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Abstract

Most surgical procedures require general anesthesia, which is a reversible deep sedation state

lacking all perception. The induction of this state is possible because of complex molecular

and neuronal network actions of general anesthetics (GAs) and other pharmacological agents.

Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible

upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when admin-

istered at the extremes of ages, are an increasingly recognized health concern and the subject

of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse

effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic

GAs), can also extend to future unexposed offspring. Importantly, experimental findings show

that GABAergic GAs may induce heritable effects when administered from the early postnatal

period to at least young adulthood, covering nearly all age groups that may have children after

exposure to anesthesia. More studies are needed to understand when and how the clinical use of

GAs in a large and growing population of patients can result in lower resilience to diseases in the

even larger population of their unexposed offspring. This minireview is focused on the authors’

published results and data in the literature supporting the notion that GABAergic GAs, in particular

sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of

genes that are essential for the functioning of these steroid systems. The authors hypothesize that

stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.

Summary sentence

GABAergic general anesthetics, in particular sevoflurane, induce acute and long-term neuroen-

docrine abnormalities and epigenomic alterations in germ cells, as well as epigenomic, transcrip-

tomic, and behavioral abnormalities in male offspring.

Key words: general anesthetic, sevoflurane, K+-2Cl- (KCC2) Cl- exporter, Na+-K+-Cl- (NKCC1)

Cl- importer, GABA type A receptor, corticosterone, estradiol, testosterone, DNA methylation,

intergenerational effects.
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Introduction

Stress, endocrine-disrupting chemicals (EDCs), alcohol, and other
environmental factors can lower the resilience to neuropsychiatric
and other disorders in offspring of exposed parents. This notion has
evolved from denial to become a data-driven phenomenon [1–16].
General anesthetics (GAs) are among the most frequently used phar-
macological agents in medicine, and their use is rapidly expanding.
As one example, the global number of surgeries, which would not
be possible without the use of anesthesia, rose from 226.4 million in
2004 to 312.9 million in 2012 [17]. The known molecular targets
for GAs include various voltage- and ligand-gated ion channels,
ion transporters, proteins regulating neurogenesis, synaptogenesis,
synaptic transmissions, neurotransmitter and hormonal levels and
actions, genomic and epigenomic activities, immune and metabolic
processes, and others [18–24]. By modulating numerous molecular
targets, GAs share mechanisms of action with alcohol, stressors, and
EDCs [24–33]. Although monitored macrophysiological parameters
rapidly return to normal upon anesthesia withdrawal [34, 35], some
of the molecular effects of GAs initiated during GA exposure may
persist. As a result, significant neurocognitive abnormalities can
occur later in life. The long-term neurocognitive adverse effects of
GAs, especially after prolonged and/or repeated procedures, are the
subject of extensive clinical and laboratory research [36–49].

Initial evidence of heritability of the adverse effects of GAs was
published in the early 1980s [50, 51], long before the publication
of the first studies on the neurotoxic developmental effects of GAs
in the exposed animals [52, 53]. According to those early studies,
offspring of mice exposed to the halogenated GAs halothane and
enflurane exhibited deficiencies in learning behavioral paradigms
[50, 51] (reviewed in [54]). The revolutionary interpretations of
those findings, for example, GA-induced “genetic aberrations”of the
germline [50, 51], were not experimentally tested at the time (likely
because of limited technical tools). However, a recent human study
designed to assess effects of changes in obesity after bariatric surgery
on DNA methylation patterns in spermatozoa found lasting changes
in multiple genes [55]. Detection of such changes as early as 1 week
after the surgery suggests that GA/surgery (not just changes in obe-
sity) could be contributing factors [55]. Sevoflurane is a commonly
used halogenated GA whose polyvalent actions include enhancement
of GABA type A receptor (GABAAR) signaling, similar to halothane
and enflurane [21, 22, 56, 57]. We found that prolonged exposure
to sevoflurane in neonatal rats or repeated exposure to sevoflurane
in adult rats (F0 generation) caused changes in DNA methylation
in spermatozoa and ovarian cells. It also caused epigenomic, tran-
scriptomic, and behavioral defects in male, offspring (F1 generation)
[58–60]. A recent study by Chastain-Potts and colleagues further
supports the possibility of intergenerational effects of sevoflurane
administered to neonatal rats [61] (reviewed in [54] and in this
issue). Considering the wide and growing use of GAs [17], focused
mechanistic studies that more closely model clinical settings and
ultimately studies in patients of heritable effects of GAs are needed.
It is critically important to elucidate when and how the use of GAs
in patients can lower resilience to neurocognitive diseases in the
even larger population of their offspring; to identify safer GAs and
prevention strategies; and to assess whether heritable effects of GAs
contribute to the rise in neurodevelopmental disorders, whose causes
are often unknown [62–65].

In this minireview, we discuss our published experimental find-
ings and data in the literature demonstrating that sevoflurane,
and potentially other GABAergic GAs, act as potent stressors and

EDCs. The adverse effects of sevoflurane include acute and long-
term neuroendocrine abnormalities, epigenomic changes in germ
cells, and epigenomic and transcriptomic changes in the brains of
male offspring, as well as behavioral deficiencies. We hypothesize
that stress- and EDC-like effects of sevoflurane contribute to the
anesthetic’s sex-specific heritable effects.

