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Purpose: Artificial intelligence (AI) deep learning (DL) has been shown to have signifi-
cant potential for eye disease detection and screening on retinal photographs in differ-
ent clinical settings, particular in primary care. However, an automated pre-diagnosis
image assessment is essential to streamline the application of the developed AI-DL
algorithms. In this study, we developed and validated a DL-based pre-diagnosis assess-
ment module for retinal photographs, targeting image quality (gradable vs. ungrad-
able), field of view (macula-centered vs. optic-disc-centered), and laterality of the eye
(right vs. left).

Methods: A total of 21,348 retinal photographs from 1914 subjects from various clini-
cal settings in Hong Kong, Singapore, and the United Kingdom were used for training,
internal validation, and external testing for the DLmodule, developed by two DL-based
algorithms (EfficientNet-B0 and MobileNet-V2).

Results: For image-quality assessment, the pre-diagnosis module achieved area under
the receiver operating characteristic curve (AUROC) values of 0.975, 0.999, and 0.987 in
the internal validation dataset and the two external testing datasets, respectively. For
field-of-view assessment, themodule had an AUROC value of 1.000 in all of the datasets.
For laterality-of-the-eye assessment, themodule had AUROC values of 1.000, 0.999, and
0.985 in the internal validation dataset and the two external testing datasets, respec-
tively.

Conclusions: Our study showed that this three-in-one DL module for assessing image
quality, field of view, and laterality of the eye of retinal photographs achieved excellent
performance and generalizability across different centers and ethnicities.

Translational Relevance: The proposed DL-based pre-diagnosis module realized
accurate and automated assessments of image quality, field of view, and laterality of
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the eye of retinal photographs, which could be further integrated into AI-basedmodels
to improve operational flow for enhancing disease screening and diagnosis.

Introduction

Artificial intelligence (AI) deep learning (DL)
algorithms developed for retinal photographs have
shown highly accurate detection and diagnosis of
major eye diseases (e.g., diabetic retinopathy,1–6 age-
related macular degeneration,7–9 glaucoma10–12),
measurement of retinal vessel caliber,13 retinal vessel
segmentation,14,15 and even estimation of cardiovascu-
lar risk factors.16–18 As such, integratingDLalgorithms
into real-time clinical workflow is a priority to realize
the significant potential of AI for clinical diagnosis
and disease risk stratification.3,19–21 However, although
individualDL algorithms have shown promising results
in laboratory and research settings, the performance
of many of these DL algorithms in real-world clinical
settings requires further evaluation.18

A major challenge is that retinal photographs
captured from real-world clinical settings may have
lower quality than the retinal photographs carefully
curated and used specifically in the developments
of DL algorithms,3,22–24 Thus, the performance of
such DL algorithms is less reliable when applied
clinically.3,24 For example, Abràmoff et al.3 reported
that, although their DL algorithm achieved sensi-
tivity of 97% in a retrospective dataset under a
laboratory setting, the performance dropped to 87.2%
in a prospective study conducted in a primary-care
setting. In another prospective study conducted by
Beede et al.,24 about 21% of retinal photographs
were unsuitable for DL-based diabetic retinopathy
screening because of low image quality. These were
likely due to the exclusion of low-quality retinal
photographs when training DL algorithms for eye
disease diagnosis.6,25–28 As such, application of these
algorithms in real-world clinical settings would require
the exclusion of retinal photographs of low image
quality to prevent deterioration of diagnostic perfor-
mance.29–32 In addition to image-quality assessment,
DL can further provide other useful information such
as field of view and laterality of the eye before disease
diagnosis by subsequent DL processing algorithms.
For example, DL algorithms developed for optic disc
diseases (e.g., papilledema, glaucoma) should focus
on optic-disc-centered retinal photographs, as the
algorithm may work less well for macula-centered
retinal photographs.12,33,34 Indeed, previous studies
have developed algorithms for pre-diagnosis assess-

ments with satisfactory results, but these were largely
trained and tested on datasets from a single study
population,29,35–40 whereas others developed from
multiple cohorts have not undergone external testing
by independent datasets.35–38

To address these gaps, we developed a three-
in-one, DL-based pre-diagnosis module for retinal
photographs to assess three tasks (i.e., image quality,
field of view, and laterality of the eye) simultaneously.
We further tested the module in two external unseen
datasets to evaluate the generalizability. This module
offers a useful prior application for a range of AI-DL
algorithms for eye disease detection and other related
tasks.

