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Abstract

Background: Fluoropyrimidine plus platinum chemotherapy remains the standard first line treatment for gastric
cancer (GC). Guidelines exist for the clinical interpretation of four DPYD genotypes related to severe fluoropyrimidine
toxicity within European populations. However, the frequency of these single nucleotide polymorphisms (SNPs) in the
Latin American population is low (< 0.7%). No guidelines have been development for platinum. Herein, we present
association between clinical factors and common SNPs in the development of grade 3–4 toxicity.

Methods: Retrospectively, 224 clinical records of GC patient were screened, of which 93 patients were incorporated
into the study. Eleven SNPs with minor allelic frequency above 5% in GSTP1, ERCC2, ERCC1, TP53, UMPS, SHMT1, MTHFR,
ABCC2 and DPYD were assessed. Association between patient clinical characteristics and toxicity was estimated using
logistic regression models and classification algorithms.
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Results: Reported grade≤ 2 and 3–4 toxicities were 64.6% (61/93) and 34.4% (32/93) respectively. Selected DPYD SNPs
were associated with higher toxicity (rs1801265; OR = 4.20; 95% CI = 1.70–10.95, p = 0.002), while others displayed a
trend towards lower toxicity (rs1801159; OR = 0.45; 95% CI = 0.19–1.08; p = 0.071). Combination of paired SNPs
demonstrated significant associations in DPYD (rs1801265), UMPS (rs1801019), ABCC2 (rs717620) and SHMT1 (rs1979277).
Using multivariate logistic regression that combined age, sex, peri-operative chemotherapy, 5-FU regimen, the binary
combination of the SNPs DPYD (rs1801265) + ABCC2 (rs717620), and DPYD (rs1801159) displayed the best predictive
performance. A nomogram was constructed to assess the risk of developing overall toxicity.

Conclusion: Pending further validation, this model could predict chemotherapy associated toxicity and improve GC
patient quality of life.
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Introduction
Globally, gastric cancer (GC) is the sixth most common
malignancy and the third leading cause of cancer death
[1–4]. Current standard first-line treatment for GC pa-
tients consists of chemotherapy regimens that combine
fluoropyrimidines and platinum compounds. Thera-
peutic responses and associated toxicity with these regi-
mens can vary significantly among patients ranging from
moderate to severe [5–7]. Indeed, gastrointestinal,
hematological and neurological toxicities are commonly
observed under these regimens, often leading to treat-
ment discontinuation, a reduction in quality of life, and
in some extreme cases to death [8, 9]. Hence, severe tox-
icity becomes an essential obstacle to treatment comple-
tion and predictive models of toxicity may improve
patient quality of life by avoiding severe toxicity.
Previous studies have demonstrated that single nucleo-

tide polymorphisms (SNPs) are associated with
chemotherapy-associated toxicity [10–12]. This can be
explained by gene variations that alter the enzymatic ac-
tivity of key proteins affecting pharmacokinetic and
pharmacodynamic processes [13, 14]. In this regard,
platinum-based compounds can trigger cell arrest or
apoptosis by forming Pt-DNA adducts [15]. Within our
bodies, kidneys can excrete these compounds without
undergoing biotransformation via B1/C2/G2 type ABC
(ATP Binding Cassette) transporters [16, 17]. Within
cells, metabolizing enzymes including GSTP1, GSTM1,
NQO1 and SOD1 decrease intracellular levels of plat-
inum compounds [18–21]. Intracellularly platinum com-
pounds target the DNA forming DNA-Pt complexes.
Damaged DNA is recognized by HMGB, an enzyme that
coordinates DNA repair by nucleotide excision repair
enzymes [19, 22]. On the other hand, 5-fluorouracil (5-
FU) and its pro-drug capecitabine undergo a series of
enzymatic transformations prior to exert their effects
[23]. Although the precise mechanism is still unclear, 5-
FU is known to inhibit thymidylate synthase (TYMS)
suppressing the conversion of uracil into thymidylate,
leading to the inhibition of DNA/RNA synthesis and

eventually to cell death [24]. The metabolism of 5-FU
occurs mainly in the liver, where DPYD metabolizes ~
80% of the drug, producing 5,6 dihydroxy-5-FU (an in-
active metabolite) [25]. It is widely documented that de-
creased DPYD activity is associated with severe toxicity
[26–28]. Previous reports have also associated TYMS
and MTHFR gene variations with 5-FU toxicity; however
their clinical relevance is undetermined [29].
To date, the most reliable markers of fluoropyrimidine

toxicity are DPYD*2A (rs3918290), DPYD-c.2846A > T
(rs67376798), DPYD-Hap-B3 (rs56038477) and DPYD*13
(rs55886062). In fact, these are variants that have a well-
documented association with severe toxicity associated
with fluoropyrimidines, and there is a Clinical Pharmaco-
genetics Implementation Consortium (CPIC) guideline
that recommends avoiding or reducing the dose of fluoro-
pyrimidines if a patient carries any of these variants [30].
Unfortunately, given their low frequencies in the general
population the use of these variants identifies only a small
fraction of potentially at-risk patients. For example, their
frequencies in the 1000-Genome (1000-G) project and
gnomAD databases for American or Latino/Admixed
American population are much lower than that of those
published for European cohorts. According to these data-
bases, the Latin-American frequencies of the risk allele
for: DPYD * 2 is 0.1 and 0.2% (1000-G Project and gno-
mAD, respectively) yet an order of magnitude greater in
frequency in a Finnish cohort (2.5%) [31, 32]. In Latin-
America the DPYD-c.2846A > T frequency is 0.3 and 0.2%
(1000-G Project and gnomAD, respectively); DPYD-Hap-
B3 is 0.6 and 0.7% (1000-G Project and gnomAD),
DPYD*13 is 0 and 0.007% (1000-G Project and gnomAD,
respectively). Therefore, we hypothesize that common
SNPs in the Latin American population can potentially ex-
plain the clinically relevant toxicity in patients with fluoro-
pyrimidines and platinum-based treatment.
As previously mentioned, SNP variants have been pre-

viously correlated with chemotherapy toxicity [33–35].
Other factors such as chemotherapy scheme, dosage,
sex, and age have also been implicated in the
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development and severity of toxicity [7, 36–38]. How-
ever, only a few studies have developed comprehensive
models that incorporate genetic and non-genetic factors
to predict toxicity [39–41]. Herein, we developed and
tested several models based on clinical factors, treatment
regimens and candidate-SNPs. Our best performance
model was used to construct a nomogram.

