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ABSTRACT Riboflavin is an essential micronutrient, but its transport and utilization
have remained largely understudied among pathogenic spirochetes. Here, we show that
Borrelia burgdorferi, the zoonotic spirochete that causes Lyme disease, is able to import
riboflavin via products of its rfuABCD-like operon as well as synthesize flavin mononu-
cleotide and flavin adenine dinucleotide despite lacking canonical genes for their syn-
thesis. Additionally, a mutant deficient in the rfuABCD-like operon is resistant to the anti-
microbial effect of roseoflavin, a natural riboflavin analog, and is attenuated in a murine
model of Lyme borreliosis. Our combined results indicate not only that are riboflavin
and the maintenance of flavin pools essential for B. burgdorferi growth but also that fla-
vin utilization and its downstream products (e.g., flavoproteins) may play a more promi-
nent role in B. burgdorferi pathogenesis than previously appreciated.
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icroorganisms have evolved elaborate mechanisms to acquire the essential

micronutrient riboflavin (RF) (vitamin B,) (1). The RF biosynthetic pathway is an
energetically costly process that requires the expression of enzymes encoded by the
rib operon (ribDEABH) and metabolic precursors originating from purine biosynthesis
(GTP) (2, 3) and the pentose phosphate pathway (ribulose-5 phosphate) (4). Additionally,
the synthesis of one molecule of RF may require up to 25 molecules of ATP, whereas the
uptake of RF requires only a few molecules of ATP (5). Despite the high energy cost, many
bacteria, such as Vibrio cholerae (6), Clostridioides (formerly Clostridium) difficile (7), and
methicillin-resistant Staphylococcus aureus (8), maintain both RF biosynthesis and uptake
mechanisms, underscoring the importance of acquiring a sufficient supply of RF. Some
other pathogenic bacteria, such as Listeria monocytogenes, Enterococcus faecalis, and
Treponema pallidum, lack RF biosynthesis genes and thus must acquire RF from
their environment. It is unknown why these pathogenic bacteria have dispensed with
the ability to synthesize RF, but it likely is predicated on their ability to acquire sufficient
quantities of exogenous RF through efficient import mechanisms. To date, nine different
families of bacterial RF transporters have been identified. They are ImpX, RibM, RibN, RibU,
RibV, RibXY, RibZ, RfnT (1), and RfuABCD, an ATP binding-cassette (ABC)-type uptake sys-
tem recently reported by us for Treponema pallidum (9).

Treponema pallidum, the syphilis spirochete, relies heavily on flavin-dependent
processes to satisfy a number of its physiological demands (10, 11), engendering what
we have termed a “flavin-centric” metabolic lifestyle (12). Ideally, it would be advanta-
geous to investigate the role of the rfuABCD gene products in RF transport in T. pal-
lidum. However, despite a recent advance in the in vitro cultivation of T. pallidum (13),
the spirochete remains genetically intractable. Thus, investigating the treponemal
RfuABCD system for RF transport remains unachievable at this time. However,
Borrelia burgdorferi, the causative agent of Lyme disease, also encodes a putative
RfuABCD-like system (bb03719-bb0316) (14) and can be readily cultivated and genetically
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manipulated in vitro. As such, in this study, we utilized B. burgdorferi as a representative
pathogenic spirochete to examine salient features of the putative RfuABCD transport
system (9).

Borrelia burgdorferi, like T. pallidum, lacks many of the biosynthetic pathways involved in
the de novo synthesis of amino acids, fatty acids, nucleotides, and other cofactors (14, 15).
Bioinformatic analysis suggests that B. burgdorferi does not carry genes for an RF biosynthetic
pathway or genes involved in the synthesis of flavin mononucleotide (FMN) and flavin ade-
nine dinucleotide (FAD) (14, 15). Not only do FMN and FAD serve as cofactors for various
enzymes and flavoproteins involved in oxidation-reduction reactions, but they also are neces-
sary for cellular metabolism and energy production (16, 17). Thus, it is puzzling why B. burgdor-
feri would encode an RF uptake mechanism but lack the bifunctional FMN/FAD synthetase
found in other bacteria (18, 19). Nevertheless, the operon containing bb0379 to bb0316 likely
encodes B. burgdorferi’s RfuABCD-like RF uptake machinery, inasmuch as previous investiga-
tions in our laboratory have indicated that recombinant BB_0319 is able to bind RF in vitro (9).
However, it is still unknown whether B. burgdorferi transports RF or what role this operon plays
in borrelial growth in vitro and in vivo. Additionally, direct investigations of RF transport and RF
interconversion in B. burgdorferi thus far have not been conducted. In this study, we focused
on examining the presumed role of the RfuABCD-like operon in RF transport and assessed the
synthesis of FMN and FAD in B. burgdorferi. We also examined the extent to which the
RfuABCD-like operon might influence the infectivity phenotype of pathogenic B. burgdorferi in
the murine model of Lyme borreliosis.

