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Background. Psoriasis is a chronic autoimmune disease impairing significantly the quality of life of the patient. The diagnosis of
the disease is done via a visual inspection of the lesional skin by dermatologists. Classification of psoriasis using gene expression is
an important issue for the early and effective treatment of the disease. Therefore, gene expression data and selection of suitable
gene signatures are effective sources of information. Methods. We aimed to develop a hybrid classifier for the diagnosis of
psoriasis based on two machine learning models of the genetic algorithm and support vector machine (SVM). The method also
conducts gene signature selection. A publically available gene expression dataset was used to test the model. Results. A number
of 181 probe sets were selected among the original 54,675 probes using the hybrid model with a prediction accuracy of 100%
over the test set. A number of 10 hub genes were identified using the protein-protein interaction network. Nine out of 10
identified genes were found in significant modules. Conclusions. The results showed that the genetic algorithm improved the
SVM classifier performance significantly implying the ability of the proposed model in terms of detecting relevant gene
expression signatures as the best features.

1. Introduction

Psoriasis is a chronic autoimmune/inflammatory and hyper-
proliferative disease with primary manifestations on skin and
joints 2]. Psoriasis has been reported to be associated with
increased hyperlipidemia, hypertension, coronary artery dis-
ease (CAD), diabetes (type II), and obesity [3] as well as the
increased risks of stroke and myocardial infarction [4, 5].
Moreover, psoriasis is associated with anxiety, isolation,
and mental disorders (e.g., depression), and it reduces social-
ization for patients and prevents them from having close and
intimate relationships [6–8].

Psoriasis can occur at any age, and studies have shown
that the inception of the disease takes place between the ages
of 20–30 and 50–60 [3]. Nevertheless, most psoriasis
patients are <30 years old with a large proportion less than
10 years of age [9], and its prevalence varies according to
the climatic/geographical situations such that the Caucasian
population has a higher rate and the Asian population has a
lower rate among others [10, 11]. There are several pheno-
typic manifestations including epidermal hyperplasia, angio-
genesis, and changed keratinocyte differentiation. Moreover,
patients’ skin was infiltrated with neutrophils, dendritic cells,
and T lymphocytes and chemokine as well as cytokine
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[12–15]. Visual examination of cutaneous lesion biopsy is
the main but inefficient route of diagnosis of psoriasis [14].

While the genetic base of psoriasis has been confirmed,
its molecular structure still requires more investigations to
be well-enough understood to be useful in the diagnosis of
psoriasis [16, 17]. In this regard, quantitative polymerase
chain reaction (qPCR) and microarray (high-throughput)
techniques have been employed by large-scale studies to
reveal the molecular basis of psoriasis and to explore the
gene expression patterns in lesional samples compared with
nonlesional samples in the disease [15, 18]. In a systematic
screening of about 54,000 probe sets conducted by using
the Affymetrix HG-U133 Plus 2 platform, a number of 179
unique differential genes (out of 223 probe sets) were identi-
fied in the uninvolved psoriatic cutaneous samples and the
dysregulated genes were demonstrated to be modulated with
the three transcription factors associated with lipid metabo-
lism including sterol regulatory element-binding protein
(SREBF), peroxisome proliferator activator receptor alpha
(PPARA), and estrogen receptor 2 (ESR2) [16]. Moreover,
by screening expressions of approximately 22,000 probe sets
using the Affymetrix HG-U133A platform in a study [19], a
number of 179 genes among 203 probe sets were detected
where the expression of genes in the psoriatic lesion skins
changed at least two-fold, and it was shown that there is
an association between the Wnt pathway, regulating the
stem cell proliferation, and the psoriasis development [15].
Nevertheless, its causative role has remained elusive. There
have been detected many up/downregulated probe sets
related to lesional samples of skin obtained from psoriasis
patients with at least 3-fold changes in expression of some
of them like multiple T cell genetic markers and two type I
interferon-inducible genes [15, 19]. There are also studies
that have compared the level of gene expression of psoriatic
and healthy samples in human and mice [20, 21]. While it
was observed that the lists of the top 5,000 fold change
(up/downregulated probes) were in common with different
phenotypes of psoriasis in mice, there is no consistency
between different studies in terms of the lists of marker
genes. Therefore, developing classification models and iden-
tifying target genes are necessary.