Materials and methods
Patients and study design
A retrospective, observational and case/control study
was carried out. A total of 224 gastric cancer patients di-
agnosed between April 2005 and March 2018 were regis-
tered at the UC-CHRISTUS Cancer Center in the
Pontificia Universidad Católica de Chile (PUC). Previ-
ously, this group of patients has been clinically and mo-
lecularly characterized [42]. After applying the inclusion
and exclusion criteria, a total of 93 CG patients were an-
alyzed in this study. Eligibility criteria were: a) histologi-
cally confirmed GC, b) chemotherapy regimen based on
fluoropyridines and/ or platinum compounds, c) ad-
equate patient renal, hepatic and bone marrow function,
determined by the treating physician at the time of start-
ing chemotherapy, d) at least 2 cycles of chemotherapy,
e) availability of biological sample for extraction of gen-
etic material and f) adults (> 18 yr-old). Patients with
neuropathies or hematological damage caused by other
diseases were excluded. Clinical-pathological characteris-
tics of patients included: age, sex, stage, ECOG, histo-
logical classification, treatment schemes used and co-
comorbidities. The Ethics Committee at “PUC” approved
this study (#16–046, April 21st, 2016) [4]. All partici-
pants signed an informed consent to participate in this
study. A waiver of consent was granted to include de-
ceased patients. All data were anonymized to protect pa-
tients’ privacy. This study strictly adhered to the Code of
Ethics of the World Medical Association (Declaration of
Helsinki, 1964).

Toxicity graduation
Toxicities grades were determined following the Na-
tional Cancer Institute Common Toxicity Criteria 4.0
(NCI-CTC 4.0). Data on anemia, neutropenia, febrile
neutropenia, thrombocytopenia, nausea, vomiting, diar-
rhea, stomatitis, hand-foot syndrome, and peripheral
neuropathy were collected. Then they were categorized
into hematological, gastrointestinal, and neurological
toxicity, and if they presented any of the above as “over-
all toxicity”. All association analysis evaluated grade 0–2
vs grade 3–4 for hematological, gastrointestinal, neuro-
logical and overall toxicity. Treatment schemes and sup-
portive care are shown in Supplementary Data.

SNP selection, DNA extraction and genotyping
A total of 11 SNPs were assessed, and a detailed descrip-
tion of this process is provided in Supplementary Data.
Genotypic/allelic frequencies of analyzed SNPs are
shown in Supplementary Table S8. Nucleic acids were
extracted from paraffin-embedded tumor tissues using
the “AllPrep DNA/RNA Mini Kit®” kit (Cat#AM1975,
Thermo Fisher. DNA was quantified by “Qubit® dsDNA
HS Assay” (Thermo Fisher). Candidate SNPs were geno-
typed by TaqMan® SNP Genotyping Assay technology
on an Applied Biosystems® 7500 Fast Real-Time PCR
System (Thermo Fisher). Samples were randomly reana-
lyzed for confirmation. TaqMan® probes are shown in
Supplementary Table S9.

Statistical analysis
Association analysis of SNPs
The association between SNPs and grade 3–4 toxicity was
analyzed using univariate logistic regression models,
reporting Odds Ratio (OR) values with 95% confidence
interval (95% CI). These analyses were tested using 3 in-
heritance models; dominant, codominant and recessive,
based on the parameters of AIC and BIC, the best inherit-
ance model was chosen for each SNP [43]. To choose the
SNP combinations in the first step, a multivariate logistic
regression analysis was performed using the 11 SNPs. To
reduce the number of combinations and avoid over-
fitting, we applied the AIC-based “Stepwise algorithm”.
On selected SNPs, binary combinations were performed
and their association with grade 3–4 toxicity was estab-
lished using their respective inheritance models.

Model building
We developed a total of 4 models for severe toxicity.
Based on literature evidence or a p-value < 0.2, potentially
relevant variables were included in each model. Multivari-
ate logistic regression models were built incorporating
variables that maximized Pseudo R2 (MacFadden); fit indi-
cator of the variables to the model [41, 44]. For example,
for overall toxicity Model 1 included: age, sex, peri-
operative chemotherapy and scheme. Model 2 included
the following SNPs: ERCC2 (rs13181), DPYD (rs2297595),
DPYD (rs1801159), DPYD (rs1801265) and GSTP1
(rs1695). Model 3 included: age, sex, peri-operative
chemotherapy, 5-FU containing scheme, ERCC2
(rs13181), DPYD (rs2297595), DPYD (rs1801159), DPYD
(rs1801265) and GSTP1 (rs1695). Finally, model 4 in-
cluded: age, sex, peri-operative chemotherapy, 5-FU con-
taining scheme, paired SNPs DPYD (rs1801265) +ABCC2
(rs717620), plus DPYD (rs1801159). For every type of tox-
icity, the selected variables are depicted in the correspond-
ing table.
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Model evaluation and nomogram construction
Obtained models were evaluated using classification al-
gorithms [45, 46] including: Logistic Regression (LR);
Support Vector Machine (SVM); Naïve Bayesian (NB);
K-Nearest Neighbor (KNN); Artificial Neural Network
(ANN); Random Forest (RF); Decision Tree (DT) (De-
tails in Supplementary Data). Using as a basis the coeffi-
cients of the multivariate analysis of model 4 we
constructed a nomogram using “rms” package [47]. In
addition, for discriminatory capacity, 1000 bootstrap
replications served as internal validation subsets to esti-
mate the bias - corrected c - index calibration.

General statistical analysis
Continuous variables were compared using ANOVA.
Kaplan-Meier method was used for survival analysis and
log-rank tests for comparison. Significance was set at
p < 0.05. According to the number of cases and controls
(31 and 62 patients respectively), assuming a power of
80%, an α error of 5% and a frequency of common poly-
morphisms (i.e. DPYD rs1801265, GSTP1 rs1695) of
30%, Odd Ratios could be detected with values of 3.9
and 0.1 (high and low). Association analysis of SNPs and
overall toxicity were performed by SNPstat program
[43]. Uni/multivariate logistic regression models were
built using the “stats” and “DescTools” packages. Classi-
fication algorithms were constructed using the “caret”
and “ROCR” packages. For survival analysis, the

“survival” and “survminer” packages were used. All ana-
lysis were performed in R software v3.5.1 (The R Foun-
dation, Vienna, Austria). Full datasets used in this study
can be found in Supplementary Data File 1.

