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A higher bacterial inward BCAA transport 
driven by Faecalibacterium prausnitzii 
is associated with lower serum levels of BCAA 
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Abstract 

Background:  Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity 
and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism 
contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. 
Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in 
this way to insulin resistance.

Methods:  Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10–12 years 
old) and amino acid targeted metabolomics analysis was performed by LC–MS/MS in serum samples. By using the 
HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contrib‑
uted to serum BCAA levels and insulin resistance markers.

Results:  We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively 
correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly,  Faecalibacterium prausnitzii contributed to 
approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance 
was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, 
sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over 
an extended data set (N = 124).

Conclusions:  We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium 
prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that 
the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.
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Background
A high level of the branched-chain amino acids (BCAAs) 
leucine, isoleucine and valine has been viewed as a strong 
biomarker of obesity and insulin resistance in numerous 
studies, including adults and children (Fan and Pedersen 
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2021; Zhou et al. 2019) and is thought to be part of type 2 
diabetes pathogenesis. Thus, accumulating evidence have 
focused on them as potential targets to improve insulin 
resistance and associated conditions (White and New-
gard 2019).

The pathophysiology behind the elevated levels of 
BCAA is still controversial. On one hand, it has been 
show that BCAA catabolism in adipose tissue and liver is 
impaired in obesity and insulin resistance thus account-
ing for the increased circulating levels (Zhou et al. 2019). 
In addition, BCAA being essential amino acids are 
mainly obtained through the diet; however, its contribu-
tion to circulating levels is not clear. For instance, a cou-
ple of interventional studies have shown that a protein 
restricted or BCAA restricted diet can decrease circulat-
ing levels of these amino acids and improve insulin resist-
ance markers (Fontana et al. 2016; Karusheva et al. 2019). 
In contrast, cross-sectional studies have shown that the 
amount or source of protein intake contributes only in 
a small percentage to circulating BCAA, suggesting that 
dietary intake of BCAA might not be the main variable 
affecting plasma levels of these amino acids (Jennings 
et al. 2016; Merz et al. 2018; Rousseau et al. 2019). Finally, 
a few studies in humans and animal models have shown 
that gut microbiota metabolism can contribute to BCAA 
synthesis, uptake and degradation and thus to its circu-
lating levels (Liu et  al. 2017, 2020; Pedersen et  al. 2016; 
Ridaura et  al. 2013). Particularly insulin resistant adults 
showed an increased potential to synthesize BCAA, 
which was largely driven by species such as Prevotella 
copri and Bacteroides vulgatus but a decreased potential 
for BCAA uptake and catabolism influenced by Butirivi-
brio crossotus and Eubacterium siraeum (Pedersen et al. 
2016). However additional studies are needed to define 
the contribution of bacterial metabolism to the circulat-
ing pool of these metabolites, as well as the species con-
tributing to these functions (White and Newgard 2019).

Gut microbiota structure and function has been shown 
to differ between adults and children (Hollister et  al. 
2015; Ringel-Kulka et  al. 2013). Furthermore, we and 
others have shown that gut microbiota of early adoles-
cents is still immature likely influencing its functionality 
(Moran-Ramos et al. 2020). However, fewer studies have 
explored the association of microbial metabolism to host 
circulating BCAA, in whom a different and immature gut 
microbiota, may yield different results (Radjabzadeh et al. 
2020). For instance, in a cohort of Dutch school-age chil-
dren a negative correlation between serum BCAA and 
the abundance of Bacteroides vulgatus, previously high-
lighted for its role in BCAA amino acid synthesis, was 
observed (Zhong et  al. 2019), suggesting that the par-
ticular species contributing the bacterial metabolism of 
BCAA may vary among populations and/or life stages.

We have previously showed that circulating BCAA as 
part of an amino acid signature are associated with obe-
sity, insulin resistance and higher serum triglycerides lev-
els in Mexican children, without association with total 
dietary protein intake (Moran-Ramos et al. 2017). Thus, 
the aim of this work was to evaluate whether in early ado-
lescents gut microbial metabolism contributes to circu-
lating BCAA and its relation to insulin resistance.

Materials and methods
Study participants
This study was embedded in the “Obesity Research Study 
for Mexican Children” (ORSMEC), which is a popula-
tion-based study in Mexico City including 6–12-year-old 
children recruited from a summer camp of children of 
employees of the Mexican Health Ministry (Convivencia 
Infantil, Sindicato de la Secretaria de Salud) and Hospi-
tal Infantil de Mexico. All children included reported no 
previous history of chronic medical illness, such as type 
1 or type 2 diabetes, cancer or gastrointestinal diseases. 
Parents or guardians of each child signed the informed 
consent form and children assented to participate.

This study includes a subset of 23 children in the 
metagenomics analysis and 124 children for the rep-
lication analysis (extended dataset). All children were 
within the early adolescence stage (10–12  years old), 
provided a fecal sample and had no antibiotic use within 
the previous 3  months of sample collection. As previ-
ously described each participant was thoroughly assessed 
including demographic information and health-related 
phenotyped, via a self-administered questionnaire to 
the parents (including information about clinical his-
tory, current health status, and drug treatment) as well 
as a health assessment and extended clinical blood profil-
ing included metabolomics. Microbiota of fecal samples 
from these children was previously characterized by 16S 
sequencing (Moran-Ramos et al. 2020).

For the validation analysis individuals were selected 
based on the original study design; age between 10 and 
12 years old.

Anthropometric and clinical parameters
Anthropometric measurements were determined as pre-
viously described (34) and included weight, height, waist 
and hip circumferences. Blood pressure (BP; mmHg) was 
measured using an automatic manometer (Microlife). 
Body fat mass percentage was obtained by bioelectri-
cal impedance analysis (Quantum X Body Composition 
Analyzer, RJL Systems). Centers for Disease Control and 
Prevention 2000 growth charts were used as reference to 
determine body mass index (BMI) percentiles. Obesity 
status was defined as BMI percentile ≥ 95th, overweight 
between 85 and 95th percentile and normal-weight 
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between the 5th and 85th percentile (Barlow and Expert 
2007). National Heart, Lung, and Blood Institute refer-
ence data were used to determine BP percentiles based 
on height, age and gender (National High Blood Pressure 
Education Program Works Group on High Blood Pres-
sure in C, Adolescents 2004). Metabolic syndrome was 
defined as established by De Ferranti (2004), with 3 or 
more of the following characteristics TG ≥ 100  mg/dL, 
HDL < 50  mg/dL, at least one of the BP percentiles > 90, 
glucose ≥ 110  mg/dL and waist circumference > 75th 
percentile.