Sevoflurane induces upregulation of stress and

sex steroid production and a shift in GABAAR

signaling toward excitatory

Neuroendocrine effects of sevoflurane in neonatal rats

The changes in levels of cortisol and sex steroids associated with
exposure to anesthesia/surgery or to anesthesia without surgery sup-
port the acute neuroendocrine effects of GAs in patients [24, 26–33].
Consistent with the strong, stressor-like effects of GABAergic GAs,
a single exposure to sevoflurane or propofol was sufficient to cause
multifold increases in the secretion of corticosterone in neonatal rats
[59, 66–69]. Furthermore, sevoflurane increased systemic levels of
the sex steroid hormones testosterone (T) in males and 17-β-estradiol
(E2) in males and females within 1 h of the GA exposure [69].

Our findings suggest that sevoflurane enhances systemic levels
of E2 in neonatal rats by increasing synthesis of E2 in the brain
that is independent of testis-produced T [69]. Figure 1 illustrates the
hypothetical signaling pathways mediating the effects of sevoflurane;
these pathways are supported by published experimental findings,
which are discussed throughout this minireview. E2 is synthesized
in the brain through aromatization of testis-derived T in males and
via aromatization of de novo synthesized T in the brains of both
sexes. Although sevoflurane increased systemic levels of T in males
only, systemic levels of E2 were increased in males and females to
a similar extent. These findings support the idea that sevoflurane-
increased systemic levels of E2 originate in the brain. Pretreatments
with the GABAAR antagonist bicuculline methiodide or E2 synthesis
inhibitor formestane deterred sevoflurane-induced increases in E2
levels in both sexes, but not sevoflurane-induced increases in T levels
in males [69]. The female rat ovary remains quiescent at this age,
but male and female rat pups have similar serum levels of E2 during
this age period [70–74]. These facts also support the possibility that
de novo synthesized T in the brain is the source of sevoflurane-
heightened systemic levels of E2.

One hour of anesthesia with sevoflurane was also sufficient to
acutely alter the expressions of several genes that encode proteins
that are essential components of the E2 signaling pathway. Expres-
sions of the aromatase gene, an enzyme that aromatases T to E2,
and the estrogen receptor alpha (Erα) gene, but not estrogen receptor
beta (Erβ) gene, were increased in the hypothalamus (Figure 1) [69].
ERα predominantly localizes to the brain regions involved in regu-
lating sexual behavior such as the hypothalamus. ERβ has a broader
distribution in the neurons of the hippocampus, cerebral cortex, and
amygdala, as well as in the microglia and oligodendrocytes [70, 73–
75]. Nevertheless, we found that the antagonist of ERα, but not
ERβ, depressed sevoflurane-induced electroencephalography (EEG)-
detectable seizure-like activities [69]. The EEG-detectable seizure-
like patterns largely reflect the brain’s cortical activity. These findings
suggest that E2/ERα is an important signaling pathway mediating
effects of sevoflurane in multiple brain regions. Interestingly, the
molecular mechanisms mediating the organizational effects of T
in the perinatal rat brain, for example, T-regulated brain sexual
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Figure 1. A diagram illustrating hypothetical pathways that involve the positive feedback interaction between GABAAR signaling, stress, and sex steroids in the

mediation of heritable effects of sevoflurane. (See text for details.) These hypothetical pathways are proposed based on our published experimental findings

and/or data in the literature that are discussed in this minireview; nevertheless, these are hypotheses that require rigorous experimental verification. The red

arrows illustrate positive, stimulatory effects and the green arrow illustrates a negative, inhibitory effect. The blue arrows illustrate effects of steroids on parental

germ cells. Our experimental data indicate that sevoflurane acts via GABAAR-independent mechanisms to increase systemic levels of testosterone (T) in males

only [69]. Sevoflurane, by acting via GABAAR-mediated mechanisms, increases systemic levels of 17-β-estradiol (E2) in males and females [68, 69]. Our findings

show that sevoflurane increases expressions of aromatase and estrogen receptor α (Erα), but not estrogen receptor β (Erβ), and systemic E2 levels. E2, by acting

via ERα, increases the Na+-K+-Cl− cotransporter (Nkcc1)/ K+-Cl− cotransporter (Kcc2) ratio. Therefore, E2 may shift GABAAR signaling toward excitatory and

further enhances GABAAR excitatory signaling through direct interaction with GABAAR, as evident from increased sevoflurane-induced electroencephalography

(EEG)-detectable seizure-like activities [68, 69]. The enhanced excitatory GABAAR signaling leads to a further increase in sevoflurane-stimulated production of

E2. Sevoflurane, by enhancing excitatory GABAAR signaling in corticotrophin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the

hypothalamus, stimulates the hypothalamic–pituitary–adrenal (HPA) axis and corticosterone (CORT) production [59, 67–69]. The stress response reduces the