Results
SNPs selection
SNPs were selected based on: (1) scientific evidence re-
garding the SNPs/toxicity relationship, using the
PharmGKB database [48]; (2) allelic and genotypic fre-
quency of the SNPs in the American population [32]; (3)
relationship of the SNPs with the toxicity collected in
our patients literature-based criteria; (4) functional im-
pact of SNPs at the protein level according to PolyPhen
[49] and SIFT [50]. Briefly, in a first approximation 27
SNPs in 11 genes and 7 SNPs in 6 genes for fluoropyri-
midines and platinums were reviewed, respectively.
Then, based on a score system for fluoropyrimidines, 14
SNPs in 7 different genes were candidates, while for
platinums, 4 SNPs in 4 different genes were candidates.
Finally, eleven SNPs with an allelic frequency greater
than 5% were genotyped (Table 1). A detailed descrip-
tion of this process is provided in Supplementary Data.

General characterization of patients
Main clinicopathological characteristics of the patients
are summarized in Supplementary Table S1. Briefly, pa-
tients were predominantly male (62.4%) and advanced

Table 1 Brief description of the SNPs analyzed in this study

Gen SNP ID AA
Change

SNPs effect Genotype associated to
toxicity

Allelic frequency American
population (n)a

Toxicity

GSTP1 rs1695, A > G I105V Protein alteration AA and AG Allele A: 0.52 ↑ risk of hematological
toxicity

ERCC2 rs13181, T >
G

K751Q Protein alteration GG and GT Allele G: 0.21 ↑ risk of hematological
toxicity

TP53 rs1042522,
C > G

P72R Protein alteration CG and GG Allele G: 0.32 ↑ risk of hematological
toxicity

UMPS rs1801019,
G > C

G213A Protein alteration CC Allele C: 0.26 ↑ risk of gastrointestinal
toxicity

SHMT1 rs1979277,
G > A

L474F Protein alteration AA Allele A: 0.27 ↑ risk of toxicity

MTHF
R

rs1801131,
T > G

E429A Protein alteration TT Allele T: 0.15 ↑ risk of toxicity

ABCC2 rs717620,
C > T

– Change in 5`-
UTR

TT Allele T: 0.17 ↑ risk of neurotoxicity

ERCC1 rs11615, A >
G

N118= Synonymous
change

AA Allele A: 0.39 ↑ risk of hematological
toxicity

DPYD rs2297595,
T > C

M166V Protein alteration CC and CT Allele C: 0.06 ↑ risk of severe toxicity

DPYD rs1801159,
T > C

I543V Protein alteration CC and CT Allele C: 0.27 ↑ risk of severe toxicity

DPYD rs1801265,
A > G

C29R Protein alteration GG and AG Allele G: 0.22 ↑ risk of severe toxicity

a Frequencies of genotypes associated to toxicity in American population according 1000-G project
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stage III / IV (71.0%). Most tumors were located in the
stomach corpus (31.2%). Histologically, 32.3% were
diffuse-type by Lauren and 77.3% were gastric adenocar-
cinomas. Survival curves are shown in Supplementary
Fig. S1. Median overall survival (OS) for the entire group
was 29 months (Supplementary Fig. S1A). Males dis-
played better OS versus females, however these differ-
ences did not reach statistical significance (Log Rank
p = 0.45, Supplementary Fig. S1B). As expected, stage
had a significant impact on OS. Advanced stage patients
showed lower median OS (30 or 13months for stages III
or IV, respectively) versus early stage (62 months in
stage II, not reached for stage I) (Supplementary Fig.
S1C, Log Rank p < 0.0001). Supplementary Table S2
summarizes treatment characteristics. FOLFOX was the
most frequently used schema (49.5%) followed by

CAPEOX and CF (18.3 and 14.0%, respectively). Adverse
reactions are summarized in Supplementary Table S3.
Data were grouped according to type of toxicity. Periph-
eral neuropathy was the most common grade 1 toxicity
(34.1%). Nausea was the most predominant grade 2 tox-
icity (31.5%). Among grade 3 toxicities, neutropenia was
dominant (22.58%) followed by diarrhea (20%). Finally,
we registered a total of 5 patients with grade 4 events
among these 3 out of 5 corresponded to neuropathy
(60%). No toxicity-related deaths were registered. Clinic-
ally relevant toxicities (grade ≥ 3) were more frequently
associated to digestive problems such as diarrhea and
stomatitis, with a total of 19 registered events. Among
hematological toxicities, a total of 17 grade ≥ 3 events,
principally neutropenia or febrile neutropenia, were reg-
istered (Supplementary Table S3).

Table 2 Univariate logistic regression analysis for the association between clinicopathological variables and overall toxicity grade ≥ 3

Characteristic Control (n = 61)
n (%)

Case (n = 32)
n (%)

OR 95% CI p-value

Age median (years)

< 59 32 (52.5) 12 (37.5) Ref. 0.16

≥ 59 28 (45.9) 20 (62.5) 1.83 (0.77–4.49)

Sex

Male 41 (67.2) 19 (59.4) Ref. 0.45

Female 20 (32.8) 13 (40.6) 1.40 (0.57–3.40)

Stage

I-II 20 (32.8) 7 (21.9) Ref. 0.26

III-IV 41 (67.2) 25 (78.1) 1.74 (0.67–4.97)

ECOG

0 28 (45.9) 14 (43.8) Ref. 0.44

1 26 (42.6) 11 (34.4) 0.84 (0.32–2.19)

2 1 (1.6) 2 (6.3) 4.0 (0.35–90.53)

NA 6 (9.8) 5 (15.6)

Lauren histotype

Diffuse 20 (32.8) 10 (31.3) Ref. 0.98

Intestinal 17 (27.9) 9 (28.1) 1.05 (0.34–3.22)

Mixed 7 (11.5) 4 (12.5) 1.14 (0.25–4.77)

NA 17 (27.9) 9 (28.1)

Signet-ring cells

No 35 (57.4) 19 (59.4) Ref. 0.85

Yes 26 (42.6) 13 (40.6) 0.92 (0.38–2.18)