RESULTS

Borrelia burgdorferi imports RF. We postulated that B. burgdorferi could import RF
because it carries an rfuABCD-like transport operon (bb03719-bb0316) and because we
previously demonstrated that recombinant BB_0319 (RfuA) binds RF in vitro (9). To first
assess RF uptake by B. burgdorferi, spirochetes were incubated at 37°C in Barbour-
Stoenner-Kelly 1l (BSK-Il) medium in the presence of 100 wM labeled RF (riboflavin-
[3C,,"°N,]ldioxopyrimidine). After sequential collection of borreliae and subsequent
analysis by liquid chromatography-mass spectrometry (LC-MS), labeled RF increased in
a time-dependent manner among sampled spirochetes (Fig. 1A), indicating that B.
burgdorferi imports RF from its environment.

B. burgdorferi converts RF to FMN and FAD. The most common biologically active
flavins are FMN and FAD, which serve as cofactors in flavoproteins. These cofactors typ-
ically are generated in bacteria by a bifunctional FMN/FAD synthetase (20). However,
bioinformatic analyses of the B. burgdorferi genome failed to identify enzymes required
for the synthesis of FMN or FAD from RF (14). To investigate whether B. burgdorferi has
the capacity to synthesize FMN and FAD, spirochete cultures grown in the presence of
labeled RF were examined for the appearance of labeled FMN and FAD. Analysis by LC-
MS detected increased concentrations of labeled FMN (Fig. 1B) and FAD (Fig. 1C)
among the serially collected spirochete samples. Additionally, when uninoculated me-
dium was compared with medium containing growing spirochetes, only samples from
the active Borrelia cultures yielded labeled FMN and FAD (Fig. 2B and C), supporting
the idea that FMN and FAD were synthesized by B. burgdorferi and were not somehow
converted by the BSK-Il medium alone. These results demonstrate that B. burgdorferi is
capable of converting RF to FMN and FAD.

RF transport by B. burgdorferi is influenced by temperature. It is well docu-
mented that environmental temperature markedly influences both the growth rate
and transcriptional profile of B. burgdorferi (21). In fact, the cultivation of B. burgdorferi
at room temperature (25°C) is one parameter used to partially mimic B. burgdorferi's
residence within its tick host environment (22, 23). To investigate the potential influ-
ence of temperature on RF transport/utilization by B. burgdorferi, spirochetes were
incubated in BSK-Il medium at either 25°C or 37°C after the addition of 100 uM labeled
RF. Consistent with previous results, labeled RF accumulated over time among spirochetes
incubated at 37°C (Fig. 1D). However, labeled RF did not accumulate to similar levels when
borreliae were incubated at 25°C (Fig. 1D). These results support the ideas that (i) RF
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FIG 1 Borrelia burgdorferi B31 imports RF and synthesizes FMN and FAD. B. burgdorferi was grown to
late log phase and then incubated at 37°C (A to C) or the indicated temperatures (D) in medium
supplemented with labeled RF for the indicated times. Cell pellets were washed twice with BSK-II
medium and then frozen. Labeled RF, FMN, and FAD concentrations were determined by LC-MS. Each
data point represents a biological replicate (n=6) from three independent experiments. Bars
represent the averages of the displayed data points, and error bars indicate standard deviations (SD).
One-way ANOVA with Sidak’s post hoc test was used for multiple comparisons. ns, not significant;
**xx P <0.0001.

import by B. burgdorferi is influenced, at least in part, by environmental temperature, with
the implication that it is likely accomplished by an active uptake mechanism, and (ii) RF
seems not to passively traverse the cytoplasmic membrane of B. burgdorferi. The latter
conclusion is supported by the fact that RF uptake did not increase in cultures incubated
at 25°C forup to 12 h.