Blood sampling and biochemical analyses
Five mL blood samples were drawn after 8–12 h of fast-
ing. For serum samples a 30-min period was allowed 
for clotting before serum separation and then stored at 
− 80 °C until further analysis. Serum levels of glucose, 
creatinine, uric acid, total cholesterol, HDL cholesterol, 
LDL cholesterol, TG, aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), gamma glutamyl trans-
peptidase (GGT) and C-reactive protein (CRP) were 
measured with commercially available standardized 
methods (UNICEL DxC600, Beckman coulter). Insulin 
was determined using an Access 2 Immunoassay System 
(Beckman coulter). Insulin resistance was indirectly esti-
mated with the homeostasis model assessment for insulin 
resistance (HOMA-IR) and calculated as ((fasting glu-
cose (mg/dL) × fasting insulin (µU/mL))/405).

Stool sampling and DNA extraction
Fecal samples were collected at home in a sterile cup, 
and refrigerated overnight prior to storage at − 70 °C 
until processing. DNA was extracted using the QIAamp® 
DNA Stool Mini Kit (Qiagen, Inc.), and stored at − 70 °C 
until further analysis. Concentrations of extracted DNA 
from each sample were determined by spectrophotom-
etry (Nanodrop 2000c) measurement, and an estimate of 
sample purity was determined by measuring the A260/
A280 absorbance ratio.

Microbiome taxonomic and functional potential profiling
The protocol for gut microbiota profiling by 16S sequenc-
ing was previously published (Moran-Ramos et al. 2020). 
Briefly the V4 hypervariable region was amplified using 
515F and 806R primers, and the resulting libraries were 
sequenced using an Illumina MiSeq 2 × 250 platform. 
Sequences were analyzed using QIIME 1.9.0. Quality 
filters were used to remove sequences containing bar-
code mismatches, ambiguous bases, or low-quality reads 
(Phred quality score < 30). Operational taxonomic unit 
(OTU) read counts were calculated using the QIIME 
pipeline (75) (version 1.9.1; default parameters) with 
closed-reference OTU picking at 97% identity against the 

Greengenes database (version 13_08). Taxonomical clas-
sification was performed to generate phylum to genus 
level composition matrices.

For whole-genome shot-gun sequencing, 100  ng of 
DNA were used for the library preparation using the 
TruSeq DNA Nano protocol according to manufactur-
er’s instructions (Illumina Inc, San Diego, U.S.A.). Pair-
end DNA sequencing (2 × 150) was performed on the 
Nextseq 500 Illumina platform. Raw Fastq files (average 
21,076,621 reads per sample) were assessed for quality 
using Trimomatic, trimming adaptor reads and regions 
of quality below a Phred score of 33. The human reads 
(according to alignment to hg19, using BMTagger) or 
low-quality sequences were discarded.

Functional potential analysis was performed using 
HUMAnN2 (UniRef90 database), which computed the 
pathway profiles and gene family abundances, using 
ChocoPhlAn and UniRef90 databases (Franzosa et  al. 
2018). Differences in sequencing depth between samples 
were normalized in copies per million. To investigate the 
metabolic potential of the gut microbiome in relation 
to BCAA we used KEGG functional modules. Specifi-
cally, we manually searched for KEGG orthologous gene 
groups included in biosynthesis and inward transport 
pathways of theses amino acids from the KEGG database 
(Pedersen et al. 2016).

The taxonomic profiling and quantification of organ-
isms’ relative abundances were quantified using Met-
aPhlAn2 (Segata et  al. 2012) as this software has been 
shown to have higher precision than other read classifiers 
(Sczyrba et al. 2017).

Metabolomic analysis
Serum amino acids were measured by a targeted metabo-
lomics approach using electrospray tandem mass spec-
trometry (Quattro Micro API tandem MS), as previously 
described (Moran-Ramos et  al. 2017). Leucine/isoleu-
cine is reported as a single analysis because they are not 
resolved by our MS/MS method. Short-chain-fatty acids 
(SCFA) content in fecal samples were analyzed by gas 
chromatography (Agilent technologies-6850 series 11, 
Agilent, Santa Clara, CA, USA) with flame ionization 
detection (Agilent) and using Agilent J&W DB-225  ms 
column as previously described (Syeda et al. 2018).

Statistical analysis
Statistical analysis was carried out using SPSS and R 
version 3.5.1. Continuous variables were presented as 
median and interquartile range (IQR) and compared 
using Kruskal–Wallis, while categorical variables were 
summarized as proportions and compared by Fisher’s 
exact test.
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For functional profiles, we considered abundance of 
single microbial gene families and then normalized to 
counts per million (CPMs) to account for differences in 
sequencing depths, as provided by HUMAnN2. To esti-
mate the linear correlations between gene abundance 
and metabolites or metabolic traits, we performed par-
tial Spearman’s rank correlation analyses in R using ppcor 
package and controlling for age and sex, and when indi-
cated for other confounding variables (i.e. body fat per-
centage, alpha diversity indices). P values were corrected 
for multiple testing using the Benjamini–Hochberg 
method as implemented in the p.adjust function in R 
(Benjamini and Hochberg 1995). Significance levels were 
defined at FDR < 5%.

For taxonomic abundances, we used the species-level 
relative abundances as estimated by MetaPhlAn v.2.0 
(Segata et  al. 2012). To determine taxa association with 
BCAA and metabolic traits, either partial Spearman’s 
correlations were calculated or the normalized abun-
dance using the arcsine square-root transformation 
was used in linear regression models. In multiple linear 
regression models, taxa were used as explanatory vari-
ables. All models were controlled for age and sex, and 
when indicated for body fat percentage.

Finally, for replication analysis over the extended data-
set, partial Spearman’s correlation coefficients were cal-
culated to analyze bivariate relationships between 16S 
based taxonomy, serum BCAA and indicators of insulin 
resistance such as insulin, HOMA-IR and TG/HDL ratio 
(Giannini et al. 2011). Given that some subjects had miss-
ing values for body adiposity, correlations were controlled 
for age, sex, and when indicated for BMI percentile.

Results
Description of study population
For our fecal metagenomic analysis we included 23 early 
adolescents (9 boys and 14 girls) with a median age of 
11.7 (IQR 10.7–12.20 years). Seven were normal-weight, 
8 overweight and 8 with obesity. In addition, out of the 16 
children who were overweight/obese, half of them (n = 8) 
presented metabolic syndrome. Clinical and anthropo-
metric characteristics of the included individuals are 
summarized in Table 1. Body fat percentage, biochemical 
parameters such as serum insulin, TG, HDL-C, and ALT 
levels as well as the HOMA-IR index were significantly 
different between normal-weight, overweight and obese 
children (Table 1). After adjusting for age and sex, higher 
serum levels of BCAA were significantly associated with 
greater body fat percentage (P = 3.48 × 10–4, Fig. 1A) and 
with higher HOMA-IR index (P = 1.98 × 10–3, Fig.  1B) 
and the latter association remained significant after fur-
ther adjusting for body fat (P = 0.026).

