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Background. Previous studies have shown that heart failure (HF) and chronic kidney disease (CKD) have common genetic
mechanisms, overlapping pathophysiological pathways, and therapeutic drug—sodium-glucose cotransporter 2 (SGLT2)
inhibitors. Methods. The genetic pleiotropy metaCCA method was applied on summary statistics data from two independent
meta-analyses of GWAS comprising more than 1 million people to identify shared variants and pleiotropic effects between HF
and CKD. Targets of SGLT2 inhibitors were predicted by SwissTargetPrediction and DrugBank databases. To refine all genes,
we performed using versatile gene-based association study 2 (VEGAS2) and transcriptome-wide association studies (TWAS)
for HF and CKD, respectively. Gene enrichment and KEGG pathway analyses were used to explore the potential functional
significance of the identified genes and targets. Results. After metaCCA analysis, 4,624 SNPs and 1,745 genes were identified to
be potentially pleiotropic in the univariate and multivariate SNP-multivariate phenotype analyses, respectively. 21 common
genes were detected in both metaCCA and SGLT2 inhibitors’ target prediction. In addition, 169 putative pleiotropic genes
were identified, which met the significance threshold both in metaCCA analysis and in the VEGAS2 or TWAS analysis for at
least one disease. Conclusion. We identified novel variants associated with HF and CKD using effectively incorporating
information from different GWAS datasets. Our analysis may provide new insights into HF and CKD therapeutic approaches
based on the pleiotropic genes, common targets, and mechanisms by integrating the metaCCA method, TWAS and VEGAS2
analyses, and target prediction of SGLT2 inhibitors.

1. Introduction

It is estimated that more than 23 million people worldwide
are currently affected by heart failure (HF) [1], which dra-
matically increases the burden of finance and medical care
[2, 3]. Although almost any disease that affects myocardial
function can aggravate the development of HF, the disease

most related to HF is chronic kidney disease (CKD). The
relation of HF and CKD is tight. On the one hand, as a major
complication of HF, CKD accelerates the overall progression
of HF, resulting in higher mortality [4, 5]. On the other hand,
HF is a leading cause of morbidity and mortality in patients
with chronic kidney disease (CKD) and almost 30% of
CKD patients are comorbid with HF [5, 6].
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It is reported that the estimated heritability ratio of
CKD is about 30-50% [7], while HF had an estimated her-
itability of 26-34% [8], indicating HF and CKD have solid
genetic components. Genes including FTO and PKR1 have
been jointly investigated in HF and CKD [9, 10]. Cur-
rently, dapagliflozin, one of the sodium-glucose cotran-
sporter 2 (SGLT2) inhibitors, has been approved in the
United States to treat adult patients with CKD regardless
of diabetes status [11]. Data to date suggest SGLT2 inhib-
itors appear to moderately reduce the risk of the decrease
of estimated glomerular filtration rate (eGFR), progression
to end-stage renal disease (ESRD), cardiovascular (CV)
death, and hospitalization for heart failure beyond simply
reducing plasma glucose level [12–17]. Apparently, SGLT2
inhibitors are effective in both HF and CKD with some
potential common therapeutic targets. However, the spe-
cific genetic and molecular mechanisms, as well as the
common therapeutic targets shared by HF and CKD, are
far from understanding.

As far as we know, the shared mechanism and risk
molecular of HF and CKD have been discussed at proteo-
mic and epigenetic levels [18, 19]. However, current stud-
ies have not systematically revealed the shared risk genes
of HF and CKD. As a systematic and standard univariate
detection method, genome-wide association study (GWAS)
mainly provides an available way to identify diseases by
testing one single-nucleotide polymorphism (SNP) and
one quantitative phenotype at a time [20]. Several large-
scale GWAS have been carried out in the past few years
to find genetic variations of HF and CKD, respectively
[21, 22]. However, these GWAS have achieved limited suc-
cess in identifying genetic structure when it comes to com-
plex traits and diseases such as HF and CKD. Even the
test sample is large enough, GWAS can still not account
for the entire relationship between genes and phenotypes,
as most gene sites have little effect on traits [23]. Another
limitation of GWAS is that the identified SNP can only
explain part of the narrow heritability [24]. As a result,
though GWAS can successfully identify disease-sensitive
points, most genetic components of phenotypic variation
remain unexplained in common diseases and common
variations.

