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Abstract
Detection of nodal micrometastasis (tumor size: 0.2–2.0 mm) is challenging for pathologists due to the small size of metastatic
foci. Since lymph nodes with micrometastasis are counted as positive nodes, detecting micrometastasis is crucial for accurate
pathologic staging of colorectal cancer. Previously, deep learning algorithms developed with manually annotated images
performed well in identifying micrometastasis of breast cancer in sentinel lymph nodes. However, the process of manual
annotation is labor intensive and time consuming. Multiple instance learning was later used to identify metastatic breast cancer
without manual annotation, but its performance appears worse in detecting micrometastasis. Here, we developed a deep
learning model using whole-slide images of regional lymph nodes of colorectal cancer with only a slide-level label (either a
positive or negative slide). The training, validation, and testing sets included 1963, 219, and 1000 slides, respectively. A
supercomputer TAIWANIA 2 was used to train a deep learning model to identify metastasis. At slide level, our algorithm
performed well in identifying both macrometastasis (tumor size > 2.0 mm) and micrometastasis with an area under the receiver
operating characteristics curve (AUC) of 0.9993 and 0.9956, respectively. Since most of our slides had more than one lymph
node, we then tested the performance of our algorithm on 538 single-lymph node images randomly cropped from the testing
set. At single-lymph node level, our algorithm maintained good performance in identifying macrometastasis and
micrometastasis with an AUC of 0.9944 and 0.9476, respectively. Visualization using class activation mapping confirmed
that our model identified nodal metastasis based on areas of tumor cells. Our results demonstrate for the first time that
micrometastasis could be detected by deep learning on whole-slide images without manual annotation.

Introduction

For cancer patients, pathologic staging is crucial for choosing
a proper treatment strategy. Traditionally, detection of nodal

metastasis relies on microscopic examination of all resected
lymph nodes by a pathologist. Overlooking a small metastatic
focus in a lymph node could result in inaccurate staging and
subsequent undertreatment of a patient. Therefore, an assist-
ing tool to detect small metastatic foci in lymph nodes, if
available, would be helpful for pathologic staging.

In colorectal cancer, nodal micrometastasis has been
defined as a metastatic focus with a size between 0.2 and
2.0 mm by the International Union Against Cancer since
2002 [1], and metastatic foci smaller than 0.2 mm are
considered isolated tumor cells. Since a recent meta-
analysis showed that micrometastasis is a significant poor
prognostic factor [2], a lymph node with micrometastasis is
considered a standard positive node in the 8th edition of
AJCC Cancer Staging Manual in 2017 [3]. In contrast,
despite a minor adverse prognostic effect in a subset of early
colorectal cancer patients [4], a lymph node with isolated
tumor cells is regarded as a negative node in the AJCC
staging [3].
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Previously, deep learning algorithms developed from
manually annotated images were demonstrated to identify
metastatic breast cancer in sentinel lymph nodes, including
micrometastasis [5]. Using such algorithms as an assisting
tool for pathologists was found to effectively increase the
sensitivity and efficiency of detecting micrometastasis [6].
However, their deep learning method requires a large
dataset of manually annotated microscopic images, and
detailed marking of tumor areas by pathologists is extre-
mely labor intensive and time consuming. Arguably, the
requirement of manual annotation has been a major obstacle
to the development of artificial intelligence (AI) applica-
tions in pathology.

Later on, a method called multiple instance learning
(MIL) was used to perform deep learning on whole-slide
images (WSIs) without manual annotation [7]. Such an
approach was proved useful in detecting prostate cancer in
needle biopsies, basal cell carcinoma in skin biopsies, and
metastatic breast cancer in axillary lymph nodes [7]. Of
note, in their 23 false negative cases of metastatic breast
cancer, 13 (56.5%) of them were micrometastasis and 2
were isolated tumor cells. Although the performance of their
algorithm in detecting micrometastasis was not described, it
appears worse in detecting micrometastasis since micro-
metastasis is much less common than macrometastasis.

Recently, we developed a new method for training neural
networks on undivided WSIs using only a slide-level label
[8]. Unlike the MIL method using a two-step approach
including patch selection, our new method is using entire
WSIs for direct end-to-end training. Since our new method
outperformed MIL in subclassification of lung cancer [8], it
would be interesting to know if we could train a deep learning
model using our new method to detect micrometastasis.