During the last decades, machine learning methods have
received much attention as they have provided a computer-
aided bed for constructing modern classifiers and they have
been shown to provide promising results. It has been also
shown that the combination of these methods with each
other can enhance the prediction power of the classifier.
These models can be also used for marker gene selection.
Among machine learning methods, support vector machine
(SVM) owing to the kernel method has shown promising
performance in classification/regression in several medical
problems and gene expression studies. SVM fits a hyper-
plane to separate groups and projects the input space into
a higher space by using kernel functions [22]. In this regard,
utilizing heuristic approaches like the genetic algorithm
(GA) leads to determining a subset of inputs to fit a hyper-
plane that is most robust among others. GA is an evolution-
ary algorithm that has received much attention in
optimization problems [23]. Mimicking the biology of

changes that occur in a DNA sequence like mutation and
crossover, GA works by generating an initial set of solutions,
which are then assessed through a fitness function. In this
way, a subset consisting of the best solutions from the initial
solutions is selected and operators like mutation are utilized
to generate the consequent sets of solutions [23]. Studies
have shown that an automated hybrid system for the diagno-
sis of diseases like cancer designed based on GA and SVM
outperforms the SVM. In this hybrid approach, the GA is
used to reduce the dimension of the feature space [24, 25].

To our knowledge, there is no study that proposes
hybrid models for the diagnosis of psoriasis. This study pro-
posed a hybrid approach for identifying the psoriasis-
associated features (probe sets). The used method is the
combination of a GA and SVM for feature selection.

2. Methods

2.1. Data Source and Preprocessing. A publicly available
dataset of psoriasis whole blood transcriptome dataset
(available in GEO repository: GSE55201 dataset generated
using the Affymetrix U133 Plus (microarray) with platform
ID GPL570) was used. This dataset consisted of expression
data of 30 healthy controls and 44 psoriasis patients at base-
line and 7 psoriasis patients after two weeks of treatment
[26]. In this study, the differentially expressed genes (DEGs)
between 30 healthy controls and 44 psoriasis patients at
baseline samples were determined by using the limma pack-
age [27] under R software (version 4.0.3) [28] for subsequent
analysis.

2.2. Support Vector Machine. The SVM is a machine learning
technique that has been developed for classification and
regression problems, and it encompasses parts of nonpara-
metric statistics and machine learning. The fundamental
idea is to map the covariates in the input space into a space
with a higher dimension using some kernel functions, so
that a linear regression handles the complex nonlinear
regression of the primary input space. The hyperplane equa-
tion is w:x + b = 0, and there is a need to minimize the norm
of the coefficient vector w and to maximize the margin 1/k
wk between two classes [25].

This method utilizes the structural risk minimization
principle to fit a hyperplane separating two groups optimally
(Figure 1). Let us assume that there is a subject j with an
input vector of xj ∈ℝp with p components, which should
be classified as psoriasis patient (yj = −1) or normal subject
(yj = +1). The SVM problem is represented by

f xð Þ = w ⋅ ϕ xð Þ + b, ð1Þ

where w and b stand for the weight vector (regression coef-
ficients) and the bias term, respectively. Then, by consider-
ing an ε-insensitivity loss function for equation (1), the
following optimization problem ((2) and (3)) can be consid-
ered a convex optimization problem:

1
2
wTw + C〠ξj + C〠ξ∗j , ð2Þ
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which is optimized given the following restrictions:

wTϕ xj
� �

+ b − yj ≤ ε + Cξj,

yj −wTϕ xj
� �

− b ≤ ε + Cξ∗j ,

8
<

:

 j = 1,⋯,N ,

ð3Þ

where ξ∗j and ξj are nonnegative slack variables (which
penalize the training errors in the loss function) with the
error tolerance of ε. Also, C > 0 is the tradeoff parameter
which shows the capacity (tuning parameter) and deter-
mines the empirical error’s degree (lower values of C are
related to a wider margin and a reduced risk of overfitting
an SVM but larger in-sample classification errors). Optimiz-
ing of the problem [2] is conducted through minimization of
the Lagrange function (4):