Contribution of gut bacterial metabolism to serum BCAA​
Gut microbiota is involved in the synthesis and uptake of 
BCAA, thus, we investigated the metabolic potential of 
the gut microbiome in relation to these metabolites using 
KEGG functional modules. In the gut metagenomes ana-
lyzed by the HUMANn2 algorithm, we identified 14 out 
of 17 gene families encoding the pathway for the biosyn-
thesis of leucine, valine and isoleucine (Additional file 1: 
Table 1). To study the association between the identified 
biosynthesis genes and serum levels of BCAA, we per-
formed partial spearman correlations. However, none of 
the correlations with individual or total BCAA were sig-
nificant, after adjusting for age and sex or after further 
adjustment for body adiposity (Fig. 2A).

We then searched for the bacterial genes involved in 
the inward bacterial transport of BCAA. We identified 
six gene families encoding two BCAA transporters: the 
high affinity LIV-I/LS and the low affinity LIV-II (BrnQ) 
transporter (Additional file  1: Table  2). To determine 
whether the gene families were associated with circulat-
ing BCAA we calculated Spearman correlation coeffi-
cients controlling for age and sex. As shown in Fig.  2B, 
after correcting for multiple testing most of the transport 
genes from LIV-I system were negatively correlated with 
individual and total BCAA as well as with phenylalanine 
that is also a substrate transported by this system. After 
further controlling for body fat percentage, these correla-
tions remained significant for individual and total BCAA 
(FDR P < 0.05) and trended for phenylalanine (FDR 
P < 0.1). Abundance of the LIV-II transporter gene was 
also negatively correlated with serum levels of valine and 
remained significant after adjusting for body fat percent-
age (P < 0.05).

Given the relation between BCAA and insulin resist-
ance we then sought whether transporter genes were also 
associated with HOMA-IR (an insulin resistance marker). 
As observed in Fig.  2C, only the abundance of genes 
encoding the high affinity LIV-I/LS system were nega-
tively correlated with HOMA-IR and the correlations 
were still significant after adjusting for body fat percent-
age. To gain insight on whether the association between 
genes encoding de LIV-I/LS system and HOMA-IR was 
related to serum levels of BCAA, we adjusted the corre-
lation by the effect of total BCAA serum levels. Accord-
ingly, all correlations lost significance (P > 0.5, Additional 
file 1: Table 3).

One of the features of HUMAN2 is the ability to com-
pute gene family abundance stratified by bacterial spe-
cies to assess per-organism contribution (Franzosa et al. 
2018). Thus, we then assessed which bacterial species 
were encoding the transport genes. The analysis showed 
that these genes were present in 42 out of 189 identified 
metagenomic species belonging mainly to the Firmicutes 
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phylum as well as to Enterobacteriaceae and Bifidobac-
teriaceae families (Fig.  3). Of the 42 bacterial species, 
only ten showed counts for the five necessary genes to 
encode the whole LIV-I/LS transport system and to func-
tionally mediate transport into the bacterial cytoplasm 
(Adams et al. 1990). Interestingly, 90% of the gene counts 
belonged only to two species; Faecalibacterium praus-
nitzii which accounted for 70–80% and Roseburia homi-
nis that contributed to 8–10% of the counts.

Correlation of metagenomic species with BCAA circulating 
levels and insulin resistance
Given that only two species encoded for the majority 
of uptake gene counts (~ 90%), we sought to determine 
if the abundance of these species were associated with 

BCAA circulating levels, body fat and insulin resistance. 
Faecalibacterium prausnitzii was present in all individu-
als and showed median abundance of 5.8%, while Rose-
buria hominis was present in 22/23 individuals but show 
a lower abundance (median = 0.13%). In a multivariate 
linear regression analysis, greater relative abundance 
of Faecalibacterium prausnitzii was associated with 
lower serum BCAA levels (P = 1.4 × 10–3, Fig.  4A). Fur-
thermore, Faecalibacterium prausnitzii abundance was 
also negatively correlated with serum insulin levels and 
HOMA-IR (P < 0.05), and as a trend with the TG/HDL 
ratio (P = 0.053; Fig.  4C). The former correlation was 
lost when adjusting for serum total BCAA (P > 0.3). On 
the other hand, greater abundance of Roseburia hominis 
was associated with a lower body fat percentage, insulin 

Table 1  Clinical and biochemical characteristics of the study population

Data are shown as medians (interquartile range) or n (%). P-value was obtained using Kruskal–Wallis test or Fisher’s exact test for categorical variables. Significant 
P-values are shown in bold

BMI body mass index, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol

Trait All subjects Normal-weight Overweight Obese P value
(n = 23) (n = 7) (n = 8) (n = 8)

Sex (male %) 9 (39.1) 3(42.9) 3(37.5) 3 (37.5) 0.971

Age (years) 11.7 (10.7–12.20) 11.9 (10.8–12.3) 11.9 (11.0–12.4) 10.8 (10.5–11-8) 0.122

Clinical

 Height percentile 67.1 (58.4–74.3) 65.6 (38.2–76.4) 73.8 (65.0–82.3) 60.1 (49.6–69.7) 0.078

 BMI percentile 92.0 (77.7–95.4) 59.0 (10.1–77.0) 91.6 (89.4–93.6) 96.3 (95.3–97.1) 5.6 × 10–5

 Body fat (% of BW) 40.2 (31.8–46.4) 28.6 (25.65–31.82) 40.1 (39.8–44.7) 47.6 (42.9–49.8) 2.1 × 10–4

 Systolic BP percentile 67.3 (30.5–80) 25.8 (22.2–35.7) 71.2 (39.4–81.3) 67.6 (63.0–85.9) 0.066

 Diastolic BP percentile 81.2 (63.2–89.9) 63.2 (53.5–82.6) 85.0 (74.3–92.5) 80.5 (68.1–91.5) 0.272

Biochemical

 Glucose (mg/dL) 89 (86–93) 89.0 (86.0–89.0) 89.5 (86.5–94.5) 89.0 (85.5–93.3) 0.866

 Insulin (µU/mL) 8.20 (5.80–13.5) 6.10 (4.40–7.10) 10.4 (6.2–14.4) 13.4 (8.08–27.2) 0.029
 HOMA IR 1.85 (1.26–3.12) 1.28 (0.93–1.58) 2.37 (1.36–3.14) 2.86 (1.79–6.09) 0.037
 CRP (mg/dL) 0.12 (0.03–0.33) 0.05 (0.01–0.29) 0.11 (0.03–0.28) 0.43 (0.07–0.96) 0.105