In this study, we developed a deep learning algorithm to
detect nodal metastasis of colorectal cancer using our new
method of end-to-end training with annotation-free WSIs.
The performance of this algorithm in detecting macro-
metastasis, micrometastasis, and isolated tumor cells was
evaluated. The performance on different histologic subtypes
of cancer was also analyzed.

Materials and methods

Datasets

A total of 3182 slides of regional lymph nodes of colorectal
cancer were retrieved from the archives of Department of
Pathology, Chang Gung Memorial Hospital in Linkou,
Taiwan. These slides were from 1051 patients within a
period of 5 years. All slides were routine sections of
formalin-fixed paraffin embedded tissue with hematoxylin
and eosin (H&E) stain. Whole-slide high-resolution digital

images were produced using a NanoZoomer S360 digital
slide scanner (Hamamatsu Photonics, Hamamatsu, Japan)
with a 40× objective mode. The average size of a WSI was
111,198 × 86,483 pixels (maximum size: 207,360 ×
108,288 pixels). This study had been approved by the
Institutional Review Board of Chang Gung Memorial
Hospital (IRB Nos 201701560B0 and 201800413B0).

Among the 3182 slides, 1589 of them with metastatic
cancer cells (either macrometastasis, micrometastasis, or
isolated tumor cells) were labeled as “positive slide,”
whereas other 1593 slides without cancer cells were labeled
as “negative slide.” Two senior pathologists (W-YC and C-
JY) reviewed and labeled all slides accordingly. Four slides
originally diagnosed as negative were corrected to micro-
metastasis or isolated tumor cells. No detailed manual
annotation was performed. The WSIs were randomly split
into training (1963 slides, including 973 positive and 990
negative ones), validation (219 slides, including 116 posi-
tive and 103 negative ones), and testing (1000 slides,
including 500 each of positive and negative ones) datasets
using nonstratified sampling for model training, tuning, and
performance evaluation, respectively.

Since most of our slides had more than one lymph node,
we also evaluated the performance of our algorithm on
images of single-lymph nodes. A single-lymph node testing
set (538 single-lymph nodes, including 101 positive and
437 negative ones) was prepared by random selection of
WSIs and manual cropping of single-lymph nodes using a
free-hand contouring tool on aetherSlide Digital Pathology
System (aetherAI, Taipei, Taiwan).

To compare the performance of our algorithm on
metastases of different size and histologic subtypes, positive
WSIs and single-lymph node images in the slide-level and
lymph node-level testing sets were further evaluated by two
senior pathologists (W-YC and C-JY). Among the 500
positive WSIs in the slide-level testing set, 439 were mac-
rometastasis, 56 were micrometastasis, and 5 were isolated
tumor cells. Among the 101 positive nodes in lymph node-
level testing set, 71 were macrometastasis, 25 were micro-
metastasis, and 5 were isolated tumor cells. Regarding the
histologic subtypes of the 500 positive WSIs, 469 were
classical adenocarcinoma, 13 were mucinous adenocarci-
noma, and 18 were signet ring cell/poorly differentiated
adenocarcinoma. Among the 101 positive single-lymph
nodes, 74 were classical adenocarcinoma, 14 were muci-
nous adenocarcinoma, and 13 were signet ring cell/poorly
differentiated adenocarcinoma.

Computer hardware and software

We conducted our experiments on TAIWANIA 2, a multi-
graphics processing unit (GPU), multinode supercomputer.
It consists of 252 computing nodes, and each node is
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equipped with eight Tesla V100 32GB-HBM2 GPUs. The
software stack was CUDA 10.0 and cuDNN 7.6 for GPU
acceleration, TensorFlow 1.15.3 for model building and
training, and Open MPI 4.0.1, MPI for Python 3.0.3 and
Horovod 0.19.0 for multi-GPU training. The training task
was performed with a batch size of eight, one training
sample per GPU.

Whole-slide model training

We trained a ResNet-50 [9] convolutional neural network
(CNN) using a whole-slide training pipeline [8] to identify
whether an image contains metastasis. The pipeline con-
sisted of data preparation and model update.