Materials and Methods

This study adhered to the tenets of the Declara-
tion of Helsinki, and the protocols were approved by
the institutional review board of the Chinese Univer-
sity of HongKong (CUHK), HongKong; theHospital
Authority Kowloon Central Cluster and New Territo-
ries East Cluster, Hong Kong; the National Healthcare
Group Domain-Specific Review Board, Singapore;
and Queen’s University Belfast, United Kingdom.
Informed consent was waived based on the retrospec-
tive design of the study, anonymized dataset of retinal
photographs, minimal risk, and confidentiality protec-
tions.

Data Collection

A total of 21,348 retinal photographs from 1914
patients, composed of primary and external datasets,
were used in this study. Table 1 summarizes the number
of retinal photographs, number of eyes, number of
subjects, image format, image size, and retinal camera
used, as well as age, gender, ethnicity, and pharmaco-
logical pupil dilation of the subjects. For training and
internal validation (primary dataset), we collected and
used retrospective datasets from the Study of Novel
Retinal Imaging Biomarkers for Cognitive Decline and
the CUHKhealthy volunteer cohort recruited from the
CUHK Eye Center, Hong Kong (Internal-1), as well
as a cohort study recruited from the memory clinic at
the National University Hospital, Singapore (Internal-
2).41,42 For external testing, we used unseen datasets
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Figure 1. Ground-truth labeling and the data distribution of the primary and external datasets.

from the parental cohort of the Hong Kong Children
Eye Study, Hong Kong43 (External-1) and from the
Study of the Prevalence of Age-Related Macular
Degeneration in Alzheimer’s Disease, the Queen’s
University Belfast, United Kingdom (External-2).44

Ground Truth Labeling

Each retinal photograph was labeled for three classi-
fications: (1) image quality, (2) field of view, and (3)
laterality of the eye. Image quality was assessed first.
Only gradable retinal photographs underwent subse-
quent field-of-view and laterality-of-the-eye assess-
ments. Three trained human graders (graders 1, 2, and
3) labeled the retinal photographs as “ground-truth” at
the CUHKOphthalmic Reading Center. Grader 1 was
an ophthalmologist with more than 5 years in ocular
imaging, and graders 2 and 3 were well-trained medical
students with basic knowledge in retinal fundus exami-
nation. All graders underwent a reliability test for
the image-quality assessment using a separate dataset
consisting of 157 gradable and 42 ungradable retinal
photographs, respectively. The inter-grader reliability
was high, with Cohen’s kappa coefficients ranging from
0.868 to 0.925. Grader 1, as the senior grader, made
final decisions on retinal photographs for which grader
2 and grader 3 could not make decisions (e.g., retinal
photographs with borderline quality).

We used the following definitions for the ground-
truth labeling, and Figure 1 shows the process and
numbers for each category. For the image-quality
assessment, each retinal photograph was classified as
gradable or ungradable. A gradable retinal photograph
had to fulfill both of the following criteria: (1) less
than 25% peripheral area of the retina was unobserv-
able due to artifacts, including the presence of foreign
objects, out-of-focus imaging, blurring, and extreme

illumination conditions45; and (2) the center region
of the retina had no significant artifacts that would
affect analysis. The center region was defined as the
circular region of radius (in pixels) with the largest
integer not greater than one-tenth the width of the
image at the center of the image (the green circle
in Figs. 2a and 2b), whereas the remaining area of
the retinal photograph was considered the periph-
eral area. Figure 2a also shows examples of gradable
and ungradable retinal photographs. For the field-
of-view assessment, all gradable retinal photographs
were further classified as (1) macula-centered, a retinal
photograph with the fovea in the center region; (2)
optic-disc-centered, a retinal photographwith the optic
disc in the center region; or (3) off-centered, a retinal
photograph with neither the fovea nor the optic disc in
the center region. Examples of macula-centered, optic-
disc-centered, and off-centered retinal photographs can
be found in Figure 2b. For the laterality-of-the-eye
assessment, all gradable macula-centered and optic-
disc-centered retinal photographs were further classi-
fied as (1) right-eye, a retinal photograph with the
optic disc on the right of the macula; or (2) left-eye,
a retinal photograph with the optic disc on the left of
the macula.