The canonical correlation analysis that uses multivari-
ate statistics to represent genotypic and phenotypic vari-
ables based on published univariate GWAS statistics may
be suitable for overcoming GWAS limitations [25].
Genotype-phenotypic associations in the genetic variation
of most complex diseases can only be found when several
variables are tested together. Thus, we can test the correla-
tion between multiple SNP and multiple phenotypes. This
method has been applied to identify 67 pleiotropic genes
associated with seven autoimmune/autoinflammatory dis-
eases [26]. At the same time, in the cardiovascular field,
the metaCCA method has also been used to reveal the
genetic association among CAD, obesity, and T2DM
[27]. However, these studies only integrate genome data,
resulting in only 67 and 22 putative pleiotropic genes
obtained separately and failed to reveal the potential
shared therapeutic targets of diseases.

In this study, we verified the results of metaCCA by
combining the multiomics dataset rather than just using
genome data to identify 169 disease-associated pleiotropic
genes. Potential therapeutic targets of SGLT2 inhibitors
shared by HF and CKD were also detected. In addition, we
conduct functional enrichment and PPI network to explore
the genes and therapeutic targets we identified.

2. Method

2.1. GWAS Datasets. The GWAS dataset for heart failure
was adopted from a meta-analysis containing 26 studies that
comprise 47,309 cases and 930,014 controls of European
ancestry. Its summary statistics of 8,021,999 imputed SNPs
were downloaded from http://www.broadcvdi.org/. Cases
refer to participants with a clinical diagnosis of HF of any
etiology without inclusion criteria based on LV ejection frac-
tion; controls were participants without HF [21]. The
adopted GWAS meta-analysis of CKD was composed of 60
studies with a total sample size of 689,383 including 64,164
CKD cases and 625,219 controls of European ancestry, and
9,585,589 SNPs for summary statistics. Patients with an
eGFR below 60mlmin−1 per 1.73m2 were defined as CKD
regardless of etiology [22]. And its summary statistics were
downloaded from https://ckdgen.imbi.uni-freiburg.de. We
referred to every original study of these two GWAS meta-
analyses to ensure all the samples in the GWAS datasets
came from different populations with European ancestry.
Additionally, the summary statistics have undertaken double
check of genomic control separately at the individual study
level and meta-analysis. Please refer to the corresponding
consortium publications for more detailed information on
the sample ascertainment and stringent quality control
procedures.

2.2. Data Processing. After downloading summary statistics,
we took several steps to process data for implementation of
the metaCCA method. First, we combined the summary sta-
tistics to identify common SNPs between studies of HF and
CKD. Then 7,754,982 overlapping SNPs of HF and CKD
have completed the gene annotation for the two GWAS
according to the 1000 Genomes dataset using PLINK1.9
(http://www.cog-genomics.org/static/bin/plink/glist-hg19).
Only the SNPs that can be annotated were reserved for the
following procedures. Second, we conducted a linkage dis-
equilibrium (LD) to remove SNPs with large pairwise corre-
lations based on the SNP pruning method. The SNP pruning
method was proceeded by a window size of 50 SNPs and
step size of 5 SNPs, which means LD was calculated between
each pair of SNPs to remove SNPs in high LD; each sliding
window of 5 SNPs moved forward and the process repeated
until there were no pairs of SNPs with high LD [28]. SNPs
with smaller minor allele frequency (MAF) for pairs with
r2 > 0:2 were also removed [29]. All datasets were expur-
gated using the 1000 Genomes genotypes of CEU as a refer-
ence panel. After gene annotation and SNP pruning, there
remained 440,440 SNPs which we performed the metaCCA
analysis. For each of these remaining SNPs, we obtained
the regression coefficient β and its standard error. The
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regression coefficient β was normalized before conducting
the metaCCA analysis. Standardization was achieved
according to the following equation:

βSTD
gp =

1
ffiffiffiffiffiffiffiffiffiffiffiffi

nSEgp
p

× βgp, ð1Þ

where SEgp is the standard error of βgp. Both SEgp and βgp
are given by the original GWAS result; g is the number of
genotypic variables, p is the number of phenotypic variables,
and n is the sample number of each disease.

2.3. metaCCA Analysis. To identify the potential pleiotropic
genes, we applied the metaCCA method. The principle and
algorithm of metaCCA were consistent with the description
of the paper of Cichonska et al. [25]. In short, metaCCA is a
multivariate meta-analysis method which is an extension of
the method of CCA and requires a cross-covariance matrix
between all genotypic and phenotypic variables (∑XY), a
genotypic correlation structure among SNPs (∑∧XX), and
a phenotypic correlation structure among traits (∑∧YY)
[25]. ∑XY is constructed as the normalized regression coef-
ficient βgp:
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In the formula, g and p are the numbers of genotypic
and phenotypic variables, respectively.

In our study, ∑∧XX was calculated using the 1000
Genomes reference for Europeans (phase 3) as a reference
representing the study population. Furthermore, the pheno-
typic correlation structure (∑∧YY) was computed based on
∑XY . Each entry of ∑∧YY corresponded to a Pearson corre-
lation coefficient between the vector of β estimates from p
phenotypic variables across g genetic variants. For the sam-
ple size varies between these two studies, we set the smallest
sample size among the included traits as N , which is the
most conservative and commonly used approach to address
this issue. After calculation, the full covariance matrix (∑)
can be obtained:
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The full covariance matrix was plugged into the CCA
framework to produce the final genotype-phenotype associ-
ation result [25]. The correlation between genotype and phe-
notype is called the canonical correlation r [30]. In this
study, we conducted two types of multivariate analysis: uni-
variate SNP-multivariate phenotype association analysis for
the SNP level and multivariate SNP-multivariate phenotype
association analysis for the gene level. The result was the

canonical correlation of a gene with HF and CKD. Then,
Bonferroni corrected P value < 0.01 was used as the thresh-
old for significance. If the P value of the canonical correla-
tion r of any SNP was less than
2:77 × 10−8 ð= 0:01/440440Þ, it was deemed significantly
associated with HF and CKD. Similarly, genes with a canon-
ical correlation P value smaller than 6:54 × 10−7 ð= 0:01/
15302Þ were significantly associated with HF and CKD.

2.4. Prediction of SGLT2 Inhibitors’ Related Targets. The
chemical structures of four SGLT2 inhibitors, namely, cana-
gliflozin, dapagliflozin, empagliflozin, and ertugliflozin, were
obtained using PubChem (https://pubchem.ncbi.nlm.nih
.gov/), which is an open chemistry database with
96,502,248 compositions of which 3,151,393 have been
tested. We adopted SwissTarget Prediction (http://www
.swisstargetprediction.ch/), a tool for target prediction
according to dimensional and 3-dimensional similarity mea-
sures with known ligands, to select and to predict potential
targets for four SGLT2 inhibitors by putting their chemical
structures into this platform [31]. Additionally, SGLT2
inhibitors’ related genes were also collected from DrugBank
(https://www.drugbank.ca/), a unique bioinformatics and
chemical informatics database containing 11,628 drugs and
related chemical information, drug targets, protein data,
and so on [32]. With further correction and transformation
by retrieving Universal Protein Resource (UniProt, http://
www.uniprot.org/), all the SGLT2 inhibitors’ related genes
were normalized into consistent symbols for subsequent
analysis. According to the intersection of genes identified
by metaCCA and SGLT2 inhibitors’ related targets, we get
the Venn diagram on the website (https://bioinfogp.cnb
.csic.es/tools/venny/).