For data preparation, a WSI was randomly selected as
well as its corresponding slide-level label (positive or
negative). The image was resized from 40× to 4× to
improve training efficiency. The effective spatial resolution
was 22.5 µm/pixel. It was then padded to 21,500 × 21,500
pixels with white color to standardize the image size. The
rescaled image was processed by a sequence of data aug-
mentation procedures, including random flipping, random
rotation (0°–360°), random translation (±500 pixels in both
horizontal and vertical dimensions), random contrast (scal-
ing contrast by 0.5–1.5), random brightness (scaling
brightness by 0.65–1.35), random hue (±32), and random
saturation (±32). The increased diversity of training images
is known to effectively make the model more generalizable
and robust [10].

For model update, we trained a ResNet-50 CNN [9]
through the whole-slide training method as previously
described [8]. The underlying model ResNet-50 was
slightly modified, with the batch normalization layers fro-
zen to increase multi-GPU efficiency. Binary cross entropy
was adopted as the loss function for model training and
evaluation. The model was initialized using ImageNet pre-
trained weights and updated by an Adam optimizer [11]
with an initial learning rate of 0.00001. Along the training
process, the model iteratively learned from newly fed aug-
mented images, and was evaluated by calculating the loss of
the validation dataset every 88 iterations (i.e., an epoch).
When no improvement was made over the last 24 epochs,
the learning rate was decreased to 0.000001 for the first
time, and the training was stopped for the second time. Only
the weights achieving the best validation performance
were saved.

Visualization using class activation mapping (CAM)

We used CAM [12] to highlight relatively important regions
of the image for model prediction. Specifically, the CAM
method applied its operations on the feature map generated
by the last dense layer before the global average pooling

layer. The resulting two-dimensional map was then
upsampled to the size of the WSI using bicubic interpola-
tion. Areas with higher values in the CAM are more
important for identification of metastasis.

Statistics

We used area under the receiver operating characteristic
curve (area under the ROC curve; AUC) as the metric to
evaluate the classifier. The 95% confidence intervals (CIs)
were calculated using DeLong’s method [13]. For sig-
nificance testing, we adopted a dummy model that always
outputs 0.5 as the prediction result for any WSI as the null
hypothesis. The 95% CIs of accuracies were modeled as
binomial proportion CIs and calculated through Wilson’s
method.

Results

Model performance on WSIs

The learning curves of our model are shown in Fig. 1a, b.
The ROC curve of our model on slide-level testing set is
shown in Fig. 1c. Our algorithm performed well in identi-
fying metastatic colorectal cancer on the 1000 WSIs of the
testing dataset, with an AUC of 0.9957 (95% CI:
0.9935–0.9999). The algorithm achieved an accuracy of
98.50% (95% CI: 97.75%–99.25%) with a prediction
threshold of 0.5.

Model performance on single-lymph node images

The ROC curve of our model on single-lymph node testing
set is shown in Fig. 1d. Our algorithm maintained high
performance in identifying metastatic colorectal cancer on
the 538 single-lymph node images of the testing dataset,
with an AUC of 0.9724 (95% CI: 0.9513–0.9936). The
algorithm achieved an accuracy of 97.58% (95% CI:
96.29%–98.88%) using a prediction threshold of 0.3.

Model performance regarding different lesion size

The ROC curves of our model in identifying macro-
metastasis, micrometastasis, and isolated tumor cells in the
slide-level testing set are shown in Fig. 2a–c. The algorithm
performed well in identifying macrometastasis and micro-
metastasis, with an AUC of 0.9993 and 0.9956, respec-
tively. The performance was obviously worse in detecting
isolated tumor cells, with an AUC of 0.7828.

For the single-lymph node-level testing set, the ROC
curves are shown in Fig. 3a–c. Similar to the slide-level
testing set, the performance was good for macrometastasis

Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free. . . 1903



Fig. 2 Slide-level ROC curves of our model in detecting different
sizes and histologic subtypes of metastasis. The ROC curves of our
model in slide-level testing set, including detection of macrometastasis

(a), micrometastasis (b), isolated tumor cells (c), classical adeno-
carcinoma (d), mucinous adenocarcinoma (e), and signet ring cell/
poorly differentiated adenocarcinoma (f).