L w, b, ξ ; α, νð Þ = 1
2
wTw + C〠ξj −〠αj

n
yj w

Tϕ xj
� �

+ b
� �

− 1 + ξj
o
−〠νjξj,

ð4Þ

with the αj and νj as the Lagrange multipliers. This convex
optimization problem can be solved through nonlinear pro-
gramming tools or via a convex quadratic programming prob-
lem in αj. In a nonlinear SVM setting, the score of a subject is
computed by substituting the scalar product of the covariates
with a kernel function (e.g., polynomial, Gaussian radial basis
(GRBF), and exponential radial basis) [29, 30].

2.3. Genetic Algorithm. A genetic algorithm is an exploratory
algorithm utilized to solve optimization problems. In a GA, a
set of candidate solutions (individuals), which is called the
initial population, evolved toward better solutions for an
optimization problem. Each individual has a set of proper-
ties. Solutions are considered strings of 0/1 s (in binary).
The solutions are generated using natural evolution, such
as inheritance, mutation, and selection. In a GA, chromo-
somes of a population encode candidate solutions [31].

This evolution is usually created by a random population
and occurs in subsequent generations. In each generation,
the fitness of each individual in the population is calculated,
while several individuals are randomly chosen from the
recent population. Then, it is modified to create a new better
population. Then, this modification of population is
repeated in the next iterations. Usually, the algorithm ends
when the maximum number of generations is produced or
a predefined level of fitness is obtained for the most recent
generated population [23].

In the present study, because we intended to address
parameter optimization and feature selection simulta-
neously, the chromosome (i.e., each individual in the popu-
lation) was a combination of parameter genes (C, ε, and
other parameters in kernel functions such as γ in a kernel

function of the form ϕðxj, xj′Þ = exp ð−γkxj, xj′k
2Þ) and fea-

ture gene (f1,⋯, f G; f n ∈ f1, 2,⋯,Gg and G is the number

of candidate features for constructing the model) [32]. Here,
a chromosome stands for an individual in GAs, and param-
eters included in a chromosome are used for SVM model-
ing [23].

Evaluation and comparison of each candidate were con-
ducted and quantified through a fitness function. In the
present study, the accuracy of the SVM classifier of 10-fold
cross-validation (CV) was utilized as the fitness function,
and greater fitness value was related to a better individual.
Given training data (ðxj, yjÞ ∈ ðℝp, f−1,+1gÞ for N subjects),
the objective function can be calculated by equation (4). The
accuracy of 10-fold CV for the SVM was calculated by

Accuracy =
True positive + True negative

total sample
, ð5Þ

which is the proportion of correct predictions among the
total number of samples examined (true positive indicates
the number of psoriasis patients who were predicted as
patients truly, and true negative indicates the number of
healthy cases who were predicted as healthy truly).

2.4. Hybrid GA-SVM Model and Tuning Parameters. This
study utilized a method for enhancing the performance of
the SVM. The enhancement is to select the best subset of
features and to optimize the parameters of the model. GA
was utilized to handle both aforementioned aspects in the
SVM classification problem simultaneously for psoriasis
diagnosis. In GA, the fitness function was the accuracy of
the SVM classifier. The GA algorithm was used to optimize
the objective function defined for the SVM classifier (equa-
tion (4)) and to find suitable features (feature selection) for
the diagnosis of psoriasis and detecting a healthy/patient
person. Figure 2 shows the block diagram of the hybrid
GA-SVM model.

In the GA used, the number of populations was five.
The solutions were represented in binary as strings of 0 s
and 1 s. The value 0 indicated that the feature/attribute was
not selected and value 1 indicated that the feature/attribute
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Figure 1: Linear separation of two classes with a support vector
machine classifier. Samples on the margin are called the support
vectors.
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was selected. The roulette wheel model, single-point cross-
over operator with 0.8 of crossover rate, and mutation oper-
ator with 0.01 of the mutation rate were used for the selection
of the appropriate chromosomes to produce the next
generation.