Comorbidities

Chronic heart disease 5 (8.2) 2 (6.3) 0.74 (0.10–3.69) 0.73

Chronic liver disease 1 (1.1) 1 (3.3) 1.93 (0.07–50.06) 0.64

Thromboembolic event 1 (1.1) 1 (3.3) 1.93 (0.07–50.06) 0.64

Diabetes 9 (14.8) 2 (6.3) 1.10 (0.26–3.97) 0.88

NA not available, ECOG Eastern Cooperative Oncology Group
Significance: P < 0.05
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Association between non-genetic factors and overall
toxicity
A 34.4% of patients (32/93) displayed grade ≥ 3 overall
toxicity. Non-genetic factors and ≥ 3 grade overall toxicity
associations are shown in Tables 2 and 3. No significant
associations were found between clinicopathological vari-
ables and serious adverse reactions. In agreement with
previous reports, elderly patients have an OR = 1.83 (95%
CI = 0.77–4.49), female patients had an OR = 1.40 (95%
CI = 0.57–3, 40) and ECOG= 2 patients displayed an
OR = 4.00 (95% CI = 0.35–90.53). However, none of these
associations reached statistical significance (Table 2). Re-
garding treatment associated factors (Table 3), patients
that received peri-operative chemotherapy regimens had

higher grade 3–4 toxicity rates compared to adjuvant
treatment (OR = 2.71, 95% CI = 0.91–8.62, p = 0.07, peri
vs. adj). Given the heterogeneity of the used schemes in
our study, we classified them according to drug contents;
5-FU-containing schemes were associated to higher tox-
icity OR = 2.26 (95% CI: 0.79–7.48, p = 0.12). In contrast,
capecitabine-containing schemes displayed lower toxicity
OR = 0.52 (95% CI = 0.15–1.50, p = 0.23). However, none
of these associations reached statistical significance.

Genetic variants associated with overall toxicity
Binary associations between overall toxicity and SNPs
were assessed using three inheritance models (codomi-
nant, dominant and recessive) and are summarized in

Table 3 Univariate logistic regression analysis for association between treatment variables and overall grade ≥ 3 toxicity

Characteristic Control (n = 61)
n (%)

Case (n = 32)
n (%)

OR [95% CI] p-value

Chemotherapy regimen

Adjuvant 19 (31.1) 7 (21.9) Ref. 0.21

Peri-operative 16 (26.2) 16 (50) 2.71 (0.91–8.62)

Palliative 22 (36.1) 8 (25) 0.98 (0.29–3.30)

CMT + RDT Adjuvant 3 (4.9) 1 (3.1) 0.90 (0.04–8.52)

CMT + RDT Peri-operative 1 (1.6) 0 NA

Chemotherapy scheme

FOLFOX 29 (47.5) 17 (53.1) Ref. 0.07

CAPEOX 12 (19.7) 5 (15.6) 0.71 (0.19–1.05)

CF 7 (11.5) 6 (18.8) 1.46 (0.40–5.12)

DCFm 5 (8.2) 0 NA

ECF 0 2 (6.3) NA

EOX 2 (3.3) 0 NA

Capecitabine 2 (3.3) 0 NA

FLOT 0 1 (3.1) NA

RDT + 5-FU/Leu 2 (3.3) 1 (3.1) 0.85 (0.03–9.55)

RDT + CAPEOX 1 (1.6) 0 NA

RDT + Cis/Cape 1 (1.6) 0 NA

Previously treated

No 53 (86.9) 30 (93.7) Ref.

Yes 8 (13.1) 2 (6.3) 0.44 (0.06–1.90) 0.29

Scheme contains

RDT 4 (6.6) 1 (3.1) 0.45 (0.02–3.27) 0.46

5-FU 43 (70.5) 27 (84.4) 2.26 (0.79–7.48) 0.12

Capecitabine 16 (26.2) 5 (15.6) 0.52 (0.15–1.50) 0.23

Oxaliplatin 44 (72.1) 23 (71.9) 0.81 (0.30–2.21) 0.67

Cisplatin 13 (21.3) 8 (25.0) 1.23 (0.43–3.33) 0.68

Docetaxel 5 (8.2) 1 (3.1) 0.36 (0.01–2.37) 0.31

CMT. chemotherapy; RDT. Radiotherapy; FOLFOX. 5-fluorouracil + oxaliplatin + leucovorin; CAPEOX. capecitabine + oxaliplatin; CF. cisplatin + 5-fluorouracil; DCFm.
docetaxel + cisplatin + 5-fluorouracil; ECF. etoposide + cisplatin + 5-fluorouracilo; FLOT. 5-fluorouracil + oxaliplatin + docetaxel + leucovorin; 5FU. 5-fluorouracil; Leu.
leucovorin; Cis. cisplatin; Cape. capecitabine; NA, not applicable; Ref. Reference
Significance: P < 0.05

Cordova-Delgado et al. BMC Cancer         (2021) 21:1030 Page 6 of 18



Table 4. Using a dominant model, the AG/GG genotypes
of SNPs in the DPYD (rs1801159) were associated with
higher toxicity; OR = 4.20 (95% CI = 1.70–10.95, p =
0.002). Also, we found a borderline association between
lower toxicity and DPYD (rs1801159) with an OR = 0.45
(95% CI = 0.19–1.08; p = 0.071). Potential associations in
DPYD (rs2297595), ERCC2 (rs13181) and GSTP1
(rs1695) SNPs were also analyzed. However, no signifi-
cant association was found by univariate analysis.

Combination of genetic variants associated with overall
toxicity
Next, we performed a multivariate logistic regression
analysis incorporating the 11 SNPs to establish poten-
tial associations between combined SNPs and overall
toxicity. We applied a “Stepwise algorithm” based on
Akaike information criterion (AIC) [51] to reduce the
number of combinations and avoid overfitting. Based
on this we selected, 5 SNPs and their respective in-
heritance models to test binary combinations between
SNPs (Table 5). In respect to SNP combinations,
those patients that carry the AG/GG + GG/GC geno-
type combination in DPYD (rs1801265) and UMPS
(rs1801019) are at a higher risk to develop toxicity;
OR = 4.22 (95% CI = 1.66–11.40, p = 0.0031) versus AA
+ GG / GC genotype patients. Furthermore, the
DPYD (rs1801265)/SHMT1 (rs1979277) combination
displayed a borderline association with grade 3–4
overall toxicity. In this case, the AG/GG + GG geno-
type had a higher toxicity versus AA + GG; OR = 3.25
(95% CI = 0.99–11.39, p = 0.055). Finally, the DPYD
(rs1801265)/ABCC2 (rs717620) combination showed a
strong association with grade 3–4 toxicity. Thus, pa-
tients carrying the AG/GG + CT/TT genotype had a
higher probability of developing toxicity; OR = 11.25

(95% CI = 1.25–245.45, p = 0.047) against the AA +
CC genotype.