Fig. 1 Learning curves and
ROC curves of our model. The
learning curves of our model
showed gradual decrease of loss
(a) and increase of accuracy (b)
during the training process. The
ROC curves of our model in
slide-level testing set (c) and
single-lymph node-level testing
set (d).
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and micrometastasis, with an AUC of 0.9944 and 0.9476,
respectively. The model achieved lower performance for
detection of isolated tumor cells, with an AUC of 0.7844.

Model performance regarding different histologic
subtypes

The ROC curves of our model in identifying classical
adenocarcinoma, mucinous adenocarcinoma, and signet
ring cell/poorly differentiated adenocarcinoma in the slide-
level testing set are shown in Fig. 2d–f. The model per-
formed well in identifying classical adenocarcinoma and
mucinous adenocarcinoma, with an AUC of 0.9970 and
0.9995, respectively. The performance was slightly worse in
detecting signet ring cell/poorly differentiated adenocarci-
noma, with an AUC of 0.9862.

For the single-lymph node-level testing set, the ROC
curves are shown in Fig. 3d–f. Similar to the slide-level
testing set, the performance was good for classical adeno-
carcinoma and mucinous adenocarcinoma, with an AUC of
0.9703 and 0.9989, respectively. Detection of signet ring
cell/poorly differentiated adenocarcinoma was also slightly
worse, with an AUC of 0.9558.

Key morphologic features for identification of
metastatic cancer

Using CAM, the key morphologic features for identification
of metastatic colorectal cancer can be highlighted. An
example of WSI with metastatic classical adenocarcinoma in
the slide-level testing set is shown in Fig. 4a–d. The key
morphologic features (highlighted with red color) for cancer
identification were the areas of tumor cells but not the
intervening stroma or inflammatory cells. Another example
of metastatic classical adenocarcinoma with extensive tumor
necrosis is shown in Fig. 4e–h. Our model identified this
WSI as positive based on the areas of viable tumor cells
rather than the necrotic debris.

An example of WSI with metastatic mucinous adeno-
carcinoma in the slide-level testing set is shown in
Fig. 5a–d. The key morphologic features for identification
were the areas of tumor cells but not the mucin pools. An
example of signet ring cell/poorly differentiated adeno-
carcinoma is shown in Fig. 5e–h. Our model identified this
WSI as positive mainly based on areas with higher density
of tumor cells. Note that the areas with lower density of
tumor cells were not highlighted. This could explain the

Fig. 3 Single-lymph node-level ROC curves of our model in
detecting different size and histologic subtypes of metastasis. The
ROC curves of our model in single-lymph node-level testing set,
including detection of macrometastasis (a), micrometastasis (b),

isolated tumor cells (c), classical adenocarcinoma (d), mucinous ade-
nocarcinoma (e), and signet ring cell/poorly differentiated adeno-
carcinoma (f).
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slightly worse performance of our model in identifying
signet ring cell/poorly differentiated adenocarcinoma.

Figure 6 shows an example of WSI with micrometastasis
in our slide-level testing set. Note that multiple benign
lymph nodes are present in this WSI. Our model success-
fully identified this WSI as positive based on the small areas
of tumor cells. Figure 7 shows some single-lymph nodes
with micrometastasis in our lymph node-level testing set.
Our model also successfully identified these single-lymph
nodes as positive based on the small foci of metastasis.

Model performance on cases with preoperative
chemotherapy

In our slide-level testing set, 59 WSIs were from patients
with preoperative chemotherapy or concurrent chemor-
adiotherapy. Using a prediction threshold of 0.5, our algo-
rithm achieved an accuracy of 98.31%. All six cases of
micrometastasis were successfully detected, and no false
positive cases were found. The only false negative case was

a metastatic signet ring cell/poorly differentiated adeno-
carcinoma with a lesion size of 2.16 mm and low tumor cell
density (Fig. 8a, c). Although our model falsely predicted
this WSI as negative, the CAM still highlighted areas with
relatively higher density of tumor cells (Fig. 8 b, d).