In the roulette wheel selection, the probability of select-
ing an individual upbringing of the next generation is pro-
portional to its fitness. A better fitness (here, greater
prediction accuracy) is related to a higher probability of
selecting an individual. Selecting a solution/individual can
be considered spinning roulette with pockets for each
individual with sizes depending on their probability (pj = f j
ðthe fitness of jth individualÞ/∑G

j=1 f j, where G is the size of
the current generation).

To optimize the parameters of the SVM, they were
encoded with binary chains on two fix search intervals of

Cmax < C < Cmin,

γmax < γ < γmin:
ð6Þ

Thus, a 32-bit encoding scheme of C (i.e., Cb1,⋯, Cb32)
and γ where

Cb = 〠
32

i=1
Cbi2i−1 =

gmax C − Cminð Þ
Cmax − Cmin

,

γb = 〠
32

i=1
γbi2

i−1 =
gmax γ − γminð Þ
γmax − γminð Þ ,

ð7Þ

with gmax = 232 − 1 was considered [33].

2.5. Evaluation Criteria. We exerted the method on 74 sam-
ples (50 samples for training and 24 samples for testing).

In this study, the total accuracy and the area under the
ROC curve (AUC) were used to evaluate the performance
of the models.

Accuracy =
True positive + True negative

total sample
: ð8Þ

Analyses were performed by using the MATLAB soft-
ware programming [34].

2.6. Protein-Protein Interaction (PPI) Network. The protein-
protein interaction (PPI) network was constructed using the
STRING version 11.0 [35] with a confidence cutoff of 0.7 for
selected probes with GA+SVM. The constructed PPI net-
work was visualized and analyzed using Cytoscape version
3.6.0 [36]. The CytoHubba plugin under Cytoscape software
was used to determine the hub genes. Modules of the con-
structed network were evaluated with the MCODE plugin
under Cytoscape software with cutoff criteria of the number
of nodes more than 5 and MCODE score more than 3 and
default parameters (node score cutoff = 0:2, K‐core = 2,
degree cutoff = 2, and max depth = 100).

2.7. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway and Gene Ontology (GO) Enrichment Analysis.
The KEGG pathway and GO enrichment analysis including
the biological process, molecular function, and cellular com-
ponent were performed using the DAVID database (https://
david.ncifcrf.gov/) for selected probes with GA+SVM.

3. Results

3.1. Comparison of the Models. Table 1 shows the perfor-
mance of the SVM and GA-SVM. The first two lines of the
table are related to the original 54,675 probe sets which led
to a total accuracy and AUC of 62.500% and 0.625, respec-
tively. By using features selected by GA (27,265 features),
the total accuracy and AUC of the SVM increased to
79.167% and 0.792, respectively. Moreover, after an initial
screening of the probe sets using the limma package based
on the ∣FC ∣ ≥1 and adjusted P value < 0.05, a number of
445 DEGs were selected for further evaluation. Then, the
SVM and GA-SVM were trained using them. According to
the results (Table 1), the total accuracy and AUC of the
SVM using 445 DEGs were 87.500% and 0.878, respectively.
After feature selection using GA, the number of 181 probe sets
was selected and the total accuracy and AUC of the SVM
(using 181 features) increased to 100 and 1, respectively. Also,

Start

Random choose of feature as
first population

Calculating fitness
(accuracy in SVM method)

Next 
generation Mutation

CrossoverSelectionStop?
No

Yes

End

Figure 2: Overview of the hybrid GA-SVM model.

Table 1: The performance criteria of the SVM and GA-SVM.

Number of used features Method Total accuracy (%) AUC∗

54,657 SVM 62.500 0.625

27,265 GA+SVM 79.167 0.792

445 SVM 87.500 0.878

181 GA+SVM 100.000 1.000
∗Area under the ROC curve.
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ROC curves related to the four scenarios are provided in
Figure 3.