KCC2 cell-surface expression in the hypothalamic neurons [59], leading to a shift in GABAAR signaling toward excitatory, and, as a result, to greater upregulation

of the HPA and hypothalamic-pituitary-gonadal (HPG) axes. Sevoflurane, by increasing E2 levels and expression of Erα, reduces the CORT-dependent negative

feedback on the HPA axis [101, 102], leading to greater stress response, more excitatory GABAAR signaling via reduced cell surface KCC2 expression, and

greater GABAAR signaling-mediated production of E2. Based on data in the literature on epigenetic effects of stress in germ cells [138, 140–143] and on our

own findings [58, 59], we hypothesize that CORT mediates effects of sevoflurane in parental germ cells, at least in part through epigenetic modifications. The

heritable effects of EDCs, as well as transcriptomic activities of ERα and androgen receptors (AR) [9, 15, 136, 137, 145–147], allow us to hypothesize that E2 and

T may also mediate heritable effects of sevoflurane through their actions in parental germ cells.

differentiation, are thought to include aromatization of testis-derived
T to E2 and activation primarily of ERα by E2 in the brain [71, 76–
82]. Systemic levels of E2, expressions of hypothalamic aromatase
and Erα, were increased by sevoflurane to a similar extent in male
and female rat pups regardless of sevoflurane-induced increases in
systemic levels of T in male pups only [69]. These findings suggest
that sevoflurane, administered during the sensitive period in rats,
may affect brain sexual differentiation.

Within 1 h of exposure, sevoflurane also increased expression
of the Na+-K+-Cl− (Nkcc1) Cl− importer gene, but it reduced
expression of the K+-Cl− (Kcc2) Cl− exporter gene [69]. Formed
largely by NKCC1 and KCC2 activities, the neuronal transmem-
brane gradient of Cl− is a crucial determining factor as to whether
Cl− signaling through GABAARs, the main substrate that mediates
sedative effects of GABAergic anesthetics, is inhibitory or excitatory
in the brain [83–90]. Intracellular concentrations of Cl−, the major

charge carriers through GABAAR channels, are elevated in many
neurons in the rostral regions of the neonatal brain because of
the relatively high and low levels of the NKCC1 Cl− importer
and KCC2 Cl− exporter, respectively [83–85, 90]. Therefore, the
Cl− effluxes through GABAAR channels during this age period
can be strong enough to cause membrane depolarization sufficient
to activate low-threshold voltage-gated Ca++ channels and to
induce depolarization-dependent relief of the Mg++-block of Ca++-
permeable N-methyl-D-aspartate receptors (NMDARs) [83–85].
The GABAAR signaling-initiated Ca++ influxes through the Ca++

channels and NMDAR channels during the early stages of brain
development regulate numerous developmental processes ranging
from gene expression to synapse formation [84, 88–90]. Sevoflurane-
caused increases in the Nkcc1/Kcc2 mRNA ratio suggest that
sevoflurane may not only enhance GABAAR signaling through direct
interaction with the receptor but also render GABAAR signaling even
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more depolarizing/excitatory by shifting the equilibrium potential
for Cl− to more positive values [68, 69].

The sevoflurane-altered GABAAR signaling can further be
potentiated by E2, as evident from studies demonstrating that exoge-
nous E2 increased GABAAR-mediated currents in rat hippocampal
slices and potentiated sevoflurane-caused electroencephalogram-
detectable seizure-like activities in rat pups [95]. These sevoflurane-
caused EEG-detectable seizure-like activities can be diminished by
bicuculline methiodide, formestane, the ERα antagonist MPP (1,3-
Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-
1H-pyrazole dihydrochloride), or the NKCC1 inhibitor bumetanide.
The effect of those treatments supports the involvement of E2/ERα

in the GABAergic excitatory effects of sevoflurane in neonatal rats
(Figure 1) [95, 96].

A role of E2 in the positive modulation of the GABAergic action
of sevoflurane is also evident from our findings that exogenous E2
shortened the time needed for sevoflurane to induce the loss of the
righting reflex (LORR), whereas the estrogen receptor antagonist
and inhibitor of synthesis of E2 lengthened it [68]. The righting reflex
is predominantly mediated by neuronal circuits in the midbrain
[91, 92]. Although in neonatal rats GABAAR-mediated signaling
is predominantly excitatory in rostral regions, it becomes increas-
ingly inhibitory more caudad [84–86, 90]. Therefore, exogenous
E2, by enhancing excitatory and inhibitory GABAAR signaling in
the neonatal rat cortex and midbrain, respectively, may increase the
efficacy of sevoflurane to induce EEG-detectable epileptic seizure-
like activities and LORR [95]. Also, according to data in the litera-
ture, E2-caused elevation of intracellular Ca++ in immature neurons
through enhancement of the depolarizing action of GABA may
explain why E2 exacerbates hippocampal cell damage in neonatal
rats in the presence of a GABAAR agonist [93].

