: 

each mouse. Paired t test.

(B) Proportion of non-selective touch-responsive neurons across training. Black: each 

mouse; red: mean. Paired t test.

(C) Mean angle selectivity of neurons from naive versus expert sessions, respectively, binned 

by preferred object angle. Two-sample t tests (n = 492 and 409 in 45°, 239 and 150 in 60°, 

111 and 91 in 75°, 139 and 143 in 90°, 107 and 74 in 105°, 122 and 156 in 120°, and 471 

and 349 in 135°).

(D) Average object-angle tuning curves for naive and expert sessions, for neurons preferring 

45° and 135°.

Data are shown in means ± SEMs.

See also Figure S7.
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Figure 8. Two-Angle Discrimination Training Enhanced the Influence of the Reward-Relevant 
Whisker Feature on Neural Activity and Angle Tuning
(A) Two-angle training sessions.

(B) Feature distributions of vertical bending (left) and slide distance (right) for touching 45° 

(blue) or 135° (red) object angles in 2-angle training sessions. (Top) Naive training sessions; 

(bottom) expert training sessions.

(C) Same as in (B), except for choice. Cyan: trials with right choice; magenta: trials with left 

choice.

(D) Performance of object angle (open circles) and choice decoder (filled circles) in 2-angle 

training sessions. MCC, Matthew’s correlation coefficient.

(E) Whisker feature importance on GLM-based choice prediction for expert 2-angle training 

sessions. The most important feature, vertical bending, is highlighted.

(F) Seven-angle test sessions.

(G) Feature importance for fitting session-wide neuronal activity (inferred spikes) between 

object-angle-tuned neurons in naive (orange; n = 1,681) and expert (cyan; n = 1,372) 7-angle 

test sessions. Only whisker features during touch are shown.

(H) Impact on angle tuning between object-angle-tuned neurons in naive (orange; n = 1,681) 

and expert (cyan; n = 1,372) 7-angle test sessions. Only whisker features during touch are 

shown.

Data are shown in means ± SEMs. p values are from two-sample t tests.

See also Figure S8.
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