In our single-lymph node-level testing set, 28 lymph
nodes were from patients with preoperative chemotherapy
or concurrent chemoradiotherapy. Using a prediction
threshold of 0.3, our algorithm achieved an accuracy of
96.43%. Both lymph nodes with micrometastasis were
successfully detected, and there were no false positive
cases. The only false negative case was a lymph node with
isolated tumor cells.

Discussion

The microscopic images of pathology slides are much more
complicated than other types of medical images. Due to the
large size (a few gigabytes on average) of high-resolution

Fig. 4 Examples of classical
adenocarcinoma in our slide-
level testing set. Using class
activation mapping, areas of the
original whole-slide image (a)
relatively important for positive
prediction were highlighted with
red color (b). A close-up view
(c) and its highlighted areas (d)
showed that our algorithm
identified metastasis mainly
based on areas of tumor cells.
Another example with extensive
tumor necrosis demonstrated
that our algorithm identified
metastasis mainly based on
viable tumor cells instead of
necrotic debris (e–h).
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pathology WSIs, it is technically difficult to train a deep
learning model directly using WSIs. Previously, most stu-
dies adopted a patch-based approach to perform deep
learning on pathology images. Such an approach requires
manual annotation, namely pixel-wise manual contouring of
regions of interest (such as tumor areas) by experienced
pathologists. The annotated regions are sliced into small
patches, which are much more feasible for deep learning.
This method has been successful in detecting [14–17],
classifying [18–20], and grading [21, 22] tumors.

Of note, algorithms developed with patch-based deep
learning methods performed well in detecting metastatic
breast cancer in sentinel lymph nodes [5]. Their top-
performing algorithm achieved an AUC of 0.994 for whole-
slide prediction. Regarding detection of micrometastasis,

their top ten algorithms had a mean AUC of 0.885 (range:
0.812–0.997), which was better than that of the best
pathologist with time constraint (AUC= 0.808). A later
study showed that such an algorithm can be used as an
assisting tool for pathologists to detect micrometastasis [6].
With the assistance of the algorithm, the sensitivity of
detecting micrometastasis by pathologists was increased
significantly from 83 to 91% (P= 0.02). The average
review time per image can be reduced for both micro-
metastasis (116–61 s; P= 0.002) and negative cases
(137–111 s; P= 0.018). Their result showed the benefit of
using a deep learning algorithm as an assisting tool to detect
micrometastasis for pathologists.

Later on, a method of MIL was used to train neural
networks with annotation-free WSIs [7]. Briefly, this

Fig. 5 Examples of mucinous
adenocarcinoma and signet
ring cell/poorly differentiated
adenocarcinoma in our slide-
level testing set. An example of
mucinous adenocarcinoma
showed that our algorithm
identified metastasis mainly
based on viable tumor cells
instead of mucin pools (a–d).
An example of signet ring cell/
poorly differentiated
adenocarcinoma demonstrated
that our algorithm identified
metastasis mainly based on areas
with higher density of tumor
cells (e–h). Note that the areas
with lower density of tumor cells
were not highlighted.
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Fig. 6 An example of
micrometastasis in our slide-
level testing set. Using class
activation mapping, areas of the
original whole-slide image (a)
relatively important for positive
prediction were highlighted with
red color (b). A close-up view
(c) (the square in b) and its
highlighted areas (d) showed
that our algorithm identified
metastasis based on the small
areas of tumor cells.

Fig. 7 Examples of
micrometastasis in our single-
lymph node-level testing set.
Using class activation mapping,
areas of the original single-
lymph node image (a, c, e)
relatively important for positive
prediction were highlighted with
red color (b, d, f). Note that the
areas important for identifying
micrometastasis (asterisks) were
the small areas of tumor cells
(arrowheads).
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method trains an AI model with a two-stage approach. At
the first stage, WSIs are serially sliced into patches. The
image patches are processed by a CNN image classifier. A
certain number of image patches with the highest prob-
ability scores from a positive slide (or from a negative
slide) are used as positive patches (or negative patches) in
a training process to update the classifier. At the second
stage, an additional slide-level classifier is trained to
globally aggregate the patch-level results of all patches
from a slide. They trained a deep learning model to detect
metastatic breast cancer using more than 6500 WSIs of
axillary lymph nodes. Their algorithm performed well
with an AUC of 0.966. In the 403 positive cases of their
testing set, 23 (5.7%) were misclassified as negative.
Among the 23 false negative cases, 8 (34.8%) were
macrometastasis, 13 (56.5%) were micrometastasis, and 2
(8.7%) were isolated tumor cells. Since micrometastasis is
much less common than macrometastasis in practice, one
can assume that their model performed worse in detecting
micrometastasis. However, the exact performance of their
algorithm in detecting micrometastasis was not described.