Clearly, the involvement of E2 in the mediation of sevoflurane-
induced effects is more complex than just positive modulation of
GABAAR activity. The alleviating effects of bicuculline and formes-
tane on sevoflurane-increased expressions of hypothalamic aro-
matase, Erα, and the Nkcc1/Kcc2 mRNA ratio suggest that E2 and
GABAAR signaling interact to mediate the transcriptional effects
of sevoflurane (Figure 1) [69]. In further support of this interac-
tion between E2 and GABAAR signaling, the GABAAR signaling
is an important regulator of the functioning of the hypothalamic–
pituitary–gonadal (HPG) axis and resulting secretion of sex steroid
hormones [94–98]. Because many gonadotropin-releasing hormone
(GnRH) neurons are stimulated by GABAAR signaling even under
basal conditions in adulthood [94–97], the sevoflurane-initiated
GABAAR/E2-mediated upregulation of excitatory GABAAR signal-
ing in the hypothalamic neurons may lead to even greater stimu-
lation of the HPG axis and production of sex steroids, including
through gonadotrophin-releasing hormone (GRH)-regulated aro-
matase activity in the brain [98].

The findings that formestane and bicuculline diminished the
sevoflurane-caused increase in systemic levels of corticosterone sug-
gest that GABAAR signaling and E2 are involved in the mediation
of the stress-like effects of sevoflurane in rats [68, 69]. One of the
fundamental mechanisms of downregulating the stress response in
the brain is the control of the corticotrophin-releasing hormone
(CRH)-secreting hypothalamic paraventricular nucleus (PVN) neu-
rons by inhibitory GABAAR signaling and positive modulation of
this signaling by neuroactive steroids [99, 100]. Because of the
depolarizing/excitatory GABAAR signaling in neonatal rats, which
can further be shifted toward excitatory and upregulated via the E2-
dependent mechanisms, sevoflurane is likely to induce an opposite,

stimulating effect on hypothalamic–pituitary–adrenal (HPA) axis
activity (Figure 1). Additionally, E2 may downregulate and upreg-
ulate the negative feedback effects of glucocorticoids on the HPA
axis by activating and inhibiting ERα and ERβ, respectively [101,
102]. This E2-dependent upregulation of the HPA axis may be more
efficacious in sevoflurane-anesthetized rat pups because the GA not
only increases levels of E2 but also upregulates the expression of
hypothalamic ERα, but not ERβ, receptors (Figure 1) [69].

Our findings indicate that GABAergic GA-initiated increases in
the Nkcc1/Kcc2 mRNA ratio in the hypothalamus and other brain
regions in neonatal rats may persist into adulthood. The adult rats,
neonatally exposed to GABAergic GAs, also exhibit exacerbated
HPA axis responses to stress and behavioral deficiencies [58–60, 66–
69, 103–109]. Both neonatal GABAergic GA-initiated exacerbated
HPA axis responses to stress and behavioral deficiencies can be
deterred by pretreatments with bicuculline methiodide or formestane
administered at the time of GA exposure. These findings support
the important role of GABAAR signaling and sex steroids in the
mediation of the long-term stress-like adverse effects of GABAergic
GAs [58–60, 66–69, 103–109]. In further support of this con-
tention, we found that NKCC1 inhibition at the time of neonatal
anesthesia ameliorated most of the lasting developmental effects
of GABAergic GAs in rats. The role of the Cl− transporters and,
hence, excitatory GABAAR signaling, in the developmental effects
of GAs, has also been confirmed by other laboratories [110–112].
The long-term developmental abnormalities similar to those induced
by single early-life exposures to GABAergic GAs can be induced
by prolonged and repeated maternal separations in neonatal rats
[113–118]. Collectively, these findings further strengthen the idea
that GABAergic GAs administered to neonatal rats induce acute and
long-term neuroendocrine abnormalities similar to those induced by
excessive stress and EDCs.

Neuroendocrine effects of sevoflurane in young adult

rats

Acute and chronic stress and other environmental stressors can
induce a shift in GABAAR signaling from inhibitory to excitatory
even in adults, at least in part by decreasing cell-surface KCC2 levels.
Such changes in KCC2-GABAAR signaling are linked to a number
of pathophysiological conditions [119–126]. We tested whether
sevoflurane, administered to young adult Sprague Dawley rats, can
also act as a stressor. We exposed male and female rats to 2.1%
sevoflurane for 3 h on 3 alternating days beginning on postnatal day
56 (P56) [59]. One hour after the last exposure to sevoflurane on
P60, male and female rats had multifold increases in systemic levels
of corticosterone. However, only exposed males had significantly
reduced KCC2 expression in the PVN neurons of the hypothalamus
at that time (Figure 1) [86]. The changes in KCC2 expression in the
PVN neurons of exposed females were characterized by the same
trend, but they were not sufficient to achieve statistical significance
[59]. This finding suggests that the threshold for similar KCC2 effects
of sevoflurane in adult females is higher. Interestingly, only male
rodents were tested in previous studies reporting acute stress-induced
downregulation of KCC2 expression [119–125]; however, daily
exposure to stress for 25 days is reported to reduce cell-surface KCC2
expression in the female mouse hippocampus as well [126]. It is
important to stress that the specific functional excitatory/inhibitory
outcome of GABAAR-mediated signaling depends on cellular and
subcellular NKCC1/KCC2 expression patterns, which are not fully
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studied. Immunohistochemical and electrophysiological studies indi-
cate that vasopressin-secreting cells in the adult rat PVN do not
express detectable levels of KCC2 and their GABAergic synaptic
inputs are excitatory [127, 128], as are many GnRH neurons [94–
97].