Development of the Pre-Diagnosis Module

The pre-diagnosis module consists of one pre-
processing model, with three additional models for
classification tasks. As different retinal cameras
captured retinal photographs with different image
resolutions and degrees of view, image pre-processing
was first performed to normalize the inputs to similar
conditions. More details of image pre-processing,
data balancing, and augmentation can be found in
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Figure 2. (A) Examples of retinal photographs with different levels of image quality. A gradable retinal photograph had to fulfill both of
the following criteria: (1) less than 25% of the peripheral area of the retina was unobservable due to artifacts, and (2) the center region of
the retina had no significant artifacts. (a, b) Gradable and absence of any artifacts; (c) ungradable as more than 25% of the peripheral area
of the retina was unobservable due to the presence of eyelid; (d) ungradable due to presence of significant artifact in the center region.
(B) Example of retinal photographs with different fields of view. (a) Macula-centered; (b) optic-disc-centered; (c–e) off-centered. Horizontal
and vertical auxiliary lines were added to locate the center region of the retinal photograph, whichwas bounded by a green circle. The center
region of a retinal photograph is defined as the circular region of radius (in pixels) with the largest integer not greater than one-tenth the
width of the image at the center of the image. A green circle bounded the center region of the retinal photograph.

Supplementary Appendix S1. As tasks differ and
models tend to learn different features, we used
EfficientNet-B046 for the image-quality and the field-
of-view tasks and MobileNetV247 for the laterality-
of-the-eye task, aiming to make use of advantages in
different architectures.

The primary dataset included 14,422 retinal
photographs, 90% and 10% of which were used for
training and internal validation, respectively. All of
the retinal photographs were used to train the image-
quality assessment model. After excluding ungrad-

able retinal photographs and off-centered retinal
photographs, only gradable macula-centered and
optic-disc-centered retinal photographs were used to
train the DL algorithms for field-of-view and laterality-
of-the-eye assessments. The external datasets, including
2385 retinal photographs from External-1 and 4541
retinal photographs from External-2, respectively, were
additionally used to test the pre-diagnosis module.

We further proposed a cloud-basedweb application,
integrating the whole process of data pre-processing,
data analysis, and data output (Fig. 3). The application
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Figure 3. Sequence diagram of the pre-diagnosis module.

was composed under the service-oriented architec-
ture protocol, which facilitates ease of maintenance.
From the user perspective, no additional operation was
required apart from uploading retinal photographs for
pre-diagnosis assessment. Two videos, batch.mkv and
single.mkv demonstrating the use of this application
can be found in Supplementary Appendix S4.

Statistical Analysis

The statistical analyses were performed using
RStudio 1.1.463. We calculated the area under the
receiver operating characteristic curve (AUROC) with
a 95% confidence interval (CI) for each outcome. Sensi-
tivity, specificity, and accuracy were also reported at

a threshold with the highest Yuden’s index (Yuden’s
index = sensitivity + specificity – 1) to evaluate the
discriminative performance.48 Misclassification analy-
sis was also conducted based on this threshold.

Results

Table 2 shows the AUROC values, sensitivi-
ties, specificities, and accuracies of the pre-diagnosis
module in the internal validation and two exter-
nal testing datasets. In the image-quality assessment,
the pre-diagnosis module achieved AUROC values
of 0.975 (95% CI, 0.956–0.995), 0.999 (95% CI,

Table 2. Performance of the Pre-Diagnosis Module

Dataset AUROC (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI) Accuracy, % (95% CI)

Image quality
Internal validation 0.975 (0.956–0.995) 92.1 (88.2–95.5) 98.3 (91.5–100) 92.5 (89.0–95.6)
External-1 0.999 (0.999–1.000) 99.3 (98.9–99.7) 100 (100–100) 99.3 (99.0–99.6)
External-2 0.987 (0.981–0.993) 95.0 (92.4–96.9) 96.4 (93.7–98.7) 95.1 (92.9–96.8)