Recently, we developed a new method to train deep
learning models using annotation-free WSIs with a slide-
level label [8]. Unlike the MIL method which needs a
slicing procedure and a two-stage training, our new
method is a direct end-to-end training process using
undivided WSIs. Our new method performed better than
MIL in classifying lung cancer (AUC: 0.9594 vs. 0.9188
for adenocarcinoma; 0.9414 vs. 0.9032 for squamous cell
carcinoma) [8]. In the present study, we used this new
method to train an AI model using 1963 WSIs of lymph
nodes. Our algorithm performed well in identifying

metastatic colorectal cancer with an AUC of 0.9967.
Compared to the study detecting metastatic breast cancer
in axillary lymph nodes using MIL [7], we trained an AI
model to detect metastatic colorectal cancer using our new
method with less training data (1963 vs. >6500 WSIs)
and better performance (AUC: 0.9967 vs. 0.966). In
addition, our algorithm performed well in detecting both
macrometastasis (AUC= 0.9993) and micrometastasis
(AUC= 0.9956).

Detection of isolated tumor cells in H&E slides is
extremely challenging for pathologists. Immunohisto-
chemical study for cytokeratin is usually needed to detect
all foci of isolated tumor cells [2, 4]. Since immunohis-
tochemical study was not performed in this study, some
lymph nodes with isolated tumor cells might have been
labeled negative. This could partly explain the worse
performance of our model in detecting isolated tumor
cells. However, since a lymph node with isolated tumor
cells is considered a negative node in the AJCC staging
[3], detecting isolated tumor cells is of less significance
than detecting micrometastasis.

Regarding different histologic subtypes, our algorithm
performed slightly worse in detecting signet ring cell/
poorly differentiated adenocarcinoma. This subtype of
colorectal cancer is uncommon and has the greatest
morphologic deviation from classical adenocarcinoma.
The slightly worse performance of our model could be
due to underrepresentation of such cases in the training
set. In addition, our model is unlikely to achieve good
performance for rare subtypes (such as small cell neu-
roendocrine carcinoma) of colorectal cancer absent in the
training set.

Fig. 8 A false negative example
of metastasis in a patient with
preoperative chemotherapy.
This whole-slide image (a)
(close-up view: c) with a small
focus (2.16 mm in size) of
metastatic signet ring cell/poorly
differentiated adenocarcinoma
(arrowheads) was misclassified
as negative. However, class
activation mapping (b, d) still
highlighted areas with relatively
high density of tumor cells.
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Preoperative chemotherapy did not influence much the
performance of our model. Although a WSI with a small
focus (2.16 mm in size) of metastatic signet ring cell/poorly
differentiated adenocarcinoma was missed by our model,
the heatmap of CAM still highlighted areas with higher
density of tumor cells (Fig. 8).

In practice, our AI model can be used as an assisting tool
for pathologic diagnosis. A heatmap produced by CAM can
highlight areas with high probability of metastatic tumor
cells. Combining with an additional AI model for lymph
node detection/segmentation, automated counting of posi-
tive/total lymph nodes could be achieved. However, such an
automated counting system should only be used as an
assistance to human counting, since a WSI might contain
multiple slices of the same lymph node due to gross
sampling.

In conclusion, here we develop for the first time a deep
learning algorithm to detect nodal metastasis in colorectal
cancer using undivided, annotation-free WSIs. Our model
performed well in detecting both macrometastasis and
micrometastasis. With no need of time-consuming manual
annotation, our approach could accelerate development of
new high-performance deep learning algorithms for
pathology in the future.
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ded in this published article.
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