Male rats that were exposed to sevoflurane for 3 h on P56,
P58, and P60 developed long-term neuroendocrine and behavioral
abnormalities, which were similar to those found in adult rats that
were exposed to sevoflurane as neonates. More than 3 months after
exposure to sevoflurane in young adulthood, male rats exhibited
exacerbated HPA axis responses to stress and behavioral deficiencies.
Furthermore, the serum levels of luteinizing and T hormones were
significantly increased in male rats, as was their expression of the
hypothalamic Gnrh gene [59]. The HPG axis in these male rats
was also altered at the level of expressions of the hypothalamic
aromatase, Erα, and Erβ genes. The expressions of the aromatase
and Erα genes were significantly increased, whereas the expression of
the Erβ gene was slightly, but significantly, decreased [59]. The latter
may be an additional example of the interaction between the HPG
and HPA axes in the long-term effects of sevoflurane in adult rats
to induce exacerbated corticosterone responses to stress (Figure 1).
As we previously discussed, data in the literature indicate that E2
could potentiate the HPA axis responses to stress by downregulating
and upregulating the negative feedback effects of glucocorticoids on
the HPA axis through activation and inhibition of ERα and ERβ,
respectively (Figure 1) [101, 102]. The long-term changes in the HPA
axis responses to stress and neurobehavioral characteristics in female
rats that were exposed to sevoflurane as young adults showed similar
trends as their male counterparts, but they were not sufficient to
achieve significance [59]. In future studies, it will be important to
test whether differences in sex hormones in young adult male and
female rats at the time of anesthesia contribute to differences in acute
and long-term EDC-like and stress-like effects of sevoflurane in both
sexes.

Human and animal studies provide evidence that parental expo-
sure to excessive stress and/or EDCs can impact the health of future
generation(s) through nongenetic transmission, i.e., a transmission
that does not include changes in DNA nucleotide sequences [1–16,
129–144]. Findings of studies that were discussed above support
the idea that the GABAergic GA sevoflurane may induce acute and
long-lasting changes in systemic levels of stress and sex steroids and
alterations in the expressions of genes that encode proteins essential
for the functioning of these steroid systems, including the Gr and
Erα genes. Considering that GR, androgen receptors (ARs), and
ERα also function as transcription factors [145–147], it is plausible
that sevoflurane-induced changes in the functioning of the steroid
systems may be involved in the mediation of nongenetic heritable
effects of the GA.

Potential role of steroids in intergenerational

effects of parental exposure to sevoflurane

The identification and investigation of nongenomic heritable effects
of parental experiences in humans is complicated by the difficulties
of assembling study cohorts from different generations spread over
many years or decades and the confounding effects of social, cultural,
educational, and behavioral factors, among others [1–9]. It is even
more difficult to link someone’s neurodevelopmental abnormalities
to the GA exposure of their parents, who have undergone a relatively
short procedure(s) in the past. Moreover, the exposed parents may

not exhibit symptoms that can be easily identified as those associated
with GA exposure. Animal studies, which have the advantage of
strictly controlled experimental conditions, strongly support multi-
generational effects of stress, EDCs, and other environmental factors
and implicate epigenetic alterations in the germline as a mediator of
such heritable effects [10–16, 129, 133–144].

Such germline epigenetic mechanisms include changes in DNA
methylation, histone modifications, and noncoding RNAs [10–
16, 129, 133–144]. The relatively long-lasting stability of DNA
methylation marks supports the possibility that DNA methyltrans-
ferase (DNMT)-regulated DNA methylation within a 5′-cytosine-
phosphate-guanine-3′ (CpG) sequence plays a role in epigenetic
inheritance [133–136]. The DNA methyltransferase family includes
DNA methyltransferase 1 (DNMT1) and DNA methyltransferases
3A and 3B (DNMT3A/3B). DNMT1 is responsible for maintaining
DNA methylation during the DNA replication process by reproduc-
ing the methylation patterns in newly synthesized nonmethylated
strands of DNA, as DNMT1 prefers hemimethylated DNA. The
activities of DNMT3A/3B, on the other hand, are modulated by
internal and external factors so they belong to de novo DNMTs
[148].

Findings of differentially methylated regions in multiple genes in
the spermatozoa of adult patients just 1 week after bariatric surgery
to treat obesity suggest that GA/surgery, not just changes in obesity,
could induce DNMT-regulated changes in the methylome of human
germ cells [55]. Our studies in laboratory animals, in which rats
were exposed to sevoflurane only, without surgery or any other
interventions, further support the possibility that GAs may induce
changes in DNA methylation patterns in parental germ cells. The
findings also indicate that similar DNA methylation patterns may
be detected in the same gene in the brains of future offspring who
were not exposed. Importantly, the offspring also exhibited altered
expression of the same gene in the brain, as well as neurobehavioral
deficiencies [58–60].