2.5. Gene-Based Analysis. To make the identified genes by
metaCCA more credible, we performed gene-based associa-
tion analysis by using the versatile gene-based association
study 2 (VEGAS2) method (performed at https://vegas2
.qimrberghofer.edu.au/). This method is aimed at determin-
ing the association between each SNP and each trait using
original GWAS summary statistics individually [33]. All
SNPs in each gene were analyzed using the 1000 Genomes
European reference genotypes. Our study identified signifi-
cant genes that achieved threshold in the VEGAS2 analysis
using 0.01 as the P value threshold.

2.6. Transcriptome-Wide Association Studies. Tran-
scriptome-wide association studies (TWAS) of HF and
CKD were performed using FUSION software. FUSION
can compute gene expression weights for different tissues
by individual’s genotype and gene expression data. In the
current study, gene expression weights of the whole blood
panel were adopted from the FUSION website (https://
gusevlab.org/projects/fusion/), which is attached to the
GTEx database. Genes with corrected P values < 0.05 were
identified as significant risk genes. For more information of
FUSION parameters, please refer to the previous article [34].

2.7. Functional GO and KEGG Analyses and PPI Network
Conduction. These putative pleiotropic genes and potential
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pleiotropic therapeutic targets identified by metaCCA and
SGLT2 target prediction were then subjected to GO and
KEGG analyses. The Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) bioinformatics tool
was used to evaluate these analyses. A GO term or KEGG
pathway with an adjusted P value < 0.05 was considered sta-
tistically significant [35]. Visualization of GO analysis was
conducted with R package “ggplot2.” In addition, we used
STRING v10 from https://string-db.org/ to analyze the PPI
network [36]. The workflow of the whole study is shown
in Figure 1.

3. Result

3.1. Pleiotropic SNPs and Genes Identified by metaCCA. After
gene annotation and SNP pruning, 440,440 SNPs located in
23,579 gene regions were inputted in the metaCCA analysis.
Totally, 4,624 SNPs reached the Bonferroni corrected
threshold (P < 2:77 × 10−8), and the canonical correlation r
between each SNP and phenotype ranged from 0.005 to
0.013. The Manhattan plot in Figure 2 presents the results.
For the multivariate SNP-multivariate phenotype analysis,
1,745 genes with a significance threshold of P value
(P < 6:54 × 10−7) were identified as the potential pleiotropic
genes. The canonical correlation r between genotype and
phenotype ranged from 0.008 to 0.069.

3.2. Potential Pleiotropic Therapeutic Targets Identified by
metaCCA and SGLT2 Target Prediction. After importing
four SGLT2 inhibitors’ structures obtained from PubChem
into the SwissTargetPrediction database, respectively, for
target matching and prediction, we screened the 400 targets
(Supplementary Table 1). We also adopted the DrugBank
database to find 37 targets on the four SGLT2 inhibitors,
with 11 targets in dapagliflozin, 10 targets in empagliflozin,

8 targets in canagliflozin, and 8 targets in ertugliflozin
(Supplementary Table 2). By integrating and eliminating
duplicate targets in the two databases, a total of 214 targets
with potential effects of SGLT2 inhibitors were obtained.
An intersection of genes identified by metaCCA and
SGLT2 inhibitors’ related targets was obtained from the
online Venn diagram drawing website (http://jvenn
.toulouse.inra.fr/app/example.html). We finally identified
21 potential therapeutic targets for SGLT2 inhibitors in
both heart and kidney failures, including SLC5A1, EP300,
and GRIK1, which were also considered to be pleiotropic
genes. The results are presented by the Venn plot in
Figure 3. For detailed information of potential therapeutic
targets, please refer to Table 1.

