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I n a companion article, Verma and colleagues discuss how 
machine-learned solutions can be developed and imple-
mented to support medical decision-making.1 Both decision-

support systems and clinical prediction tools developed using 
machine learning (including the special case of deep learning) are 
similar to clinical support tools developed using classical statis
tical models and, as such, have similar limitations.2,3 A model that 
makes incorrect predictions can lead its users to make errors they 
otherwise would not have made when caring for patients, and 
therefore it is important to understand how these models can 
fail.4 We discuss these limitations — focusing on 2 issues in par
ticular: out-of-distribution (or out-of-sample) generalization and 
incorrect feature attribution — to underscore the need to con-
sider potential caveats when using machine-learned solutions.

What are the features of machine-learned 
models?

Herein we use the term “machine-learned model” to refer to a 
model that has been created by running a supervised machine 
learning algorithm on a labelled data set. Machine-learned models 
are trained on specific data sets, known as their training distribu-
tion. Training data are typically drawn from specific ranges of demo-
graphics, country, hospital, device, protocol and so on. Machine-
learned models are not dynamic unless they are explicitly designed 
to be, meaning that they do not change as they are used. Typically, a 
machine-learned model is deterministic, having learned a fixed set 
of weights (i.e., coefficients or parameters) that do not change as the 
model is run; that is, for any specific input, it will return the same 
prediction every time. Although “adaptive systems” have been 
developed that can “learn” while being deployed by incorporating 
new data, such systems may give a different prediction for the same 
input and their safety and oversight is still unclear.5

We refer to the data that a machine-learned model will 
encounter when it is deployed for use as the model’s perform
ance distribution. If a machine-learned model’s training distribu-
tion does not match its performance distribution, then the perfor-
mance of the model may be lower than expected6,7 — a challenge 

that is commonly referred to as out-of-distribution generaliza-
tion (discussed in detail below). Another challenge is if the train-
ing data contain features that are spuriously correlated with the 
outcomes the tool is being designed to predict, as this may 
cause a machine-learned model to make predictions from the 
“wrong” features (also discussed below). A model’s creator 
should seek a training data distribution that matches the per
formance distribution as closely as possible, and clinicians who 
use the tool should be aware of the exact limitations of the 
model’s training distribution and potential shortcomings.

What are some potential problems of 
machine-learned models?

Out-of-distribution generalization
Newly graduated physicians are typically most comfortable man-
aging patients who exhibit conditions they encountered during 
their residency training, but they are also able to manage 
patients with conditions they have not previously seen because 
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Key points
•	 Decision-support systems or clinical prediction tools based on 

machine learning (including the special case of deep learning) 
are similar to clinical support tools developed using classical 
statistical models and, as such, have similar limitations.

•	 If a machine-learned model is trained using data that do not 
match the data it will encounter when deployed, its performance 
may be lower than expected.

•	 When training, machine learning algorithms take the “path of 
least resistance,” leading them to learn features from the data 
that are spuriously correlated with target outputs instead of the 
correct features; this can impair the effective generalization of 
the resulting learned model.

•	 Avoiding errors related to these problems involves careful 
evaluation of machine-learned models using new data from the 
performance distribution, including data samples that are expected 
to “trick” the model, such as those with different population 
demographics, difficult conditions or bad-quality inputs.
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they can use theoretical knowledge to recognize patterns of ill-
ness. In contrast, machine-learned methods are limited by the 
data provided during the training and development phase. Fur-
thermore, machine-learned models do not typically know their 
own limits unless components are included to help the model 
detect when data it encounters are out of distribution (for exam-
ple, a component may be built in that prevents a human chest 
radiograph diagnostic system from processing a photo of a cat 
and diagnosing pneumonia8 — see strategies listed below). Three 
categories of out-of-distribution data,9 summarized in Figure 1, 
include the following:
•	 Data that are unrelated to the task, such as obviously wrong 

images from a different domain; for example, magnetic reso-
nance images presented to a machine-learned model that 
was trained on radiograph images; and less obviously wrong 
images, such as a wrist radiograph image processed using a 
model trained with chest radiographs

•	 Incorrectly prepared data; for example, blurry chest radio-
graph images, those with poor contrast or incorrect view of 
the anatomy, images presented in an incorrect file format or 
improperly processed, and images arising from an incorrect 
data acquisition protocol

•	 Data not included in the training data owing to a selection 
bias; for example, images showing a disease not present in 
the training data or those arising from a population demo-
graphic not similar to that of the training data set 

A machine-learned model will perform suboptimally or deliver 
unexpected results on out-of-distribution data.

Many strategies have been developed to detect and prevent 
out-of-distribution data from being processed. A typical 
approach is for a model to compute the degree to which a data 
sample matches the model’s training distribution, which may be 
presented as a score. If the score is above a certain threshold, 
then the model can decide not to process a data sample. One 

way for the model to do this — in the case of image interpreta-
tion — is for the model to attempt to reconstruct the image and 
compare the reconstruction to the original by some measure of 
similarity, such as the absolute pixel difference.8,10 Typically, a 
model will do a poor job of reconstructing an image it did not 
encounter in training. If the reconstructed image is scored as 
similar enough to be judged “correct,” the model can proceed to 
process that image; if not, processing will not occur. However, in 
order to build and evaluate such out-of-distribution detection 
systems, known out-of-distribution examples must be used; so, 
even strategies to prevent errors have limits.