 Creatinine (mg/dL) 0.51 (0.49–0.56) 0.52 (0.45–0.56) 0.50 (0.48–0.56) 0.52 (0.50–0.58) 0.682

 Uric acid (mg/dL) 5.20 (4.50–6.20) 4.40 (3.70–5.40) 5.25 (4.83–6.03) 5.95 (5.20–6.55) 0.062

Lipids

 Triglycerides (mg/dL) 81.0 (62.0–112) 63.0 (41.0–66.0) 91.0 (69.0–138.3) 95.5 (66–133.75) 0.040
 Total cholesterol (mg/dL) 162 (142–177) 159 (135–177) 175 (144 -193) 161 (134–179) 0.769

 HDL-C (mg/dL) 44.0 (35–53) 53.0 (48.0–58.0) 43.0 (34.3–49.0) 38.0 (31.3–43.5) 0.006
 LDL-C (mg/dL) 97.5 (78.8–116) 94.0 (70.0–112) 101.5 (80.0 -125) 102 (78.0–126) 0.810

 TG to HDL ratio 1.88 (1.31–2.80) 1.18 (0.64–1.43) 2.11 (1.45–4.04) 2.35 (1.81–4.34) 0.009
Liver enzymes

 AST (UI/L) 27.0 (22.0–29.0) 27.0 (22.0–29.0) 22.0 (19.3–27.0) 30.0 (22.8–37.3) 0.056

 ALT (UI/L) 19.0 (15.0–35.0) 19.0 (15.0–22.0) 15.0 (14.0–16.8) 35.0 (26.0–44.5) 0.002
 GGT (UI/L) 14.0 (12.0–15.0) 12.0 (11.0–15.0) 13.5 (12.0–14.75) 14.5 (13.3–18.0) 0.134

Serum amino acids

 Leucine/Isoleucine (μM) 59.9 (50.8–67.0) 50.8 (47.7–55.5) 62.1 (53.4–65.5) 67.4 (61.7–75.1) 0.009
 Valine (μM) 69.7 (64.9–88.8) 61.8 (57.9–66.9) 72.5 (65.8–81.5) 94.9 (70.0–98.3) 0.005
 BCAA (μM) 127.5 (112.6–160.1) 111.4 (105.6–123.6) 134.3 (122.2–145.7) 164.5 (133.5–172.9) 0.004
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levels and HOMA-IR (P < 0.05, Fig. 4C). However, in the 
regression model the association with BCAA levels lost 
significance when adjusting for body adiposity (P = 0.26, 
Fig. 4B).

Among previously reported bacterial species for 
its contribution to circulating BCAA are Bacteroides 
vulgatus, Prevotella copri, Eubacterium siraeum and 
Butyrivibrio crossotus (Pedersen et al. 2016). Although 
in our sample, abundance of these species was detected, 
none of them showed a significant correlation with 
total BCAA levels (Fig. 4E).

Fig. 1  Association of total BCAA serum levels with the metabolic traits. A multiple linear regression models for the association between body fat 
percentage and serum levels of BCAA, adjusted for sex and age. B multiple linear regression models for the association between serum levels of 
BCAA and normalized values of HOMA IR, adjusted for sex and age

Fig. 2  Association of bacterial gene abundance with BCAA serum levels and HOMA-IR. A heat map of the partial Spearman’s rank correlation 
coefficient between genes involved in BCAA biosynthesis and serum levels of BCAA. B heat map of the partial Spearman’s rank correlation 
coefficient between genes involved in BCAA transport and serum levels of BCAA. C heat map of the partial Spearman’s rank correlation coefficient 
between genes involved in BCAA transport and HOMA-IR. P-values were calculated using partial correlations adjusted for Model 1: age and sex. 
Model 2: Model 1 + body fat percentage. False discovery rate (FDR) adjusted *P < 0.05, **P < 0.01
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Fig. 3  Mean abundance of bacterial transport gene families stratified by species. The plot includes the 42 species encoding at least one of the gene 
families and the counts explained by unclassified taxa. CPM counts per million

Fig. 4  Associations of metagenomic species with serum BCAA, metabolic traits and fecal SCFA. A, B multiple linear regression models for the 
association between the arcsin-sqrt normalized abundance of Faecalibacterium and Roseburia species and serum BCAA levels adjusting for age, 
sex and body fat percentage. B heat map of the partial Spearman’s rank correlation coefficient between species relative abundance and metabolic 
traits. C Heat map of the partial Spearman’s rank correlation coefficient of fecal SCFA concentrations with species abundance and metabolic 
traits. A, B regression models were adjusted for age, sex and body fat percentage, gray shading represents 95% CI. C, D partial correlations for 
anthropometric traits were adjusted for age and sex, and for biochemical variables were further adjusted for body adiposity. E heat map of the 
partial Spearman’s rank correlation coefficient between selected species and total serum BCAA levels. P-values were calculated using partial 
correlations adjusted for Model 1: age and sex. Model 2: Model 1 + body fat percentage. *P < 0.05. BCAA​ branched-chain amino acids, SCFA 
short-chain fatty acids
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Role of short‑chain fatty acids in the association 
between butyrate producer species and circulating BCAA​
Faecalibacterium prausnitzii as well as Roseburia homi-
nis are considered predominant butyrate producers 
(Louis and Flint 2017). Indeed, one of the mechanisms by 
which Faecalibacterium prausnitzii has been related to 
a better gastrointestinal and metabolic health is through 
its butyrate production capacity (Leylabadlo et al. 2020). 
Thus, to assess whether butyrate levels could be also con-
tributing to the observed associations with insulin resist-
ance markers, we measured fecal short-chain fatty acids 
(SCFA). According to previous studies the fecal con-
centration of SCFA was acetate > propionate > butyrate 
(Additional file 1: Table 4). Total fecal SCFA were higher 
in overweight/obese vs normal-weight children although 
the significance was only as a trend (P = 0.091, Addi-
tional file  1: Table  4). Interestingly even though fecal 
butyrate concentration showed a negative correlation 
with HOMA-IR (P = 0.096), neither Faecalibacterium 
prausnitzii nor Roseburia hominis abundance showed 
an association with fecal butyrate concentration (P > 0.7, 
Fig. 4D).

Replication of Faecalibacterium associations with BCAA 
and insulin resistance markers over an extended dataset 
with 16S rRNA data
To validate the associations of the taxa harboring BCAA 
transporters genes with circulating levels of BCAA 
and insulin resistance markers, we pursued replica-
tion over an extended dataset of 124 children with 16S 
rRNA sequencing data, including the 23 individuals with 
metagenomic shotgun sequencing who also had 16S 
rRNA data.