3.3. Pleiotropic Genes Identified by metaCCA and VEGAS2
Analyses and TWAS Analysis. To refine and validate our
multivariate SNP-multivariate phenotype analysis, we then
integrated gene-based analysis using the VEGAS2 and
TWAS analyses. For VEGAS2 analysis, 675 genes of HF
and 897 genes of CKD reached the threshold of significance.
As for TWAS analysis, we identified 15 genes associated with
HF and 69 genes associated with CKD. After intercepting
the result of VEGAS2 analysis and TWAS analysis with
1,745 pleiotropic genes identified by metaCCA, we deter-
mined 169 putative pleiotropic risk genes associated with
at least one disease in the VEGAS2 analysis or TWAS anal-
ysis (Figure 4). Among the 169 putative pleiotropic genes,
some genes have been detected in the original GWAS
meta-analysis, such as KCNQ1 (PmetaCCA = 3:01 × 10−19,
PCKD−meta = 9:02 × 10−9) for CKD and ATXN2
(PmetaCCA = 1:87 × 10−9, PHF−meta = 4:90 × 10−8) and FTO
(PmetaCCA = 7:54 × 10−147, PHF−meta = 1:21 × 10−8) for HF,
indicating that metaCCA have a more statistic power. In
comparison, 100 genes were determined as novel putative
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Figure 1: The workflow of the study.
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pleiotropic genes because these genes have never been
reported to be associated with HF and CKD (Supplementary
Table 3).

Three common genes, FTO, SLC39A8, and CRTC1,
were identified in metaCCA analysis and two diseases in
VEGAS2 analysis. Two common genes, POM121C and
NPC1, were identified in both VEGAS2 and TWAS of HF
and metaCCA analyses, while six common genes, including
ALMS1P, GAB2, PAX8, GGNBP2, L3MBTL3, and GATM,
identified in both VEGAS2 and TWAS of CKD and
metaCCA analyses. Of these common genes, FTO and
SLC39A8 have been reported to be associated with HF and
CKD. PAX8 has been reported to be associated with both
HF and CKD. GATM was previously reported to be associ-
ated with CKD, while other genes were determined as novel
pleiotropic genes. These common genes are summarized in
Table 2.

3.4. Functional Enrichment Analysis and PPI Network
Conduction. To explore the potential functional significance
of the identified genes, we conducted GO enrichment analysis
and KEGG analysis to reveal the biological functions and
involved pathways of these pleiotropic genes. What the top
five GO biological process terms identified from 169 pleiotro-
pic genes and 21 potential pleiotropic therapeutic targets of
SGLT2 inhibitors associated with HF and CKD were response
to temperature stimulus (GO:0009266), positive regulation of
microtubule nucleation (GO:0090063), regulation of microtu-
bule nucleation (GO:0010968), response to heat

(GO:0009408), and phagosome acidification (GO:0090383).
Biological process dot plot of the top 10 GO terms of 169 puta-
tive pleiotropic genes is presented in Figure 5. And for KEGG
analysis, the top five descriptions were prostate cancer
(hsa05215), the insulin signaling pathway (hsa04910), small-
cell lung cancer (hsa05222), the adipocytokine signaling path-
way (hsa04920), and the glucagon signaling pathway
(hsa04922). Other pathways confirmed to be associated with
HF and CKDwere also identified, such as the AMPK signaling
pathway (hsa04152) and the apelin signaling pathway
(hsa04371). The top twenty pathways are drawn in Figure 6.
We also conducted a PPI network to determine the interaction
of the proteins encoded by these pleiotropic genes, consisting
of 183 nodes and 202 edges. The average node degree was
2.21 (Figure 7).
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4. Discussion