Field of view
Internal validation 1.000 (1.000–1.000) 100 (100–100) 100 (100–100) 100 (100–100)
External-1 1.000 (1.000–1.000) 100 (100–100) 100 (100–100) 100 (100–100)
External-2 1.000 (1.000–1.000) 100 (99.8–100) 100 (99.9–100) 100 (99.9–100)

Eye laterality
Internal validation 1.000 (1.000–1.000) 100 (100–100) 100 (100–100) 100 (100–100)
External-1 0.999 (0.998–1.000) 99.7 (99.4–100) 99.7 (99.4–100) 99.7 (99.5–99.9)
External-2 0.985 (0.982–0.989) 94.0 (91.7–96.2) 95.8 (93.3–97.7) 94.8 (94.1–95.6)
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0.999–1.000), and 0.987 (95% CI, 0.981–0.993), respec-
tively. The sensitivities, specificities, and accuracies
were all higher than 92%. In the field-of-view assess-
ment, the pre-diagnosis module achieved AUROC
values of 1.000 (95% CI, 1.000–1.000) in all testing
datasets. The sensitivities, specificities, and accuracies
were all 100%. In the laterality-of-the-eye assessment,
the pre-diagnosis module achieved AUROC values of
1.000 (95% CI, 1.000–1.000), 0.999 (95% CI, 0.998–
1), and 0.985 (95% CI, 0.982–0.989), respectively. The
sensitivities, specificities, and accuracies were all higher
than 94%. More comparisons of this study and previ-
ous studies can be found in Supplementary Appendices
S2 and S4 (Supplementary Tables S1–S3). The numbers
and reasons for the misclassified cases are reported
in Supplementary Appendices S3 and S4 (Supple-
mentary Table S4). Examples of misclassified retinal
photographs are shown in SupplementaryAppendix S4
(Supplementary Figs. S1–S4).

Discussion

To the best of our knowledge, we are the first to
develop and test a three-in-oneDL-based pre-diagnosis
module for retinal photographs assessment. In either
internal validation or external testing, the pre-diagnosis
module provided highly reliable assessments of image
quality, field of view, and laterality of the eye. The
three assessments of this pre-diagnosis module offer
significant value in clinical practice. The image quality
of retinal photographs in real-world clinical settings
should be assessed, as those of inferior quality dimin-
ish the application of DL algorithms. Dodge et al.22
reported that existing DL algorithms were particularly
susceptible to blurring and noise. Yip et al.23 reported
that phakic lens status and cataract, with resultant
impact on media opacity and the image quality, would
reduce the specificity of DL algorithms. Therefore, it is
necessary for a pre-diagnosis module to screen retinal
photographs of poor image quality for subsequent
algorithm analyses.29–31 In clinical settings, it is impor-
tant to label the laterality of the eye to allow monitor-
ing the pathologies of each eye independently and
correlate them with the other eye of the same subject
for clinical decisions.49 Traditionally, the laterality of
the eye can be denoted by examination sequence (first
right eye and then left eye) or manual classification.
However, the former method lacks flexibility whereas
the latter method risks error and is time consum-
ing.50,51 In contrast to the laterality-of-the-eye assess-
ment, the field-of-view assessment by DL algorithm
is not frequently explored. To the best of our knowl-

edge, Bellemo et al.52 and Rim et al.53 are the only
two studies that have utilized a DL approach for field-
of-view assessment. The field-of-view assessment can
act as a triage to refer retinal photographs to suitable
algorithms for further diseases detection. For example,
optic-disc-centered retinal photographs can be referred
to algorithms that differentiate papilledema or glauco-
matous optic neuropathy, whereas macula-centered
retinal photographs can be referred to algorithms
that identify age-related macular degeneration.12,33,52
It is noted that AI algorithms may confuse the
bright appearance of the optic disc with other bright
lesions, such as exudates, which may otherwise affect
diagnostic accuracy of the AI algorisms for disease
classification.54 Therefore, an automated identifica-
tion of optic-disc-centered retinal photographs may be
useful.