Incorrect feature attribution
Machine-learned models typically use only the minimally compli-
cated set of features required to reliably discriminate between 
the target outputs in their training data set. That is, the model 
takes a “path of least resistance” during its learning,11–13 finding 
features that are highly predictive of the target output, which 
helps to make it accurate. However, a learning model may also 
find some distractor feature in the data that is spuriously correl
ated with the target output14 and, once this happens, the model 
may stop looking for new true discriminative features even if 
they exist.15 For example, in a model learning to read chest radio-
graphs, distractor features may be the hospital, image acquisi-
tion parameters, radiograph view (e.g., anteroposterior v. 
anteroposterior supine), and artifacts such as presence of a 
pacemaker or endotracheal tube. If clinical protocols or image 
processing change over time, this can lead to patterns in the 
training data that can be detected by the model and serve as a 
distractor.16 Or if images from multiple hospitals are grouped 
together and the rate of a disease varies among hospitals, a 
model may learn to detect the hospital using subtle visual cues 
and may then base its predictions on the hospital associated 
with the image rather than data in the image itself. This can lead 

i. Unseen conditionsi. Lateral views ii. Rotated imagesi. Cat pictures

A) Unrelated to the task

Performance domain

Selection
bias

Training/validation data

B) Incorrectly acquired images C) Outside selection bias

ii. Knee radiograph

ii. Unseen artifacts 

iii. Adults without implants 

iii. Underexposed iv. Incorrectly cropped

Figure 1: This figure shows 3 categories of out-of-distribution data, all in the context of training a machine-learned algorithm to read adult chest radio-
graphs (see image C iii). A) Images that are unrelated to the task. B) Images that are incorrectly acquired. C) Images that are not encountered owing to a 
selection bias in the training distribution (e.g., images with lung cancer lesions and pacemakers were not included in the training set and therefore 
were unseen during training). C) (iii) Training data that are subject to a selection bias.  
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to a model appearing more accurate than it actually is if the 
evaluation data contain the same artifacts (e.g., the same 
hospital-specific distribution), but the same model could fail dra-
matically if the performance data do not exhibit these artifacts. 
Furthermore, patient demographics (e.g., age or sex) can be 
inferred from aspects of the training data and may be used by a 
learning model to predict outcome prevalence (that is, prior 
probability) in the training sample if better true features related 
to the outcome of interest are less obvious in the data.

Medical data sets are often relatively small, which may 
increase the likelihood of spuriously correlated features. 
Research into altering the ways models learn to avoid this prob-
lem is ongoing.11,17 However, using a large, diverse data set for 
training a machine-learned model will help to avoid the effect of 
distractors. Other solutions include unsupervised learning and 
transfer learning,18 processes that use data that are unlabelled or 
labelled for another task to train models, to avoid detection of 
spurious features that are specific to a particular data set. These 
methods typically enable the use of much more data and have a 
better chance of learning features that will be general enough 
and useful for the intended task.18

In cases where pathology-specific features are simply not pre-
dictive enough for some images, the learning model may be 
forced to guess and predict the prevalence of a disease or out-
come in the training distribution. The machine-learned model will 
appear to work when applied to data in which the disease or out-
come prevalence is the same as in the training data; it may give 
the “right” answer. However, when applied to a different popula-
tion with a different outcome prevalence, the model will likely 
predict incorrectly19,20 and lead to harm. It is therefore important 
that model developers and users verify that the machine-learned 
model appropriately detects features that are truly associated 
with the prediction or outcome of interest, using a feature attribu-
tion method such as the “image gradient” method21 or creating a 
counterfactual input showing what would change the classifier’s 
prediction22 during development and when deployed. 

Related to this point, another concern is that some models 
may simply learn to copy the actions taken by the clinicians when 
the data were generated. For example, if a model is trained to pre-
dict the need for blood transfusions based on historical data 
about transfusions, it may not have anything informative to pre-
dict from and instead will learn to replicate existing practices. A 
model will learn “bad habits” unless the data set used to develop 
it is corrected. One approach to overcome this problem would be 
to have expert reviewers label the data set with the true out-
comes of interest (e.g., appropriate v. inappropriate blood trans-
fusions), although this may be resource intensive and experts may 
not always agree on labels. It would be even better to use only 
labels that are objective and do not depend on human experts.

What can mitigate these problems?

Avoiding errors related to the issues discussed above involves 
careful evaluation of machine-learned models23 using new data 
from the performance distribution, including samples that are 
expected to expose model failures, such as those with different 

population demographics, difficult conditions, poor-quality 
images, or errors. A potentially useful approach is to create simu-
lated test distributions by balancing data based on attributes 
unrelated to the target task to observe differences in perform
ance of a model according to factors such as demographic 
minority class24 or geographic region.25 If a model learned to 
focus on a spurious feature such as age, deploying it using data 
in which the age of the population composed of a single age, 
although balanced in terms of the target variable the model was 
trained to predict, would lead to poor performance. Results of 
such tests of a model’s performance should be transparently pre-
sented to illustrate its limitations in use.26 A related article dis-
cusses evaluation of machine-learned models in some depth.27

Conclusion

It is important to understand and tackle these problems of 
machine-learned models before deployment so that large invest-
ments do not end in failure, which could be costly or catas
trophic. IBM’s “Watson for Oncology” program28 was suspended 
after an investment of $62 million, allegedly owing to problem-
atic clinical recommendations that resulted in poor acceptance 
by clinicians. Google’s machine-learned initiative to detect dia-
betic retinopathy29 struggled when it encountered “real-world” 
images in clinics in Thailand that were of lower quality than 
those in its training set, causing considerable frustration to both 
patients and staff. Anticipating and mitigating the challenges 
outlined herein will be key to avoiding such costly failures.
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