In this study, we used two independent GWAS meta-
analyses with available summary statistics of HF and CKD
to perform the multivariate pleiotropic mapping. Potential
therapeutic targets of SGLT2 inhibitors shared by HF and
CKD were determined by the intersection of genes in
metaCCA and SGLT2 inhibitors’ related target analysis. Fur-
thermore, genes determined by metaCCA have then
obtained a verification using VEGAS2 analysis and TWAS
analysis. We finally identified a total of 21 potential thera-
peutic targets and 169 putative pleiotropic genes. Moreover,
we performed the functional enrichment analysis based on
these results. In KEGG analysis based on putative pleiotropic
genes and potential therapeutic targets, we identified several
pleiotropic pathways that have been confirmed to be shared
by HF and CKD, which may also play an important role in
the SGLT2 inhibitors pharmacological mechanism. The
result of functional enrichment provided us with a better
understanding of the potential common biological patho-
genesis of HF and CKD.

Seven out of the twenty-one therapeutic targets have
been reported to be associated with both HF and CKD. In
the remaining genes, only GRIK1, FDFT1, and PFKFB3
were first reported to be therapeutic targets of HF and
CKD. Previous studies have demonstrated therapeutic
mechanisms for some potential pleiotropic therapeutic tar-

gets of HF and CKD identified by metaCCA and SGLT2 tar-
get prediction. For example, sodium-glucose cotransporter
SGLT1 (also known as SLC5A1) accounts for most of the
dietary glucose uptake [37]. SLC5A1 inhibition can protect
against myocardial infarction-induced ventricular remodel-
ing and heart failure in mice by replenishing ATP stores in
ischemic cardiac tissues by enhancing glucose availability
[38]. In an epigenome-wide association study of DNA meth-
ylation associated with kidney function, Chu et al. found
that the regions containing the 243 eGFR-associated CpGs
are significantly enriched for transcription factor binding
sites of EP300 [39]. And Witt et al. found a linear correlation
between EP300 antisense RNA1 and left ventricular ejection
fractions (LVEF) [40]. However, since EP300 has yet been
fully studied in HF, it may be the next therapeutic target
worth exploring for SGLT2 inhibitors.

Among 169 putative pleiotropic genes, 100 genes are
identified as novel, while 26 genes have been reported to
be critical to HF or CKD etiology. For example, FTO is a
confirmed pleiotropic gene, which encodes an N6-
methyladenosine (m6A) RNA demethylase [41]. In addition,
the A allele of the FTO rs708259 polymorphism may be a
relevant genetic risk factor of CKD because it has been
proved to be an independent predictor of all-cause mortality
in patients with various severity of CKD [42]. As for
SLC39A8, this gene encodes the ZIP8 metal cation trans-
porter in all vertebrates. Olgar et al. found that the

Table 1: Potential therapeutic genes identified by metaCCA and SGLT2 target prediction.

Gene metaCCA P value Gene type—HF Gene type—CKD

SLC5A1 1:0000E − 315 Confirmed Confirmed

EP300 2:3025E − 109 Confirmed Confirmed

GRIK1 1:86359E − 100 Novel Novel

CYP2C9 3:54433E − 54 Confirmed Confirmed

IARS 6:39725E − 53 Novel Novel

ADORA3 4:84074E − 49 Confirmed Confirmed

DPP4 4:7235E − 46 Confirmed Confirmed

FDFT1 7:65889E − 41 Novel Novel

CHEK1 2:26504E − 21 Confirmed Novel

MANBA 4:53369E − 21 Novel Confirmed

HSP90AA1 2:65344E − 20 Confirmed Novel

MET 3:74765E − 20 Confirmed Novel

CASP7 2:8386E − 17 Confirmed Novel

GAK 1:09751E − 16 Novel Novel

DNMT1 1:63864E − 13 Confirmed Confirmed

SCN9A 5:92972E − 11 Confirmed Novel

JAK2 8:10834E − 11 Confirmed Confirmed

IKBKB 9:40369E − 11 Novel Confirmed

SLCO1B3 5:69126E − 10 Novel Confirmed

PFKFB3 8:00898E − 10 Confirmed Novel

GLB1 1:61052E − 09 Novel Novel

Confirmed: this gene was previously reported to be associated with disease. Novel: this gene had never been reported to be associated with HF or CKD.
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expressions of ZIP14 and ZIP8 were significantly increased,
while the level of ZIP8 decreased in HF [43]. In CKD, iron
deposition is associated with increased intensity of iron
importers (ZIP14 and ZIP8), indicating that the result from
altered molecular iron handling may contribute to renal
injury [44]. Compared to previous studies, we integrated
multitrait and multiomic analyses to determine putative
pleiotropic genes rather than validate with only genome
data. By taking gene expression of specific tissues into
account, several genes with relative insignificance of