Multivariate analysis for the development of prediction
models
Next, we sought to determine if the addition of multiple
genetic factors and clinical/treatment information deliv-
ered a better prediction. We developed four models with
different variables using the multivariate logistic regres-
sion. Model 1 was restricted to clinical/treatment vari-
ables. Model 2 included only SNPs. Model 3
incorporated a combination of clinical and treatment
variables plus SNPs. Finally, model 4 was a mixture of
clinical/treatment variables and paired SNPs (see
methods). Selection of variables for each model was
based on maximum Pseudo R2. Variables, ORs and
Pseudo R2 for each model are shown in Table 6. Inter-
estingly, the addition of clinical variables and genotypes
improved model performance. For model 1 Pseudo R2

values were 0.073 and 0.15, respectively. In contrast, for
combined models (model 3 and 4) values were 0.21 and
0.21, respectively. Furthermore, when we analyzed the
SNPs in DPYD (rs1801159) in model 2 OR increased
from 3.74 to 4.55 (p = 0.004) after adding clinical vari-
ables (model 3). Interestingly, sex has been reported to
be a determining factor in the effects of polymorphisms
on DPYD [7]. In line with the literature, the association
with grade 3–4 toxicity of AG/GG genotypes in relation
to AA had an OR = 7.78 (95% CI = 2.31–31.79, p = 0.001)
or 1.85 (95% CI = 0.43–8.26, p = 0.40) for male or female
patients, respectively (see Supplementary Table S4). On
the other hand, in model 4 the DPYD (rs1801265) +
ABCC2 (rs717620) pair displayed a strong association, in
this case the combination AG/GG + CT/TT genotype
showed an OR = 18.00 (95% CI = 1.66–439, p = 0.027)
versus AA + CT/TT.

Table 4 SNPs and overall grade ≥ 3 toxicity associations in GC patients treated with platinum/fluoropyrimidines-based
chemotherapy

Gen SNP ID Model Genotypes Control (n = 61)
n (%)

Case (n = 32)
n (%)

OR [95% CI] p-value

ERCC2 Dom T/T 39 (63.9%) 16 (50%) Ref. 0.20

rs13181 T > G T/G-G/G 22 (36.1%) 16 (50%) 1.77 (0.74–4.22)

DPYD – T/T 57 (95%) 28 (87.5%) Ref

rs2297595 T > C C/T 3 (5%) 4 (12.5%) 2.71 (0.57–12.97) 0.21

DPYD Dom T/T 22 (36.7%) 18 (56.2%) Ref

rs1801159 T > C C/T-C/C 38 (63.3%) 14 (43.8%) 0.45 (0.19–1.08) 0.071

DPYD Dom A/A 40 (66.7%) 10 (32.3%) Ref

rs1801265 A > G A/G-G/G 20 (33.3%) 21 (67.7%) 4.20 (1.70–10.95) 0.002

GSTP1 Dom A/A 22 (36.1%) 14 (43.8%)

rs1695 A > G A/G-G/G 39 (63.9%) 18 (56.3%) 0.72 (0.30–1.74) 0.47

Dom: Dominant inheritance model
Significance: P < 0.05
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Evaluation of toxicity models
To assess the predictive power of our models we
employed a variety of classification algorithms. Figure 1
shows the sensitivity, specificity, accuracy and AUC of
each model. For example, model 1 had a high specificity
(range = 0.82–1.0), but low sensitivity (range = 0–0.17),
in most tested algorithms. Accuracy reached a maximum
value of 0.71 using the RL method and an AUC of 0.74
in the RL and ANN classification algorithms (Fig. 1A).
Comparing different algorithms for model 2, were found
a promising specificity (range = 0.61–0.87) but low sensi-
tivity (range = 0.17–0.42). In this model maximum ac-
curacy (0.69) was achieved with the KNN method, and
the most favorable AUC was 0.68 with the DT method
(Fig. 1B). Model 3 showed a relatively high specificity
(range = 0.70–0.91) and a moderately low sensitivity
(range = 0.17–0.41), reaching its maximum value with
the RL method. On the other hand, the maximum ac-
curacy was 0.69 with the SVM and KNN methods, and a
maximum AUC of 0.68 achieved with the DT method
(Fig. 1C). Model 4 showed a relatively high specificity
(range = 0.74–1.0), with the sensitivity ranging between 0
and 0.66 among the classification algorithms. Maximum
accuracy was achieved with the RL method (0.80); AUC
was 0.82 achieved with the same classification algorithm
(Fig. 1D). In summary, our data suggest model 4 was the
best predictor of grade 3–4 toxicity (using the RL
method). This supports the notion that combined
models provide better predictive power versus individual
variable models.

Multivariate analysis for type of toxicity
In line with the methodology employed for general tox-
icity, multivariate analysis was performed on clinical and
genetic factors in the development of severe toxicity for
independent hematological, gastrointestinal or neuro-
logical toxicities. For hematological toxicity, when the
clinical/treatment variables were integrated with SNPs, a
better fit of the logistic regression model was achieved.
For example, for model 1 and model 2, the Pseudo R2

returned values of 0.07 and 0.14, respectively, while for
the variable’s integration models vary between 0.23 and
0.29 (Supplementary Table S5). Analysis of model 4
(Supplementary Table S5) shows that the variables of
sex and the binary combination between the SNPs in
ERCC1 (rs11615) and GSTP1 (rs1695) plus the SNP in
DPYD (rs1801265) were either associated significantly or
at least showed a strong tendency with hematological
toxicity. For gastrointestinal toxicity, we observed that
the clinical variables have a low influence on the presen-
tation of this toxicity (Pseudo R2 = 0.04). An improved
fit is observed in upon the examination of the 3 SNPs
(Pseudo R2 value of 0.15; model 2). Upon combination
of the clinical/treatment variables and genotypes, there
is a modest increase in the Pseudo R2 value to 0.20 and
0.18, for models 3 and 4, respectively (Supplementary
Table S6). Applying the same analysis for neurological
toxicity, only 3 models could be developed, where model
1, which includes only clinical factors / treatment, had a
better fit (Pseudo R2 = 0.15) than model 2 (Pseudo R2 =
0.15) which included only the SNPs in TP53

Table 5 Combination of SNPs with overall grade ≥ 3 toxicity associations in gastric cancer patients treated with platinum/
fluoropyridines -based chemotherapy

SNPs combination Control (n = 61)
n (%)

Case (n = 32)
n (%)

OR [95% CI] p-value

DPYD dom (rs1801265) + UMPS rec (rs1801019)