Previous research efforts have attempted to develop
DL algorithms to assess image quality, field of view,
and laterality of the eye, many of which have provided
satisfactory results. However, there are certain limita-
tions in these studies. First, many studies have inves-
tigated individual assessments of image quality, field
of view, and laterality of the eye12,29,35,36,38,39,49,51,55–58
but have not incorporated them into a single complete
module. Developing individual DL algorithms for
each assessment can prove effectiveness but does
not align with the workflow of clinical practice—a
prerequisite for successful clinical implementation.20
It is also not practically feasible for users without
technical AI or software expertise to switch between
DL algorithms.21 Second, some DL algorithms have
been trained on datasets consisting of only a single
cohort,29,35–40 which increases the risk of selection
bias and reduces the DL model generalizability. For
example, the models of Chalakkal et al.29 were trained
on a dataset from a single cohort, and demonstrated
significant variation (>10%) in accuracy, sensitivity,
and specificity when tested on other datasets. Third,
some algorithmswere only evaluated by internal valida-
tion datasets,35–38 without testing by external indepen-
dent datasets. External datasets with variable and diver-
sified settings such as brands and models of retinal
cameras, image formats and sizes, provides additional
testing to AI algorithms to improve their robustness.59

Our three-in-one module has several strengths that
address the above limitations. First, to the best of our
knowledge, our study is the first to integrate assess-
ments of image quality, field of view, and laterality
of the eye into a single pre-diagnosis module. Second,
our study addresses the variability present in real-
world clinical settings by combining three different
cohorts in the training dataset. Apart from datasets
fromHongKong, a predominantly Chinese society, the
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training dataset also included subjects obtained from
Singapore, an ethnically diverse society of Chinese,
Malays, and Indians. In addition, subjects’ demograph-
ics, brands and models of retinal cameras, image
formats, image sizes, and prevalence of artifacts also
differ between these different cohorts. With the diver-
sity of the cohorts used in the training dataset, our
module has achieved an AUROC value of 1.000 in the
field-of-view assessment even when validated against
an external dataset of a predominantly Caucasian
population from the United Kingdom. In the image-
quality and laterality-of-the-eye assessments, the varia-
tions in AUROC values observed were very low (less
than 0.024).

Despite a reliable performance, a limitation of
our study was the exclusion of off-centered retinal
photographs from the primary training dataset for
assessments of the field of view and laterality of the eye.
Although gradable off-centered retinal photographs
could be used to assess laterality of the eye, the eventual
purpose of our proposed three-in-one, DL-based
pre-diagnosis module is for subsequent eye disease
detection based on macula-centered and optic-disc-
centered retinal photographs. Therefore, we excluded
all off-centered retinal photographs and designed
the DL algorithm for laterality-of-the-eye assessment
from macula-centered and optic-disc-centered retinal
photographs only. Another potential limitation was
that we used only retinal photographs with 45° and 50°
for training and testing in this study. Further research
is warranted to train and test models to assess retinal
photographs with different fields of view (i.e., different
degrees).

The three-in-one pre-diagnosis module has two
potential implementations in clinical practice. First,
this module can ensure the gradability of retinal
photographs by providing an immediate onsite assess-
ment of image quality (Supplementary Fig. S5). This
can allow retaking of retinal photographs, if neces-
sary, of subjects within the same visit and also
reduce the expertise required in collecting retinal
photographs. In addition, the automatic identification
of field of view and laterality of the eye can also
minimize mislabeling errors and provide more infor-
mation to facilitate diagnosis. Second, this module
can accommodate algorithm use for disease diagno-
sis by pre-screening and removing retinal photographs
with low image quality before algorithm-based disease
classification or other tasks are performed, such
as blood vessel segmentation, retinal vessel caliber
estimation, and cardiovascular risk factor predic-
tion. This DL-based pre-diagnosis screening module
will potentially facilitate a more widespread use of
AI algorithms in clinical practice to assist low-

cost disease screening and lead to improved disease
prevention.60

Conclusions

In conclusion, the proposed three-in-one pre-
diagnosis module achieved reliable and outstanding
performance with good generalizability to identify the
image quality, field of view, and laterality of the eye
of retinal photographs. The outcomes from this DL-
based pre-diagnosis module demonstrated the utility
for the screening and removal of low-quality retinal
photographs to improve the accuracy and efficiency of
image acquisition, which will potentially facilitate the
use of AI-based algorithms for further disease diagno-
sis in clinical settings.
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