In these initial studies, we tested whether intergenerational neu-
robehavioral effects of sevoflurane were accompanied by changes in
DNA methylation in the Kcc2 gene promoter in parental spermato-
zoa and ovarian cells (the latter were studied as a surrogate of female
germ cells) and in the brains of their offspring [58–60]. We chose
changes in the Kcc2 gene DNA methylation patterns as a potential
epigenomic biomarker because of our previous experimental find-
ings that sevoflurane-induced E2-dependent changes in Kcc2 gene
expression may be linked to neurobehavioral effects of sevoflurane
in the GA-exposed animals [58, 59, 105–107].

In one of these studies [59], male and female rats (generation
F0) were exposed to 2.1% SEVO for 3 h on 3 alternating days
beginning on P56 and then mated 25 days later to generate offspring
(generation F1) of all four possible combinations of sevoflurane-
exposed and control sires and dams. The F0 rats were the same rats
whose somatic acute and long-term neuroendocrine and behavioral
abnormalities induced by sevoflurane are discussed in detail in the
preceding section of this minireview [59]. Consistent with stress-
like effects of sevoflurane, F0 male and female rats had similar
multifold increases in systemic levels of corticosterone 1 h after
the last sevoflurane exposure on P60. In parallel with similar acute
stress-like responses to sevoflurane, the F0 male and female rats
had a similarly hypermethylated Kcc2 gene promoter in sperm and
ovarian tissue, respectively, measured >2 months after GA exposure
[59]. Although only exposed F0 males, not F0 females, exhibited sig-
nificant long-term neurobehavioral deficiencies, both sevoflurane-
exposed F0 males and females passed behavioral abnormalities
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to F1 males [59]. The Kcc2 gene was also hypermethylated and
exhibited reduced expression in the hypothalamus and hippocampus
of adult F1 male, offspring of the exposed parents [59]. The F1 male,
offspring of parents exposed to the anesthetic in young adulthood
exhibited neurobehavioral deficiencies during the elevated plus maze
(EPM) and prepulse inhibition (PPI) of acoustic startle response tests
[59].

The only detected significant somatic changes in sevoflurane-
exposed F0 females were acute increases in systemic levels of cor-
ticosterone. This finding allows us to hypothesize that sevoflurane-
induced upregulation of the HPA axis and corticosterone secretion at
the time of anesthesia are involved in the mediation of sevoflurane-
initiated epigenetic changes in the parental germlines (Figure 1). We
also speculate that the threshold for parental sevoflurane exposure
to induce epigenomic changes in the F0 germline and F1 epige-
nomic, transcriptomic, and neurobehavioral defects, is lower than
that needed to induce F0 neurobehavioral defects. This idea is
supported by the lack of significant long-term changes in measured
neurobehavioral parameters in the exposed F0 young adult female
rats [59].

In our other study, F0 male and female rats were exposed to 6 h of
anesthesia with 2.1% sevoflurane on P5 [58]. On ∼P90, the exposed
and control F0 rats were used as breeders to produce F1 offspring of
four possible combinations of exposed and control sires and dams.
As we discussed in the preceding section, sevoflurane and propofol
cause acute increases in systemic levels of corticosterone and E2 in rat
pups of both sexes (Figure 1) [66–69]. Notably, bisulfite sequencing
revealed that sevoflurane also affected the same region in the Kcc2
gene in germ cells of F0 rats neonatally exposed to sevoflurane,
similar to those that were exposed to the GA in young adulthood.
Adult rats neonatally exposed to sevoflurane had increased CpG site
methylation in the Kcc2 promoter in sperm, with the same trend
in F0 ovaries (although the latter changes were not sufficient to
achieve significance) [58]. Similar to the young adult study, F1 male,
offspring of parents neonatally exposed to sevoflurane had increased
methylation in the same region of the Kcc2 gene in the brain.

The methylation in the Kcc2 promoter region in the hippocampus
of F1 male offspring of parents that were both exposed was more
profound than other groups of F1 males. Notably, F1 male offspring
of parents that were both exposed was the only group of F1 males
with a significant decrease in the hippocampal Kcc2 mRNA level and
increase in Nkcc1/Kcc2 mRNA ratio [58]. This group of F1 males
was the only F1 male group that exhibited abnormalities in spatial
memory during the Morris water maze test, the behavioral paradigm
during which animal behavior closely correlates with hippocampal
synaptic plasticity [149].

Interestingly, the results of this initial study suggest that the
effects of early-life parental exposure to sevoflurane in F1 male
offspring depend on whether a sire only, a mother only, or both
parents are neonatally exposed to the anesthetic. F1 males of all
combinations of exposed and control parents had a hypermethylated
Kcc2 promoter gene in the hypothalamic PVN, similar to the F1 male
hippocampus. However, in contrast to the F1 male hippocampus,
where F1 male offspring of both exposed parents had the most
profound increase in Kcc2 promoter methylation, the F1 males of
the exposed sires/control mother were the most affected group in
terms of the hypothalamic PVN Kcc2 promoter methylation [58].
The F1 male offspring of all combinations of exposed parents had
similarly reduced Kcc2 expression in the hypothalamic PVN, but the
F1 progeny of exposed sires/control mothers was the only group
that had an increased expression of the Nkcc1 gene in the PVN.