AA + GG/GC 38 (63.3) 9 (29.0) ref. –

AA + CC 2 (3.3) 1 (3.2) 2.11 (0.09–24.53) 0.55

AG/GG + GG/GC 20 (33.3) 20 (64.5) 4.22 (1.66–11.40) 0.0031

AG/GG + CC 0 (0) 1 (3.2) NA NA

DPYD dom (rs1801265) + SHMT1 dom (rs1979277)

AA + GG 19 (32.2) 7 (22.6) ref. –

AA + GA/AA 20 (33.9) 3 (9.7) 0.40 (0.07–1.69) 0.23

AG/GG + GG 10 (16.9) 12 (38.7) 3.25 (0.99–11.39) 0.055

AG/GG + GA/AA 10 (16.9) 9 (29.0) 2.44 (0.70–8.84) 0.16

DPYD dom (rs1801265) + ABCC2 dom (rs717620)

AA + CC 30 (50.0) 8 (25.8) ref. –

AA + CT/TT 10 (16.7) 2 (6.5) 0.75 (0.10–3.64) 0.74

AG/GG + CC 19 (31.7) 18 (58.1) 3.55 (1.32–10.20) 0.014

AG/GG + CT/TT 1 (1.7) 3 (9.7) 11.25 (1.25–245.45) 0.047

Dom Dominant inheritance model, Rec Recessive inheritance model
Significance: P < 0.05
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(rs1042522). Interestingly, in neurological toxicity, model
3, which includes both types of variables, had a Pseudo
R2 value of 0.19, the highest value among these models
(Supplementary Table S7). Taken together, these results
suggest that it is the combined models that provide
higher Pseudo R2 values. However, given the reduced
number of variables (low number of SNP incidence)
when individual toxicities are analyzed the associations
may be relatively imprecise (reflected in the confidence
intervals) and thus must be interpreted with caution
until a larger cohort is studied.

Nomogram for predicting general toxicity
As an approximation for future validation of our re-
sults we developed a multivariate logistic regression-

based nomogram that estimates the probability of a
given patient to experience grade 3–4 overall general
toxicity (Fig. 2A). This model is well calibrated (Sup-
plementary Fig. S2) and has an acceptable discrimin-
atory capacity, with an optimism-corrected c-index of
0.72 (95% CI, 0.72–0.92). Figure 2B shows the distri-
bution of nomogram values for each patient. As ex-
pected, the median values for low or high-toxicity
groups were significantly different (p < 0.0001). In
addition, we established a different cut-off according
to the points on delivered by the nomogram. Thereby
≤45-point patients have a 10% probability of develop-
ing toxicity. Encouragingly, 93% of patients in the
lower range group correspond to the low-toxicity
group. In contrast, patients with > 136-accumulated

Table 6 Models for overall grade≥ 3 toxicity in gastric cancer patients treated with platinum/fluoropyridines -based chemotherapy
using multivariate analysis

Model 1 Model 2 Model 3 Model 4

Characteristics OR [95% CI] p-
value

OR [95% CI] p-
value

OR [95% CI] p-
value

OR [95% CI] p-
value

Age (above median) 1.71 (0.67–
4.48)

0.25 – – 2.33 (0.81–7.15) 0.12 2.24 (0.77–
6.96)

0.14

Sex (Female) 1.83 (0.68–
5.05)

0.23 – – 2.12 (0.68–7.01) 0.19 2.18 (0.70–
7.29)

0.18

CMT peri-op (Yes) 2.66 (1.00–
7.35)

0.05 – – 2.26 (0.73–7.28) 0.15 3.01 (0.94–
10.31)

0.06

5-FU based (Yes) 1.73 (0.55–
6.10)

0.35 – – 2.03 (0.58–8.06) 0.28 1.65 (0.46–
6.50)

0.44

SNPs

ERCC2 (dom. TG/GG) – – 1.56 (0.57–
4.31)

0.37 1.24 (0.41–3.63) 0.68 – –

DPYD (CT)
(rs2297595)

– – 1.56 (0.26–
9.95)

0.61 1.88 (0.25–14.77) 0.52 – –

DPYD (dom. TT)
(rs1801159)

– – 2.32 (0.89–
6.24)

0.08 2.53 (0.91–7.44) 0.07 – –

DPYD (dom. AG/GG)
(rs1801265)

– – 3.74 (1.46–
10.08)

0.006 4.55 (1.64–13.79) 0.004 – –

GSTP1 (dom. AG/GG)
(rs1695)

– – 0.71 (0.26–
1.90)

0.50 0.59 (0.19–1.74) 0.34 – –

SNPs combination

DPYD dom. + ABCC2 dom. (rs1801265 +
rs717620)

– – – – – –

AA + CT/TT – – – – 1.45 (0.18–
8.68)

0.68

AG/GG + CC – – – – 4.33 (1.43–
14.68)

0.012

AG/GG + CT/TT – – – – 18.00 (1.66–
439)

0.027

DPYD (dom. TT)
(rs1801159)

– – – – 2.37 (0.87–
6.75)

0.094

Model 1 Model 2 Model 3 Model 4

Pseudo R2 0.07 0.15 0.21 0.21

CMT Chemotherapy, Dom Dominant inheritance model
Significance: P < 0.05
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points are at a higher risk to develop toxicity and
73% of them are in the high-toxicity group.

Discussion
Chemotherapy treatment-related toxicity remains a crit-
ical problem in GC patients. Unfortunately, the relative
benefit in terms of patient survival associated with tar-
geted therapies is rather modest [52–55]. Therefore, op-
timizing chemotherapy regimens becomes crucial to
improve GC patient survival. Within this context, the
elaboration of reliable models that predict treatment re-
lated toxicities might ensure patient safety in interven-
tional studies. While guidelines exist for genotypes
relating to fluoropyrimidine toxicity, our study also dem-
onstrates associations related to platinum presence. The
Clinical Pharmacogenetics Implementation Consortium
has delivered guidelines for the clinical interpretation of
four DPYD genotypes related to severe fluoropyrimidine
toxicity within European populations [56]. However,
while the frequency of these single nucleotide polymor-
phisms (SNPs) could reach ~ 10% in some European
populations the reported frequency in the Latin-
American populations is below 0.7% [57] (Suarez-Kurtz
2020; Nugent et al. 2019). This may be primarily due to
the underrepresentation of the Latin-American popula-
tion in genetic studies [58]. In accordance, the SNPs in
DPYD (rs55886062), included in the CPIC guide, were
not mutated homozygous nor were the heterozygous ge-
notypes detected in the Chilean patients used in this
study (data not shown). Given the world population that
is not derived from European ancestry, the identification
of new associations between the genome and fluoropyri-
midine and platinum toxicity is of the utmost import-
ance and may complement the current CPIC guidelines
once further validation has been completed. Our find-
ings are one of first to frame toxicity pharmacogenetics
in an underexplored Latin American population and
given the inherent global differences in SNP distribution,
it is not beyond the realms of imagination to envisage
that future pharmacogenetic tests are applied in a re-
gional or populational manner.
In line with previous GC reports, patients in our co-