Faecalibacterium prausnitzii is the only identified 
specie within the Faecalibacterium genus (Filippis et  al. 
2020), while Roseburia hominis is one of the five identi-
fied species within the genus Roseburia (Tamanai-Sha-
coori et  al. 2017). Thus, considering that in the original 
dataset (n = 23), metagenomic abundance of Faecalibac-
terium prausnitzii showed a fairly good correlation with 
the abundance of Faecalibacterium genus obtained 
through 16S sequencing (rho  = 0.790, P = 7.20 × 10–6), 
we sought whether the associations between Faecalibac-
terium genus, circulating BCAA and the insulin resist-
ance markers, were still valid. In the extended dataset, 
fecal samples showed a similar Faecalibacterium median 
abundance (4.16%). Consistently with the metagenomics 
results, Faecalibacterium abundance showed a negative 
correlation with individual and total serum BCAA levels 
(Leucine/Isoleucine rho = − 0.281, Valine rho = − 0.333, 
total BCAA rho = − 0.310, P < 0.01, Fig. 5), after adjusting 
for age and sex. Moreover, these correlations remained 

significant after adjusting for BMI percentile (P < 0.01, 
Fig. 5). Faecalibacterium abundance also showed a nega-
tive but not significant correlation with HOMA-IR after 
adjusting for BMI percentile (rho = − 0.146, Fig.  5). 
Noteworthy, the negative correlation of Faecalibacte-
rium genus with individual and total BCAA remained 
significant after excluding the 23 children with shot-
gun metagenomic data (Total BCAA rho = − 0.310, 
P = 0.001), while the correlation with HOMA although 
negative was not significant (rho = − 0.117, P = 0.24).

Discussion
A relationship between the gut microbiome and circu-
lating BCAA is already established (Liu et al. 2017, 2020; 
Pedersen et al. 2016; Ridaura et al. 2013), however details 
about specific taxa contributing to this association in dif-
ferent populations are lacking, particularly in pediatric 
groups. By using shotgun sequencing we aimed to evalu-
ate the contribution of bacterial metabolism, to circulat-
ing BCAA in a sample of Mexican early adolescents and 
whether this was also related to insulin resistance.

Interestingly we showed that it was the higher gene 
abundance of inward bacterial transporters of BCAA 
that was strongly related with lower circulating levels of 
these amino acids. Although previous studies have also 
showed that biosynthesis pathways contribute to higher 
levels of BCAA (Pedersen et al. 2016; Dhakan et al. 2019), 
we did not observe any association between circulating 
levels of these amino acids and bacterial genes involved 
in BCAA biosynthesis pathways or with species previ-
ously reported to be involved in these processes. This 
could be somewhat expected as the gene repertoire, as 
well as the distribution of different strain patterns within 
species, respond to extrinsic factors such as geogra-
phy, age, diet or even host genetics (Filippis et  al. 2019; 

Fig. 5  Association of 16S Faecalibacterium genus abundance with 
BCAA serum levels and insulin resistance markers in the extended 
dataset (N = 124). P-values were calculated using partial spearman 
correlations adjusted for Model 1: age and sex. Model 2: Model 
1 + BMI percentile. *P < 0.01, **P < 0.01, ***P < 0.001
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Truong et al. 2017). In spite of this, our results are con-
sistent with a previous report showing that in a South-
ern Indian population, where habitual diet is composed 
of rice as well as meat and fish, higher gene abundance of 
bacterial BCAA inward transporters correlated well with 
lower serum BCAA concentrations, and in addition with 
higher levels in feces (Dhakan et al. 2019). Interestingly, 
in the same a study, in a Northern Indian population, 
with a diet enriched in carbohydrates and trans-fat foods, 
higher bacterial abundance of BCAA biosynthesis genes 
correlated with greater serum levels of these amino acids 
and lower fecal levels. Although we did not measure fecal 
BCAA levels, the former and our results suggest that 
higher uptake of BCAA by gut bacteria could decrease 
their bioavailability and thus their circulating levels. Fur-
thermore, it underscores the relevance for future studies 
to assess whether the microbiome functional potential is 
also related to certain dietary habits.

Interestingly we further observed that gene abun-
dance of the high affinity bacterial BCAA transporter 
LIV-I, also showed a strong correlation with HOMA-IR. 
Although at a gene cluster level our results are in agree-
ment with other reports, the specific species that con-
tribute to bacterial transporters gene abundance are not 
always the same. In our sample, the main species harbor-
ing these genes were Faecalibacterium prausnitzii and 
Roseburia hominis. Faecalibacterium is among the taxa 
associated with the transport gene clusters in the Indian 
adult population study, which suggests that our finding 
is not exclusive of pediatric populations. However, the 
species identified in other reports (Pedersen et al. 2016), 
such as Eubacterium siraeum or Butirivibrio crossotus 
showed a low prevalence or abundance in the children’s 
fecal bacterial community and when present they did not 
seem to contribute to bacterial gene count.

Faecalibacterium prausnitzii is considered a beneficial 
microbe that although not always consistently among 
studies, has been associated with lower insulin resist-
ance and it is decreased in subjects with T2D (Gurung 
et  al. 2020). In our study, greater abundance of Faecali-
bacterium prausnitzii was associated with both; lower 
serum BCAA and lower HOMA-IR, and the latter asso-
ciation was lost when adjusting for total BCAA levels. 
The former finding was replicated over an extended 
dataset (n = 124), providing novel evidence for a possible 
role of Faecalibacterium prausnitzii in the host BCAA 
metabolism.

BCAA have linked to insulin sensitivity through 
an mTOR mediated pathway and the production of 
3-hydroxyisobutirate, a catabolic intermediate of BCAA 
(Jang et  al. 2016; Newgard et  al. 2009). However recent 
studies have shown that the balance between BCAA 
and other essential amino acids such as tryptophan and 

threonine also play a role in the metabolic derange-
ments produced by higher BCAA (Solon-Biet et al. 2019). 
Indeed, in a previous report we showed that a metabo-
lomic signature composed of BCAA but also aromatic 
amino acids as well as alanine and proline was associ-
ated with insulin resistance and future development of 
hypertriglyceridemia (Moran-Ramos et al. 2017). Intrigu-
ingly and despite that for the extended dataset, individu-
als were selected based on the original study design; in 
terms of age, and adiposity proportions, the association 
between Faecalibacterium abundance and HOMA-IR 
did not reach statistical significance. When comparing 
individuals from the metagenomic study vs those in the 
extended data set, we observed some metabolic differ-
ences. Thus, these phenotype differences could somehow 
confound the result.

Interestingly a recent study in a murine model showed 
that dietary BCAA restriction from an early age, besides 
promoting metabolic health trough out life stages; it also 
prevents age-associated frailty and increases lifespan, 
particularly in males (Richardson et  al. 2021). Thus, it 
would be interesting to investigate whether the contribu-
tion of bacterial metabolism to host BCAA could have 
effects beyond metabolic health.

