Table 3. AUC of Validation Results by DeepSnap-DL.
learning rate | max. epoch | 145° | 105° | 85° | 65° |
---|---|---|---|---|---|
0.001 | 15 | 0.812 | 0.779 | 0.799 | 0.500 |
30 | 0.771 | 0.787 | 0.798 | 0.500 | |
60 | 0.500 | 0.789 | 0.500 | 0.820 | |
100 | 0.500 | 0.791 | 0.500 | 0.788 | |
300 | 0.818 | 0.777 | 0.500 | 0.782 | |
0.0001 | 15 | 0.850 | 0.793 | 0.809 | 0.790 |
30 | 0.831 | 0.803 | 0.797 | 0.770 | |
60 | 0.801 | 0.840 | 0.817 | 0.791 | |
100 | 0.801 | 0.813 | 0.806 | 0.791 | |
300 | 0.814 | 0.820 | 0.842 | 0.802 | |
0.00001 | 15 | 0.879 | 0.882 | 0.873 | 0.831 |
30 | 0.887 | 0.868 | 0.833 | 0.837 | |
60 | 0.879 | 0.824 | 0.830 | 0.860 | |
100 | 0.868 | 0.841 | 0.839 | 0.855 | |
300 | 0.867 | 0.848 | 0.837 | 0.857 | |
0.000001 | 15 | 0.740 | 0.851 | 0.864 | 0.875 |
30 | 0.847 | 0.870 | 0.883 | 0.844 | |
60 | 0.867 | 0.884 | 0.893 | 0.887 | |
100 | 0.877 | 0.889 | 0.893 | 0.879 | |
300 | 0.897 | 0.897 | 0.891 | 0.863 | |
0.0000001 | 15 | 0.644 | 0.625 | 0.670 | 0.701 |
30 | 0.650 | 0.661 | 0.728 | 0.820 | |
60 | 0.666 | 0.729 | 0.828 | 0.856 | |
100 | 0.689 | 0.826 | 0.850 | 0.871 | |
300 | 0.844 | 0.869 | 0.883 | 0.844 |