metaCCA are more worthy of exploration. PAX8 and
GATM are such two genes which have been reported to be
associated with CKD overlapped in metaCCA, CKD-TWAS,
and CKD-VEGAS2 analyses needed to be further explored
the association with HF [45, 46].

Several confirmed pleiotropic pathways shared by HF
and CKD were also detected by enrichment analysis, includ-
ing the insulin signaling pathway, the AMPK signaling path-
way, and the apelin signaling pathway. These pathways may
also play an important role in the SGLT2 inhibitors’
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Table 2: Common pleiotropic genes identified by TWAS, metaCCA, and VEGAS2.

Gene chr metaCCA·P HF-VEGAS2·P CKD-VEGAS2·P HF-TWAS·P CKD-TWAS·P Gene type

POM121C chr7 1:50E − 11 7:09E − 04 5:68E − 01 4:55E − 02 8:27E − 01 Novel

NPC1 chr18 8:76E − 270 9:00E − 06 5:10E − 02 9:87E − 01 9:86E − 01 Novel

GGNBP2 chr17 6:17E − 68 3:92E − 02 1:00E − 06 6:85E − 01 3:15E − 02 Novel

L3MBTL3 chr6 3:29E − 25 7:37E − 02 1:23E − 04 5:45E − 01 1:47E − 02 Novel

GATM chr15 3:75E − 09 3:04E − 01 1:00E − 06 8:38E − 01 7:77E − 07 Potential

GAB2 chr11 6:41E − 10 8:56E − 01 1:80E − 05 — 4:61E − 02 Novel

ALMS1P chr2 4:63E − 11 1:56E − 01 1:13E − 04 8:20E − 01 7:03E − 04 Novel

PAX8 chr2 5:59E − 19 6:58E − 01 3:80E − 05 8:98E − 01 2:48E − 02 Potential

FTO chr16 7:55E − 147 8:80E − 05 9:80E − 04 9:12E − 01 2:68E − 01 Confirmed

SLC39A8 chr4 1:29E − 27 5:78E − 03 4:43E − 03 6:33E − 01 7:88E − 01 Confirmed

CRTC1 chr19 1:21E − 08 7:44E − 03 9:50E − 03 — — Novel

Confirmed: this gene was previously reported to be associated with two diseases. Potential: this gene had been reported to be associated with only one disease
of HF or CKD. Novel: this gene had never been reported to be associated with HF or CKD.
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pharmacological mechanism. Activation of the proximal
insulin signaling pathways within cardiomyocytes increases
when HF may contribute to adverse left ventricular remod-
eling and mitochondrial dysfunction [47]. Insulin resistance
and acquired defects in the insulin-receptor signaling path-
way are common in CKD patients due to their complex met-
abolic abnormalities [48].

Adenosine 5′-monophosphate- (AMP-) activated pro-
tein kinase (AMPK) is a critical molecule in the regulation
of bioenergy metabolism [49]. It is the core of researches
on diabetes and other metabolism-related diseases such as
HF and CKD [50, 51]. Dapagliflozin can increase the P-
AMPK/total-AMPK ratio in the type 2 diabetic mice, atten-
uating the activation of the inflammasome, fibrosis, and
deterioration of left ventricular ejection fractions [52]. Since
dapagliflozin has been proved by FAD for the therapy of
CKD patients, the function of the AMPK signaling pathway
between SGLT2 inhibitors and CKD needs further investiga-
tion. The apelin signaling pathway is common in HF and
CKD [53, 54]. Apelin abnormalities enhance the progressive

impairment of myocardial contractility and systolic dysfunc-
tion, and loss of apelin contributes to HF in response to
pressure overload [55]. Apelin/APJ system has been
reported to alleviate CKD by inhibiting vascular calcifica-
tion [56].