The resulting Nkcc1/Kcc2 mRNA ratios in the hypothalamic PVN
were increased in the F1 male offspring of a single exposed parent,
but not in F1 males of both exposed parents. Only F1 male progeny
of exposed sires/control mothers exhibited significant alterations in
behavior during the EPM and PPI of acoustic startle response tests
[58]. If further confirmed, these findings suggest that a reduction in
the expression of the hypothalamic PVN Kcc2 gene and resulting
increase in the hypothalamic PVN Nkcc1/Kcc2 mRNA ratio are not
sufficient to explain deficiencies in behavior during the EPM and
PPI of acoustic startle response tests in F1 male offspring of parents
neonatally exposed to sevoflurane.

The neurobehavioral abnormalities during the EPM and PPI tests
in adult F0 males neonatally exposed to sevoflurane and in their
adult F1 male offspring were similar. However, adult F1 male off-
spring, in contrast to their fathers neonatally exposed to sevoflurane,
responded to physical restraint with corticosterone release not differ-
ent than that in F1 male offspring of control parents [58]. Findings of
normal corticosterone responses to stress in F1 male offspring of the
exposed parents, coupled with the effects of GABAergic anesthetics
in the exposed F0 rats, suggest that GABAergic GA-induced modula-
tion of GABAAR signaling through reduced expression of Kcc2 may
be required but not sufficient to support exacerbated corticosterone
responses to stress in adulthood. It will be important to test whether
such differences in corticosterone responses to stress occur because of
differently affected T/E2-dependent mechanisms in F1 male offspring
than in their F0 parents at the time of sevoflurane exposure [69].

The possibility that sex steroids are involved in the mediation of
intergenerational effects of sevoflurane is supported by the fact that
the next-generation effects of early-life parental exposure to sevoflu-
rane were sex dependent. Although male and female F0 animals
were affected, only F1 males exhibited significant abnormalities at
both molecular and systemic levels [58]. Similarly, parental exposure
to stress may affect the offspring of one sex or both, depending
on the stress paradigm and/or parental age at the time of stress
exposure [16, 144, 150–154]. Despite many years of research by
multiple groups, the exact mechanisms by which preconception
parental stress induces germ cell epigenetic changes, how these
changes translate into the reprogramming of offspring phenotypes,
and why offspring of a specific sex are selectively affected remain
largely unknown. Understanding such mechanisms is essential for
elucidating the etiology of mental health disorders, which are often
sex specific. For example, females are more likely to suffer from
depression and anxiety, while neurodevelopmental disorders, includ-
ing early-onset schizophrenia, autism spectrum disorder (ASD), and
attention-deficit/hyperactivity disorder, are disproportionally diag-
nosed in males [150–155].

The findings that F1 male offspring of sevoflurane-exposed sires/-
control dams had a more profoundly methylated hypothalamic Kcc2
gene promoter than F1 male offspring of both exposed parents are
counterintuitive. Nonetheless, findings of different heritable effects
of parental experiences depending on whether both parents or a
single parent was exposed are not unique to this study. For example,
adult offspring of parents with paternal posttraumatic stress disorder
(PTSD) showed higher DNA methylation of the exon 1F promoter
of the glucocorticoid receptor (GR-1F) gene (NR3C1) in peripheral
blood mononuclear cells than offspring with both maternal and
paternal PTSD [8]. In future studies, it will be important to test
whether stress-like effects of sevoflurane induce similar intergen-
erational alterations in DNA methylation in the GR gene. The
sex-, brain region-, and behavioral paradigm-specific effects in F1
offspring depending on which parent was neonatally exposed to
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sevoflurane may provide additional guidance in investigating the
mechanisms of intergenerational transmission of early-life anesthetic
exposure.

Our findings also demonstrate that in addition to a downreg-
ulated Kcc2 gene in F0 and F1 males, sires neonatally exposed
to sevoflurane and their F1 male offspring have a significantly
upregulated expression of hypothalamic Dnmt3a and Dnmt3b [60].
The preventive effects of pretreatment with the nonselective DNMT
inhibitor decitabine (5-aza-2′-deoxycytidine) in sevoflurane-exposed
sires and in their unexposed male offspring suggest that DNA
methylation-based mechanisms are involved in the mediation of the
F0 germ cell effects and the F0 somatic (neurobehavioral) effects of
neonatal exposure to sevoflurane. The findings of somatic DNMT-
involved effects of sevoflurane in neonatal rats are in agreement
with earlier findings of Ju and colleagues [156]. They reported
that decitabine diminished a sevoflurane-induced increase in the
expression of hippocampal DNMT 3A/B, methylation of the brain-
derived neurotrophic factor (Bdnf ) gene, and reduction in levels of
methyl CpG-binding protein 2 (MeCP2), as well as behavioral abnor-
malities [156]. Although they did not measure effects of decitabine
on sevoflurane-induced reduction in KCC2 levels, the changes in
levels of MeCP2 and KCC2 may be linked. For example, in Rett
syndrome, a severe form of ASD, a KCC2 downregulation linked to
deficiency in MeCP2, may play a role in the pathophysiology of the
disease [157–159].