hort were predominantly males [59, 60] and advanced
stage [42, 60, 61]. Similarly, median overall survival,
histological type and overall toxicity were in agreement
with the current literature (Supplementary Table S1 and
Supplementary Fig. S1). Regarding age at diagnosis, the
association with combined chemotherapy toxicity is

probably explained by the age of recruited participants
in most GC-trials that range between 50 and 60 years
[62]. Interestingly, the inclusion of age in our final model
increased the predictive power. A study reported no sig-
nificant differences in the incidence of grade 3–4 toxic-
ities in gastro-esophageal cancer patients comparing ≥70
vs < 70 year-old participants [63]. However, in many
cases a higher prevalence of toxicity in older patients
leads to chemotherapy discontinuation [64]. In contrast,
a pooled analysis concluded that chemotherapy-related
serious adverse events were significantly higher in > 65
year-old patients [65]. Accordingly, a recent study dem-
onstrated that older GC patients (≥ 70) experience more
severe toxicities versus younger patients [66]. A number
of studies, including meta-analyses, have shown an in-
creased risk of severe toxicity associated to fluoropyrimi-
dine/platinum-based chemotherapy in female gastric and
colorectal cancer patients [7, 36, 37, 67]. In accordance,
we found a trend towards higher toxicity among females
in our study (Table 2).
Compared to intravenous 5-FU, oral capecitabine (5-

FU pro-drug) increases OS and response rates in com-
bination with platinum compounds. Also, 5-FU/cisplatin
is associated with greater toxicity [68–70]. In line with
these findings, we observed that incorporation of certain
regimens improved the predictive power of our models
(Table 3). A recent study in colorectal cancer patients
demonstrated that FOLFOX was associated with a sig-
nificant increase in stomatitis and neutropenia, but de-
creased diarrhea and hand-foot syndrome versus
CAPEOX [71].
Our model 2 includes the most relevant associations

between selected SNPs and overall toxicity (Table 4).
Several reports confirm DPYD is a reaction-limiting en-
zyme for 5-FU catabolism. In fact, DPYD-deficiency is
commonly associated with a lower drug-clearance and
increased toxicity [72]. In our analysis, AG/GG DPYD
(rs1801265) genotypes were associated with higher grade
3–4 toxicity (OR = 4.20, p = 0.002). This variant causes a
Cys 29 to Arg substitution that reduces DPYD enzym-
atic activity and increases 5-FU-related toxicity [73].
Functional studies demonstrate that AG and GG geno-
types of DPYD (rs1801265) have a significantly lower 5-
FU degradation rates (5-FUDR) compared to AA, with a
profound effect for GG [73]. Likewise, the CT DPYD
(rs2297595) genotype was associated with grade 3–4 tox-
icity versus TT, although individually was not significant
(OR = 2.71, p = 0.21). The same study reported that the

(See figure on previous page.)
Fig. 1 Performance of platinum/fluoropyrimidines-based chemotherapy toxicity prediction models using different classification algorithms. The
sensitivity (green line), specificity (red line), accuracy (blue line) and AUCs of ROC curve of models (bar figure) were shown. Overall toxicity
prediction model 1 (A), model 2 (B), model 3 (C) and model 4 (D). LR. logistic regression; SVM. support vector machine; NB. naïve Bayesian; KNN.
k-nearest neighbor; ANN. artificial neural network; RF. random forest; DT. decision tree. N.E; not evaluated
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CT DPYD (rs2297595) genotype had a significantly
lower 5-FUDR versus TT [73]. On the other hand, the
TC/CC DPYD (rs1801159) genotypes were associated
with a lower probability of grade 3–4 overall toxicity
versus the TT genotype (OR = 0.45, p = 0.071). However,
studies on this polymorphism are somewhat inconsistent
and some have reported an association with increased
severe toxicity [28, 74, 75] or no association [76–78]. A
potential explanation for our finding is the high fre-
quency of the C allele in this subset, reaching 34% (Sup-
plementary Table S8). In sharp contrast, European
cohorts report 18.3% for the C allele (n = 157) [73]. Simi-
larly, an Asian study reports a 27% frequency (n = 362)
[75]. Notably, C allele frequency in the American popu-
lation is 27%, whereas in East Asian, European, African
and South Asian populations is 27, 19, 15 and 8% re-
spectively [32]. Therefore, differences can be attributed
to specific geographical/ethnic factors.
Our study also found an association between GSTP1/

ERCC2 SNPs and overall toxicity. These are linked to
the formation of DNA-adducts. The AG/GG GSTP1
(rs1695) genotypes were associated with a lower prob-
ability of grade 3–4 toxicity compared to AA. This “pro-
tective” role of the G allele has been previously reported
in gastro-esophageal [79], colorectal [78], ovarian [80],
testicular [41] and lung cancer [81]. A potential mechan-
ism to explain this protective role could be the activation
of the JNK pathway [79, 82] that increases cell defense
mechanisms. Conversely, GT/GG genotypes in ERCC2
(rs13181) were associated with a higher probability of
grade 3–4 overall toxicity (Table 4). These polymorphic
variants decrease repair efficacy and may thus increase
DNA adducts [83, 84]. This suggests that increased tox-
icity may be mediated by platinum damage to normal
cells [85].
In line with previous publications, our study found a sig-

nificant association between DPYD (rs1801265) SNPs and
grade 3–4 overall toxicity only in male patients (Supple-
mentary Table S4), [7]. Our paired-SNP analysis found a
strong association between DPYD (rs1801265) and
ABCC2 (rs717620) SNPs and overall toxicity (see Table 5).
In particular, AG/GG (DPYD) and CT/TT (ABCC2) pa-
tients had a high probability of developing grade 3–4 over-
all toxicity (OR = 11.25, 95% CI = 1.25–245.45). The
ABCC2 (rs717620) polymorphism is located in the pro-
moter region of the gene, and has been previously associ-
ated with decreased protein expression in vitro [86];