The proposed classical mechanisms for the associa-
tion between Faecalibacterium prausnitzii and metabolic 
health have been related to its anti-inflammatory poten-
tial (Leylabadlo et al. 2020). Butyrate is one of the main 
metabolic end-products of Faecalibacterium prausnitzii 
fermentation. This metabolite is known to possess anti-
inflammatory activity and improve gut barrier integrity, 
which might modulate insulin resistance derived from 
chronic low-grade inflammation (Chambers et al. 2018). 
However, in our samples the abundance of Faecalibacte-
rium prausnitzii was not associated with fecal butyrate 
concentrations. The latter further emphasizes that in our 
population, the association between Faecalibacterium 
prausnitzii and HOMA-IR could be mediated by its con-
tribution to BCAA metabolism. The products of bacterial 
fermentation of BCAA are branched short-chain fatty 
acids (BSCFA). Although little is known regarding the 
role of gut-derived BSCFAs in the regulation of metabo-
lism, there is some evidence that through their effects on 
adipocytes they could contribute to an improved insulin 
sensitivity (Heimann et  al. 2016). Thus, it would be of 
interest to assess whether BSCFAs, are associated with a 
greater abundance of Faecalibacterium as well as to lower 
levels of insulin resistance markers.

Although at a functional level Faecalibacterium genus 
has not been previously recognized for its role in BCAA 
metabolism, an in  vitro study showed that a particular 
strain of Faecalibacterium was able to consume BCAA 
(Heinken et  al. 2014). A few other studies assessing gut 
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microbiota by 16S sequencing have observed indirect 
associations. For instance, in a study including Indian 
and Chinese adults, Faecalibacterium abundance show 
a negative correlation with BCAA urine levels (Jain et al. 
2019). Likewise, in an animal model with a dietary inter-
vention with inulin, an increase in Faecalibacterium 
abundance was observed, and in parallel a reduction in 
serum BCAA as well as an increase in fecal isobutyrate 
levels, a main product of BCAA fermentation (Wu et al. 
2020). In  vitro experiments also show ability of certain 
Faecalibacterium prausnitzii strains to metabolize fibers, 
directly or indirectly, through metabolic cross-feeding. 
We did not performed associations with dietary hab-
its, however the former findings further acknowledge 
the need of future studies to understand the interaction 
between the dietary components and Faecalibacterium 
growth or metabolism. Whether the transport of BCAA 
by Faecalibacterium is an adaptative response to high 
BCAA diets or if certain type of diets promote its growth 
is still warranted. Furthermore, in the light of the benefi-
cial effects of this specie it might be relevant to evaluate 
dietary interventions as a potential strategy to increase 
Faecalibacterium abundance and thus modulate serum 
BCAA levels.

Finally, it was recently reported that although Fae-
calibacterium prausnitzii is the only identified species 
within the genus, there are 22 clades with different func-
tional potential that are differentially distributed not only 
among populations but also throughout life stages (Filip-
pis et al. 2020). Thus, the reasons for the scarce reported 
associations between this bacterial species and BCAA 
levels could rely on the observed high level of functional 
diversity and specialization of Faecalibacterium praus-
nitzii strains (Fitzgerald et  al. 2018). Although in our 
population Faecalibacterium prausnitzii seems to be par-
ticularly relevant for BCAA metabolism, further studies 
are needed to identify which particular clades or strains 
are linked to this function.

Limitations of the study
We acknowledge several limitations in our study. First 
it was a cross-sectional investigation with a relatively 
small sample size, which could have influenced the lack 
of association between bacterial BCAA biosynthesis 
pathways and serum levels of these amino acids and 
does not establish causality. Second there are other fac-
tors that influence serum BCAA levels, such as genetic 
background and long-term dietary intake, that were not 
assessed in our study. Even though in a previous study 
we showed that the serum amino acid signature was 
not related to dietary protein intake (Moran-Ramos 
et  al. 2017), it will be important for future studies to 

assess whether BCAA or animal protein intake rather 
that protein intake itself could contribute to serum 
BCAA levels as well as to the relative abundance of Fae-
calibacterium. Third, the results may not be applicable 
to individuals of other geographic origins or life stages. 
Even though the median abundance of the children 
included in the study is similar to other school-aged 
children. A recent study showed that Faecalibacterium 
abundance and diversity are different among children 
and adults, and between westernized and not-western-
ized populations (Filippis et  al. 2020). Thus, whether 
the observed associations are also valid in adults or in 
children from other geographic regions warrants fur-
ther studies. Fourth while shotgun sequencing allowed 
us to infer the functional capability of the gut micro-
bial community, it does not provide information of the 
actual active genes. A metatranscriptomics or metapro-
teomics approach will help in bridging this gap, how-
ever in vitro studies as well as an animal model would 
be required to establish causality between Faecalibac-
terium prausnitzii abundance and host BCAA levels in 
different nutritional settings.

Notwithstanding the above limitations, the vali-
dated association between Faecalibacterium abun-
dance and serum BCAA levels, over an extended data 
set, strengthen the metagenomic results and add to the 
evidence for a novel role of Faecalibacterium in BCAA 
metabolism and possibly for the pathogenesis of insulin 
resistance.

Conclusions
In conclusion, we described an inverse association 
between bacterial BCAA inward transport genes and 
serum levels of these amino acids. We suggest that 
through this pathway the gut microbiome could con-
tribute to lower BCAA levels in circulation. In addition, 
because there is no direct evidence of the role of Fae-
calibacterium prausnitzii in human BCAA metabolism, 
here, we showed for the first time that the relation-
ship between Faecalibacterium prausnitzii and insulin 
resistance, could be through modulation of BCAA.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s10020-​021-​00371-7.

Additional file 1: Table S1. Identified KEGG Orthologs involved in 
bacterial BCAA biosynthesis. Table S2. Identified KEGG Orthologs 
involved in bacterial BCAA transport. Table S3. Partial Spearman Cor‑
relations between inward transport gene abundance and HOMA-IR 
levels. Table S4. Concentration of fecal short-chain fatty acids. Table S5. 
Characteristics of the Mexican early adolescents included in the extended 
dataset.

https://doi.org/10.1186/s10020-021-00371-7
https://doi.org/10.1186/s10020-021-00371-7


Page 11 of 12Moran‑Ramos et al. Mol Med          (2021) 27:108 	

Acknowledgements
We thank Alfredo Mendoza, Luz E. Guillén, Carmen Moreno, Adriana López, 
Guadalupe López and Regina Flores for their technical assistance. We thank all 
the family volunteers who participated in this study.