Interestingly, an environmental EDC, bisphenol A, depresses
Kcc2 expression in developing rodent and human cortical neurons
through decitabine-sensitive mechanisms [160]. This finding is
potentially relevant to sevoflurane-induced DNMT-mediated
changes in Kcc2 levels, especially considering that sevoflurane can
induce EDC-like effects. Notably, the decitabine-sensitive long-term
neurobehavioral abnormalities in the two generations were not
identical [60]. Pretreatment with decitabine prevented sevoflurane-
induced exacerbated corticosterone responses to stress in the
exposed F0 male rats 60]. However, such corticosterone responses
to stress in the F1 male offspring of the exposed sires were not
different from those in the F1 male offspring of the unexposed
parents [58]. Therefore, altered DNA methylation may be needed,
but not sufficient, to mediate all intergenerational effects of neonatal
parental exposure to sevoflurane, at least as it relates to abnormal
functioning of the HPA axis in F1 male offspring.

Our findings demonstrate that sevoflurane may induce similar
intergenerational effects when administered to parents during the
early postnatal period or during young adulthood. These findings
are consistent with other reports of heritable effects of GAs or stress
when administered to parents of different ages. For example, in
an earlier study, 11-week-old male mice were exposed for 4 hr
on 5 alternate days to 2% enflurane, an anesthetic agent whose
polyvalent actions include enhancement of GABAAR signaling
similar to sevoflurane. Eight days later, the exposed males were
bred with naïve females to generate offspring. The 7-week-old
offspring of exposed sires exhibited deficiencies in a Rosensweig
maze behavioral paradigm [51]. On the other hand, a recent study
in rats confirmed that sevoflurane can induce intergenerational
effects when administered during the early postnatal period [61].
Data in the literature indicate that chronic stress administered
to male mice during different age periods, specifically during the
pubertal window or in adulthood, induced similar abnormalities in
offspring [16].

Along with similarities between intergenerational effects of
sevoflurane administered during early postnatal age and young

adulthood, there were important differences between such effects.
Parental exposure to sevoflurane at both ages induced similar
sex-dependent effects in F1 male offspring, including changes in
expressions of the hypothalamic and hippocampal Kcc2 gene,
behavioral abnormalities during the EPM and PPI of the acoustic
startle response tests, and a lack of exacerbated corticosterone
responses to physical restraint [58, 59]. F1 males of neonatally
exposed fathers/control mothers were the only F1 males that
exhibited abnormalities during the EPM and PPI behavioral tests. By
contrast, exposure to sevoflurane in young adulthood led to the most
consistent behavioral changes during the EPM and PPI of acoustic
startle response tests in F1 males of both exposed parents and to
changes in hypothalamic and hippocampal Kcc2 expressions [58,
59]. Furthermore, the hypothalamic and hippocampal Kcc2 gene
expressions were not affected in F1 males of control fathers/exposed
mothers, but they exhibited significant deficiencies during the EPM
and PPI of acoustic startle response tests [58]. These findings,
along with findings of intergenerational effects of neonatal parental
exposure to sevoflurane, suggest that the systemic intergenerational
effects of sevoflurane are mechanistically complex phenomena that
cannot be explained by changes in a single Kcc2 gene. Further studies
are needed to elucidate the involvement of stress and sex steroids
in the mediation of the heritable effects of sevoflurane and other
GAs, as well as whether changes in DNA methylation and other
epigenetic marks transmit the effects of parental exposure to GAs to
offspring.

Conclusion

Laboratory studies have raised many compelling questions about
GA-induced adverse effects and their underlying mechanisms. The
experimental findings support the notion that GABAergic GAs may
act like environmental stressors and EDCs in neonates and young
adults. These stress-like and EDC-like effects of GABAergic GAs,
in particular sevoflurane, comprise acute and long-term neuroen-
docrine abnormalities in exposed rodents and epigenetic changes
in the parental germ cell genome, as well as epigenomic, transcrip-
tomic, and behavioral abnormalities in offspring. Male offspring
may be more vulnerable to adverse effects of parental exposure to
sevoflurane than their female counterparts. Sevoflurane may induce
similar intergenerational effects when administered to parents over
a wide range of parental ages at the time of exposure. Additionally,
the effects may occur over a wide range of time periods from
when the parent is exposed to the anesthetic to when they mate
to generate F1 offspring. Further laboratory and clinical studies of
these translationally important heritable effects of GAs are required.
A greater understanding of this phenomenon could ultimately help
establish safer outcomes of GA exposure. More generally, answers
to these questions may help to elucidate whether intergenerational
effects of parental exposure to GAs are a contributing factor in
the increasing number of neuropsychiatric disorders of unknown
etiology.
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