3.2. PPI Network Analysis. The constructed PPI network for
selected probes with GA+SVM, consisting of 100 nodes and
244 edges, is shown in Figure 4. The top 10 genes with a high
degree including ribosomal protein S3 (RPS3), ribosomal
protein S5 (RPS5), ribosomal protein S20 (RPS20), ribo-

somal protein S15a (RPS15A), ribosomal protein S3A
(RPS3A), X-linked ribosomal protein S4 (RPS4X), ribosomal
small subunit protein 7 (RPS7), ribosomal protein L13
(RPL13), ribosomal protein L35 (RPL35), and heat shock
protein family A member 8 (HSPA8) were selected.

Evaluation of the PPI network indicated that a signifi-
cant module with a score of 14.570 consisted of 15 nodes
and 102 edges. As seen in Figure 4, among the top 10 genes,
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Figure 3: The ROC curves of the four scenarios of classification of psoriasis patients using (a) SVM with 54,657 features, (b) GA+SVM with
27,265 features, (c) SVM with 445 features, and (d) GA+SVM with 181 features.
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9 hub genes including RPS3, RPS5, RPS20, RPS15A, RPS3A,
RPS4X, RPS7, RPL13, and RPL35 were found in the signifi-
cant module.

3.3. GO and KEGG Pathway Analysis. The KEGG pathway
analysis (Figures 5–7) indicated that the ribosome pathway
was significantly enriched in 181 selected genes. GO enrich-
ment analysis showed that the structural constituent of the
ribosome and poly(A) RNA binding were enriched in
molecular function GO terms; cytosolic small ribosomal
subunit, ribosome, membrane, nucleoplasm, respiratory
chain complex IV, intracellular ribonucleoprotein complex,

nucleolus, and small ribosomal subunit were enriched in cel-
lular compartments; and translational initiation, SRP-
dependent cotranslational protein targeting to membrane,
viral transcription, nuclear-transcribed mRNA catabolic
process, nonsense-mediated decay, rRNA processing, and
translation were enriched in biological process terms.

4. Discussions

This study proposed a hybrid machine learning model to
provide a precise psoriasis prediction model, using the gene
expression profiles of human samples. The results of the

Figure 4: Protein-protein interaction network. The PPI network was constructed using STRING and visualized with Cytoscape. The
selected top 10 genes with a high degree were shown in green. The nodes related to the significant module were shown in ellipse shapes.
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Figure 5: Gene Ontology and KEGG pathway enrichment analysis. The KEGG pathway and GO enrichment analysis for selected probes
with GA+SVM were performed using the DAVID database.
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present study showed the ability of the proposed model to
discriminate psoriasis cases from normal controls. To eval-
uate the performance of the model, the predicted diagnosis
(binary predicted response: psoriasis vs. control) returned
by the proposed model during the validation stage (i.e.,
over test set) was compared against the true target value
(i.e., known diagnosis of binary observed response: psoria-
sis vs. control). The best prediction model would return a
high AUC and high prediction accuracy. The traditional
SVM (without GA) was also trained and compared with
the hybrid model. The finding of this study showed a

higher performance for the proposed hybrid prediction
model and showed that GA has significantly improved
the performance of the SVM classifier by achieving a total
accuracy of 100%.

By comparing the results of the proposed GA+SVM of
this study with those of Le et al. [37] who compared the per-
formance of four classifiers of the random forest, naïve
Bayes, K-nearest neighborhood, and SVM for the classifica-
tion of psoriasis and achieved a 98.3% total accuracy for the
random forest classifier (using all 54,675 probe sets and a
larger sample size of n = 180 compared with the present
study with n = 74), a greater accuracy was obtained based
on 181 probe sets using a much smaller sample size (n = 74)
indicating the need for noteworthy performance of the
hybrid models. Moreover, feature selection based on the
genetic algorithm reduces the dimension of the feature space,
so the redundant, noisy, or irrelevant data are removed, the
quality of the data and the accuracy of the resulting model
improve due to searching from a population of points
instead of a single point, and finally the selected feature set
avoids wasting of resources in the next round of information
collection or throughout utilization [38]. Moreover, in other
studies, GA+SVM has been shown to outperform the tradi-
tional SVM in detecting other diseases or other outcomes
[22, 24]. So it is suggested to use and evaluate the perfor-
mance of other hybrid models. Apparently, the proposed
technique illustrates competitive performance against the
state-of-the-art models.