ABCC2 also mediates the export/elimination of
glutathione-oxaliplatin conjugates [87] therefore an im-
paired function could decrease export of the drug leading
to toxicity. Previous studies in colorectal and lung cancer
[88, 89] have associated this polymorphism to severe
fluoropyrimidine/platinum-related hematological toxicity.
Thus, the DPYD (rs1801265)/ABCC2 (rs717620) SNP
combination could potentiate fluoropyrimidines and/or
oxaliplatin derived toxicities. Again, given the SNP fre-
quency in our analysis, this finding requires further valid-
ation by a larger cohort.
Utilizing a classification algorithm that involved 28

SNPs and 1 clinical variable (histology) a study by Yin
et al. reported that the best prediction of toxicity was
achieved in lung cancer patients that received platinum-
based therapies [39]. Moreover, these authors demon-
strated that the ABCG2 rs2231142-CES5A rs3859104
SNPs combination was strongly associated with grade
3–4 platinum toxicity (adjusted OR = 8.044, p = 4.350 ×
10–5) [90]. In this regard, our models displayed better
adjustments (based on Pseudo R2) after adding clinical/
treatment factors and SNPs (models 3 and 4, Table 6).
Our Model 4 was the best-fitted model in terms of sen-
sitivity, specificity, accuracy and AUC (Fig. 1D). Previous
studies have used also this strategy with consistent re-
sults [7, 40, 41, 91].
The frequency of grade 3–4 toxicity is observed in

only 10–15% of gastric cancer patients as medical oncol-
ogists often make alterations to treatment protocols
when lower toxicities start to manifest. The number of
cases and controls incorporated into this study allowed
statistically significant differences to be observed, how-
ever despite over 223 medical records being screened,
we recognize as a limitation that the number of patients
was a limiting factor in further interpreting our data and
thus validation in a larger cohort is required before these
models can be considered in a clinical setting. A future
cohort will permit better precision analysis of the com-
binatorial SNPs. Certain SNPs, despite not achieving the
individual significance standard of p < 0.05, were in-
cluded in the models due to their influence or effect on
the development of severe toxicity has been previously
reported, or their inclusion improved the Pseudo R2

values. Interestingly, according to the CPIC guide, the
polymorphisms for DPYD rs1801265 (also known as
DPYD*9A) and DPYD rs1801159 (also known as
DPYD*5), which were both incorporated into our model,

(See figure on previous page.)
Fig. 2 Nomogram for estimating overall toxicity risk based on the multifactorial model 4. A The nomogram was developed on the basis of the
final multivariate logistic regression model. B The total sum of points of low and high-toxicity groups is shown in the scatter plot on the left.
Broken lines represent the probability of developing severe toxicity according to the points. On the right side, the percentage of low and high-
toxicity groups is shown according to the probability estimated in the nomogram. Low Tox. Low-toxicity group; High Tox. High-toxicity group. DPYD
6, rs1801265; DPYD 3, rs1801159 (in nomogram). Significance: P < 0.05
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are classified to not affect the DPD function in a clinic-
ally relevant manner in the context of 5-fluorouracil re-
lated toxicity [30]. Interestingly, in accordance with our
results, recent reports have shown an association with
severe toxicity and high levels of 5-FU post-treatment
for DPYD-rs1801265 [92–94].
A further option is a model / nomogram comparison

with other similar studies. Schwab et al. [7] and Botticelli
et al. [95] previously proposed nomograms to predict
toxicity to 5-FU, and thus could be incorporated as a
reference in future validation studies. A potential com-
ment on this study could be the heterogeneity of treat-
ments received by patients and that a prospective study
considering a limited number of regimens would allow
analyses the actual doses and duration of chemotherapy
as potential variables associated with toxicity. While this
is true, our gastric cancer patients and their treatments
are a reflection of standard clinical practice. This hetero-
geneity in treatment was present despite the patients be-
ing part of the same recruiting clinical center and being
treated by the same group of medical oncologists. Thus,
this heterogeneity observed among our fluoropyrimidine
and platinum-based treatments will always exist in the
oncology clinic and thus any predictive model or algo-
rithm will be required to be effective in face of this vari-
able. The real-world treatment and clinical outcomes in
this study have allowed a “proof of concept” of a model
which integrates clinical and pharmacogenetic (three
SNPs in two different genes) variables to improve the
prediction of toxicity associated with fluoropyrimidine
and platinum-based chemotherapy. Furthermore, recent
studies have demonstrated that genetic elements outside
the coding region of genes are potential regulators of
pharmacokinetic and pharmacodynamic processes. In
the TYMS gene, variants in UTR regions of 5’VNTR 28
bp-repeat (rs45445694) and 3’UTR 6 bp-indel
(rs11280056) have been associated with severe toxicity
in patients receiving fluoropyrimidine based treatments
[77]. Furthermore, regulatory molecules of the non-
coding RNA type, such as circular RNA (circRNAs) and
Long Non-Coding RNA (lncRNAs), have been correlated
to clinical variables (TNM stage, presence of metastasis
and diagnosis) in patients with GC [96]. Interestingly,
polymorphisms in lncRNAs of ANRIL (rs1333049) and
MEG3 (rs116907618) genes were associated with severe
overall and gastrointestinal toxicity in patients with lung
cancer treated with platinum-based chemotherapy [97].
In addition, another regulator of gene expression are the
Micro RNA (miRNAs), where genetic variations in
miRNA binding sites are associated with an altered drug
response [98]. In a similar vein, a recent publication by
Powell et al. reported the mapping of miRNA-mRNA in-
teractions in several pharmacogenes, in fact, the authors
identified an hsa-mir-27b-DPYD interaction at a

previously validated binding site, which may suggest the
existence of additional elements that contribute to the
individualism of drug response [99].
Given that the purpose of study is to predict toxicity

to chemotherapy, it would be interesting in further val-
idation studies to test our proposed clinical variables
and individual and combinations of SNPs, together with
emerging variables such as changes in expression, se-
quence, and binding sites of non-coding RNAs. This
may give us a more complete picture on how to predict
severe toxicity associated with chemotherapy and thus
improve patient quality of life and survival.

Conclusions
In summary, in the absence of reliable markers and clin-
ically relevant models to predict patient toxicity derived
from fluoropyrimidine/platinum-based chemotherapy,
herein we present for future validation a logistic
regression-based model that integrates clinical, treat-
ment and common SNPs.
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