Two original GWAS included cohorts with either a case-
control or population-based study design regardless of the
etiologies of HF or CKD. Although HF and CKD are com-
plex clinical syndromes with various etiologies, the result
of this study cannot be specific to any type of HF or CKD.
However, the strong correlation between these pathways
with HF and CKD proves the reliability and popularity of
our results.

To our knowledge, this study is the first study using
the metaCCA method to identify shared risk genes and
therapeutic targets of SGLT2 inhibitors associated with
HF and CKD by effectively incorporating information
from different GWAS datasets. Learning pleiotropic genes
and their effects is essential. Compared to the animal
experiments or one-trait GWAS, there are some
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Figure 5: Biological process dot plot of the top 10 GO terms of 169 putative pleiotropic genes and 21 potential pleiotropic therapeutic
targets for SGLT2 inhibitors.
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advantages of our study. Firstly, the statistical power of the
present study is higher than previous studies by integrat-
ing two large-scale GWAS summary statistics, which pro-
vided an increase in effective sample size up to 1
million. Secondly, the metaCCA method used published
GWAS data, which does not require sequencing at the
individual level, so it is a cost-effective method. Finally,
with the help of the principle of the multitrait and multio-
mics, our study not only considered the internal correla-
tion between genotypes but also the correlation between

HF and CKD phenotypes [57]. Using the correlation
between multivariate phenotypic variables, the strategy of
extracting similar principal component factors from multi-
variate phenotypic variables for correlation analysis is an
effective method to identify rare variations in complex dis-
eases [58]. Thus, this study not only verified pleiotropic
genes with higher statistic power existing in HF and
CKD but also detected novel pleiotropic genes.

In the meantime, there are some limitations of this
study. First of all, metaCCA mainly relies on statistical
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Figure 6: KEGG dot plot of the top 20 pathways enrichment of 169 putative pleiotropic genes and 21 potential pleiotropic therapeutic
targets for SGLT2 inhibitors.
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analysis, in which false positive results may occur. However,
this may be addressed through the utilization of VEGAS2
analysis for validation of pleiotropic genes identified by
metaCCA. It is still easy to have a particular SNP strongly
correlated with multiple phenotypes making the gene or
pathway in which the SNP is located meaningful [59]. Sec-
ondly, metaCCA integrates different GWAS summary statis-
tics into one, so the processing of factors may be different.
GWAS summary statistics without the genotype data at the
individual level limit us to determine the proportions of var-
iability explained by the genes [25]. Thirdly, those novel
therapeutic targets of SGLT2 were predicated based on
online tools, which require further experimental evidence.
Lastly, other gene-level statistical methods or multivariate

statistical methods or further experimental studies are
needed to screen the results of metaCCA and confirm the
novel findings.

Our study performed a multivariate analysis by inte-
grating VEGAS2 and TWAS to detect 169 pleiotropic
genes. Moreover, we detected 21 therapeutic targets of
SGLT2 that are associated with HF and CKD by integrat-
ing metaCCA and SGLT2 inhibitors’ target prediction. In
addition, we also illustrated the potential biological func-
tions of these pleiotropic genes and therapeutic targets.
Our results may provide novel insights into the shared
genetic factors in the development of HF and CKD and
common therapeutic targets of SGLT2 inhibitors shared
by HF and CKD.

Figure 7: PPI network of 169 putative pleiotropic genes and 21 potential pleiotropic therapeutic targets for SGLT2 inhibitors.
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metaCCA: Summary statistics-based multivariate meta-
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