PPI network analysis identified a set of 9 hub genes
(including RPS3, RPS5, RPS20, RPS15A, RPS3A, RPS4X,
RPS7, RPL13, and RPL35) that is proposed to be associated
with psoriasis or to be differentially expressed in psoriasis
samples. The protein encoded by RPS3 has an important
role in DNA repair through the cleavage of damaged DNA.
Moreover, RPS3 enhances the inflammatory response
through proteasomal degradation of IκBα [39, 40].
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12
10
10
10
11

10
9
10

36
38

3
7

17
26

10
10

0 5 10 15 20 25 30 35 40
Translational initiation

SRP-dependent…
Viral transcription

Nuclear-transcribed mRNA…
RRNA processing

Translation
Cytosolic small ribosomal…

Ribosome
Membrane

Nucleoplasm
Respiratory chain complex IV

Intracellular…
Nucleolus

Poly (A) RNA binding
Structural constituent of…

Ribosome

Molecular function
Biological process

Figure 7: Molecular g = function and biological process.

7BioMed Research International



RPS5 encodes the nucleotide-binding protein which is
activated proteolytically with PBS1. RPS5 regulates several
biological processes such as proliferation and differentiation.
Furthermore, RPS5 suppresses the inflammatory responses
induced by lipopolysaccharide [41, 42]. The protein encoded
by RPS20 plays a role in P53 activation through the Mdm2
binding and ribosomal biogenesis [43, 44]. RPS7 regulates
the cell cycle and apoptosis via the MDM2-P53 interaction
and through the regulation of MAPK and PI3K/AKT signal-
ing pathways [45]. The protein encoded by PS4X is one of
the components of the ribosomal small subunit complex.
PS4X plays an essential role in biological processes such as
proliferation and translation [46, 47]. The protein encoded
by RPL13 plays an essential role in pre-rRNA processing
and ribosome assembly [48]. RPL35 as an important com-
ponent of the ribosomal large subunit plays an essential
role in protein translation [49]. RPS15A has an essential
role in mRNA binding to the small subunit of the ribosome
and control of the cell cycle [50]. RPS15A activates the NF-
κB signaling pathway by inducing IκB-α degradation [51].
RPS3A has an essential role in the regulation of translation,
apoptosis, and differentiation. RPS3A also plays a role in
NF-κB signaling pathway enhancement [52, 53]. In this
study, KEGG pathway analysis indicated that the ribosome
pathway was significantly enriched for selected genes. The
structural constituent of the ribosome and poly(A) RNA
binding were significantly enriched in molecular function
GO terms. Translational initiation, SRP-dependent cotransla-
tional protein targeting to membrane, nonsense-mediated
decay, viral transcription, rRNA processing, translation, and
nuclear-transcribed mRNA catabolic process were enriched
in biological process GO terms.

A similar study showed that the ribosome pathway
might be associated with inflammation [54]. Moreover,
results of Li et al.’s study indicated that selected DEGs in
psoriasis were enriched in the ribosomal pathway [55].
rRNA processing is required for 28S and 5.8S rRNA mat-
uration and proper ribosome biogenesis and plays a role
in innate immune signaling [56, 57]. Wu et al. in their
study showed that in ankylosing spondylitis as an autoim-
mune disease, the structural constituent of the ribosome,
SRP-dependent cotranslational protein targeting to mem-
brane, nonsense-mediated decay, translation, viral tran-
scription, nuclear-transcribed mRNA catabolic process,
poly(A) RNA binding, and translational initiation term
were enriched [58].

5. Conclusions

This study proposed a hybrid method of GA and SVM for
the diagnosis of psoriasis. The proposed method was
assessed using a real dataset and compared with the con-
ventional SVM. The current study results revealed that
the hybrid method outperformed the traditional SVM dem-
onstrating the feasibility of identifying the best features
using GA. Finally by considering the results of such hybrid
method, assessing other heuristic approaches such as ant
colony or particle swarm optimization is suggested for
future studies.
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