Table 5.
Classification metrics of classifiers.
Metric | Soluble yield best | Total yield best | Soluble fraction best |
---|---|---|---|
RCSF | |||
CV accuracy | 0.805 | 0.805 | 0.854 |
Holdout accuracy | 0.900 | 0.900 | 0.900 |
CV5 precision | 0.875 | 0.777 | 0.810 |
Holdout precision | 1.000 | 1.000 | 0.833 |
CV5 recall | 0.700 | 0.777 | 0.895 |
Holdout recall | 0.857 | 0.875 | 1.000 |
CV5 F1 score | 0.778 | 0.777 | 0.850 |
Holdout F1 score | 0.923 | 0.933 | 0.909 |
ESF | |||
CV accuracy | 0.707 | 0.659 | 0.659 |
Holdout accuracy | 0.800 | 0.700 | 0.700 |
CV5 precision | 0.750 | 0.600 | 0.778 |
Holdout precision | 1.000 | 0.857 | 1.000 |
CV5 recall | 0.600 | 0.667 | 0.368 |
Holdout recall | 0.714 | 0.750 | 0.400 |
CV5 F1 score | 0.667 | 0.632 | 0.500 |
Holdout F1 score | 0.833 | 0.800 | 0.571 |
CV5 corresponds to Stratified fivefold cross validation.