Authors’ contributions
S-MR and S-CQ conceived the experiments, S-MR, L-MK, B-LC and E-OM per‑
formed microbiome analysis, L-MK, and S-MR performed the data analysis and 
interpretation, H-VR, B-LC, P-LM, contributed to data collection and database 
generation, E-OM, I-IG, M-VA, H-VR, O-GP, N-T and A-T performed metabolomic 
analysis, F-GP and C-AS performed biochemical measurements, S-MR, S-CQ 
wrote the manuscript. All authors read and approved the manuscript.

Funding
This work was supported by CONACYT Grant #248765 to SM-R.

Availability of data and materials
The datasets analyzed during the current study are not publicly available 
because in the consent form participants were not asked for their data to be 
shared publicly, however they are available from the corresponding author on 
reasonable request.

Declarations

Ethics approval and consent to participate
This study followed all statements of the Helsinki Declaration II and was 
approved by the Ethics and Research Committee of Instituto Nacional de 
Medicina Genomica (CEI 2015/55). Parents or guardians of each child signed 
the informed consent form and children assented to participate.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico. 
2 Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de 
Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), 
Periférico Sur No. 4809, Tlalpan, 14610 Mexico City, Mexico. 3 Hospital Infantil 
México Federico Gómez, Mexico City, Mexico. 4 Departamento de Fisiología 
de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador 
Zubirán, Mexico City, Mexico. 5 Instituto de Investigaciones Biomédicas, UNAM 
- Instituto Nacional de Pediatría, Mexico City, Mexico. 6 Laboratorio de Errores 
Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico City, 
Mexico. 7 Departamento de Endocrinología y Metabolismo, Instituto Nacional 
de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico. 
8 Unidad de Investigación en Enfermedades Metabólicas and Departamento 
de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y 
Nutrición Salvador Zubirán, Mexico City, Mexico. 9 Tecnológico de Monterrey, 
Escuela de Medicina y Ciencias de la Salud, 64710 Monterrey, NL, Mexico. 

Received: 25 June 2021   Accepted: 31 August 2021

References
Adams MD, Wagner LM, Graddis TJ, Landick R, Antonucci TK, Gibson AL, 

Oxender DL. Nucleotide sequence and genetic characterization reveal six 
essential genes for the LIV-I and LS transport systems of Escherichia coli. J 
Biol Chem. 1990;265:11436–43.

Barlow SE, Expert C. Expert committee recommendations regarding the pre‑
vention, assessment, and treatment of child and adolescent overweight 
and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164-192.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 
1995;57:289–300.

Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-gener‑
ated short-chain fatty acids in metabolic and cardiovascular health. Curr 
Nutr Rep. 2018;7:198–206.

de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. 
Prevalence of the metabolic syndrome in American adolescents: findings 
from the Third National Health and Nutrition Examination Survey. Circula‑
tion. 2004;110:2494–7.

De Filippis F, Pasolli E, Tett A, Tarallo S, Naccarati A, De Angelis M, Neviani E, 
Cocolin L, Gobbetti M, Segata N, Ercolini D. Distinct genetic and func‑
tional traits of human intestinal Prevotella copri strains are associated with 
different habitual diets. Cell Host Microbe. 2019;25:444-453.e443.

De Filippis F, Pasolli E, Ercolini D. Newly explored faecalibacterium diver‑
sity is connected to age, lifestyle, geography, and disease. Curr Biol. 
2020;30:4932-4943.e4.

Dhakan DB, Maji A, Sharma AK, Saxena R, Pulikkan J, Grace T, Gomez A, Scaria J, 
Amato KR, Sharma VK. The unique composition of Indian gut microbi‑
ome, gene catalogue, and associated fecal metabolome deciphered 
using multi-omics approaches. GigaScience. 2019. https://​doi.​org/​10.​
1093/​gigas​cience/​giz004.

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat 
Rev Microbiol. 2021;19:55–71.

Fitzgerald CB, Shkoporov AN, Sutton TDS, Chaplin AV, Velayudhan V, Ross RP, 
Hill C. Comparative analysis of Faecalibacterium prausnitzii genomes 
shows a high level of genome plasticity and warrants separation into 
new species-level taxa. BMC Genomics. 2018;19:931.

Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt 
BA, Cava E, Spelta F, Tosti V, Syed FA, et al. Decreased consumption 
of branched-chain amino acids improves metabolic health. Cell Rep. 
2016;16:520–30.

Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, 
Lipson KS, Knight R, Caporaso JG, Segata N, Huttenhower C. Species-
level functional profiling of metagenomes and metatranscriptomes. Nat 
Methods. 2018;15:962–8.

Giannini C, Santoro N, Caprio S, Kim G, Lartaud D, Shaw M, Pierpont B, Weiss R. 
The triglyceride-to-HDL cholesterol ratio: association with insulin resist‑
ance in obese youths of different ethnic backgrounds. Diabetes Care. 
2011;34:1869–74.

Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role 
of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 
2020;51:102590.

Heimann E, Nyman M, Pålbrink AK, Lindkvist-Petersson K, Degerman E. 
Branched short-chain fatty acids modulate glucose and lipid metabolism 
in primary adipocytes. Adipocyte. 2016;5:359–68.

Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJ, Thiele I. Functional 
metabolic map of Faecalibacterium prausnitzii, a beneficial human gut 
microbe. J Bacteriol. 2014;196:3289–302.

Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, 
Raza S, Doddapaneni HV, Metcalf GA, Muzny DM, et al. Structure and 
function of the healthy pre-adolescent pediatric gut microbiome. Micro‑
biome. 2015;3:36.

Jain A, Li XH, Chen WN. An untargeted fecal and urine metabolomics analysis 
of the interplay between the gut microbiome, diet and human metabo‑
lism in Indian and Chinese adults. Sci Rep. 2019;9:9191.

Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, Rhee J, Hoshino A, Kim 
B, Ibrahim A, et al. A branched-chain amino acid metabolite drives 
vascular fatty acid transport and causes insulin resistance. Nat Med. 
2016;22:421–6.

Jennings A, MacGregor A, Pallister T, Spector T, Cassidy A. Associations 
between branched chain amino acid intake and biomarkers of adiposity 
and cardiometabolic health independent of genetic factors: a twin study. 
Int J Cardiol. 2016;223:992–8.

Karusheva Y, Koessler T, Strassburger K, Markgraf D, Mastrototaro L, Jelenik 
T, Simon MC, Pesta D, Zaharia OP, Bódis K, et al. Short-term dietary 
reduction of branched-chain amino acids reduces meal-induced insulin 
secretion and modifies microbiome composition in type 2 diabetes: a 
randomized controlled crossover trial. Am J Clin Nutr. 2019;110:1098–107.

Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov 
K, Khodadadi E, Tanomand A, Sheykhsaran E, Yousefi B, Kafil HS. The 
critical role of Faecalibacterium prausnitzii in human health: an overview. 
Microb Pathog. 2020;149:104344.

https://doi.org/10.1093/gigascience/giz004
https://doi.org/10.1093/gigascience/giz004


Page 12 of 12Moran‑Ramos et al. Mol Med          (2021) 27:108 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, et al. 
Gut microbiome and serum metabolome alterations in obesity and after 
weight-loss intervention. Nat Med. 2017;23:859–68.

Liu Y, Wang Y, Ni Y, Cheung CKY, Lam KSL, Wang Y, Xia Z, Ye D, Guo J, Tse MA, 
et al. Gut microbiome fermentation determines the efficacy of exercise 
for diabetes prevention. Cell Metab. 2020;31:77-91.e75.

Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic 
microbiota. Environ Microbiol. 2017;19:29–41.

Merz B, Frommherz L, Rist MJ, Kulling SE, Bub A, Watzl B. Dietary pattern and 
plasma BCAA-variations in healthy men and women—results from the 
KarMeN Study. Nutrients. 2018;10:623.

Moran-Ramos S, Ocampo-Medina E, Gutierrez-Aguilar R, Macías-Kauffer L, 
Villamil-Ramírez H, López-Contreras BE, León-Mimila P, Vega-Badillo J, 
Gutierrez-Vidal R, Villarruel-Vazquez R, et al. An amino acid signature 
associated with obesity predicts 2-year risk of hypertriglyceridemia in 
school-age children. Sci Rep. 2017;7:5607.

Moran-Ramos S, Lopez-Contreras BE, Villarruel-Vazquez R, Ocampo-Medina E, 
Macias-Kauffer L, Martinez-Medina JN, Villamil-Ramirez H, León-Mimila P, 
Del Rio-Navarro BE, Ibarra-Gonzalez I, et al. Environmental and intrinsic 
factors shaping gut microbiota composition and diversity and its relation 
to metabolic health in children and early adolescents: a population-
based study. Gut Microbes. 2020;11:900–17.

National High Blood Pressure Education Program Working Group on High 
Blood Pressure in C, Adolescents. The fourth report on the diagnosis, 
evaluation, and treatment of high blood pressure in children and adoles‑
cents. Pediatrics. 2004;114:555–76.

Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, 
Shah SH, Arlotto M, Slentz CA, et al. A branched-chain amino acid-related 
metabolic signature that differentiates obese and lean humans and 
contributes to insulin resistance. Cell Metab. 2009;9:311–26.

Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, 
Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, et al. Human gut 
microbes impact host serum metabolome and insulin sensitivity. Nature. 
2016;535:376–81.

Radjabzadeh D, Boer CG, Beth SA, van der Wal P, Kiefte-De Jong JC, Jansen 
MAE, Konstantinov SR, Peppelenbosch MP, Hays JP, Jaddoe VWV, et al. 
Diversity, compositional and functional differences between gut micro‑
biota of children and adults. Sci Rep. 2020;10:1040.

Richardson NE, Konon EN, Schuster HS, Mitchell AT, Boyle C, Rodgers AC, Finke 
M, Haider LR, Yu D, Flores V, et al. Lifelong restriction of dietary branched-
chain amino acids has sex-specific benefits for frailty and lifespan in mice. 
Nat Aging. 2021;1:73–86.

Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard 
V, Henrissat B, Bain JR, et al. Gut microbiota from twins discordant for 
obesity modulate metabolism in mice. Science. 2013;341:1241214.

Ringel-Kulka T, Cheng J, Ringel Y, Salojärvi J, Carroll I, Palva A, de Vos WM, 
Satokari R. Intestinal microbiota in healthy U.S. young children and 
adults—a high throughput microarray analysis. PLoS ONE. 2013;8:e64315.

Rousseau M, Guénard F, Garneau V, Allam-Ndoul B, Lemieux S, Pérusse L, Vohl 
MC. Associations between dietary protein sources, plasma BCAA and 
short-chain acylcarnitine levels in adults. Nutrients. 2019;11:173.

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, 
Majda S, Fiedler J, Dahms E, et al. Critical Assessment of Metagenome 
Interpretation—a benchmark of metagenomics software. Nat Methods. 
2017;14:1063–71.

Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 
Metagenomic microbial community profiling using unique clade-specific 
marker genes. Nat Methods. 2012;9:811–4.

Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, Gregoriou GC, 
Senior AM, Wang QP, Brandon AE, et al. Branched chain amino acids 
impact health and lifespan indirectly via amino acid balance and appetite 
control. Nat Metab. 2019;1:532–45.

Syeda T, Sanchez-Tapia M, Pinedo-Vargas L, Granados O, Cuervo-Zanatta 
D, Rojas-Santiago E, Díaz-Cintra SA, Torres N, Perez-Cruz C. Bioactive 
food abates metabolic and synaptic alterations by modulation of gut 
microbiota in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis. 
2018;66:1657–82.

Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, 
Bonnaure-Mallet M, Jolivet-Gougeon A. Roseburia spp.: a marker of 
health? Future Microbiol. 2017;12:157–70.

Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level 
population structure and genetic diversity from metagenomes. Genome 
Res. 2017;27:626–38.

White PJ, Newgard CB. Branched-chain amino acids in disease. Science. 
2019;363:582–3.

Wu W, Zhang L, Xia B, Tang S, Liu L, Xie J, Zhang H. Bioregional alterations in 
gut microbiome contribute to the plasma metabolomic changes in pigs 
fed with inulin. Microorganisms. 2020;8:111.

Zhong H, Penders J, Shi Z, Ren H, Cai K, Fang C, Ding Q, Thijs C, Blaak EE, 
Stehouwer CDA, et al. Impact of early events and lifestyle on the gut 
microbiota and metabolic phenotypes in young school-age children. 
Microbiome. 2019;7:2.

Zhou M, Shao J, Wu CY, Shu L, Dong W, Liu Y, Chen M, Wynn RM, Wang J, Wang 
J, et al. Targeting BCAA catabolism to treat obesity-associated insulin 
resistance. Diabetes. 2019;68:1730–46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	A higher bacterial inward BCAA transport driven by Faecalibacterium prausnitzii is associated with lower serum levels of BCAA in early adolescents
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Study participants
	Anthropometric and clinical parameters
	Blood sampling and biochemical analyses
	Stool sampling and DNA extraction
	Microbiome taxonomic and functional potential profiling

	Metabolomic analysis
	Statistical analysis

	Results
	Description of study population
	Contribution of gut bacterial metabolism to serum BCAA​
	Correlation of metagenomic species with BCAA circulating levels and insulin resistance
	Role of short-chain fatty acids in the association between butyrate producer species and circulating BCAA​
	Replication of Faecalibacterium associations with BCAA and insulin resistance markers over an extended dataset with 16S rRNA data


	Discussion
	Limitations of the study
	Conclusions
	Acknowledgements
	References