Involvement of the rfuABCD-like gene cluster in RF transport. To examine
whether the gene products of the B. burgdorferi rfuABCD operon collectively play a role
in RF transport, we generated a B. burgdorferi mutant (2D7) lacking the entire rfuABCD-
like operon (see Fig. STA in the supplemental material). When we compared the pro-
gression of labeled RF uptake between wild-type B. burgdorferi and the operon-defi-
cient mutant growing in vitro, there were no differences in either RF import kinetics
(Fig. 3A) or the synthesis of FMN (Fig. 3B) or FAD (Fig. 3C) among the two strains. This
result was perplexing in view of the homology between the T. pallidum and B. burgdor-
feri rfuABCD-like operons, because it implied that either the rfuABCD operon is not
involved in RF transport (when B. burgdorferi is cultivated in vitro) or B. burgdorferi can
acquire RF via an alternative import mechanism. To further probe the possibility that B.
burgdorferi may use the rfuABCD operon for RF import, we employed roseoflavin (RoF),
a natural RF structural analog that competes with RF transport (24, 25), as a potential
inhibitor of spirochetal growth. We hypothesized that if the rfuABCD-like operon
played a role in RF transport by B. burgdorferi, then the 2D7 mutant would be refrac-
tory to RoF-mediated growth inhibition. To test this possibility, spirochetes were
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FIG 2 Labeled FMN and FAD appear only in cultures containing B. burgdorferi. B. burgdorferi was
grown at 37°C in BSK-Il medium supplemented for 12 h with labeled RF. The supernatant from
pelleted cultures was frozen and analyzed by LC-MS. A medium-only control was also analyzed to
ensure that the labeled RF was not contaminated with labeled FMN or FAD. (A) Labeled RF was
detected in the medium of the inoculated culture supernatants and in the medium-only controls.
However, labeled FMN (B) and FAD (C) were detected only in the supernatants of the B. burgdorferi
cultures. Each data point represents a biological replicate (n=6) from three independent experiments.
Data are normalized to an internal standard. Bars represent the averages of the displayed data points,
and error bars indicate SD. One-way ANOVA with Sidak’s post hoc test was used for multiple comparisons.
*** P<0.001.

cultured in vitro in BSK-Il medium supplemented with graded concentrations of RoF.
Cultures seeded with 10* bacteria were monitored for cell density up to 8 days postino-
culation. As expected, wild-type B. burgdorferi was inhibited by RoF in a dose-depend-
ent manner (0 to 200 M) (Fig. 4A). In contrast, the 2D7 mutant was refractory to 100
1M RoF and reached cell densities ~100-fold greater than those of wild-type B. burg-
dorferi when exposed to 100 uM RoF (Fig. 4B). These results imply that B. burgdorferi
may exploit RFuABCD proteins to transport RF but may also acquire RF through an al-
ternative mechanism when grown under the in vitro conditions employed.

Exogenous RF can overcome RoF-mediated growth inhibition of B. burgdorferi.
To investigate whether the RoF inhibition of borreliae by 50, 100, or 200 M RoF (Fig.
4A) may have been due to nonspecific flavin toxicity, we grew B. burgdorferi in the
presence of 50, 100, or 200 M RF. B. burgdorferi growth was not inhibited when the
bacteria were grown in BSK-Il medium supplemented with these concentrations of RF
(Fig. 4Q), indicating that flavin-mediated toxicity likely was not responsible for the
observed growth inhibition imparted by the RoF treatment (Fig. 4A). Additionally, to
confirm that RoF competed with RF, B. burgdorferi was cultivated in BSK-Il medium
containing inhibitory concentrations of RoF and with various concentrations of exoge-
nously added RF (as a competitor). When spirochetes were incubated in BSK-Il medium
containing 100 wM RoF and either 50 uM or 100 uM RF, spirochete cell densities
increased by ~1,000-fold and were similar to those in the untreated control (Fig. 4D).
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FIG 3 Comparison of RF uptake by wild-type B. burgdorferi and the 2D7 mutant. B. burgdorferi was
grown to late log phase and then incubated at 37°C in medium supplemented with labeled RF (10 or
100 M) for 12 h. Cell pellets were washed twice with BSK-Il medium and then frozen. Labeled RF (A),
FMN (B), and FAD (C) concentrations were determined by LC-MS. Each data point represents a
biological replicate (n=6) from three independent experiments. Bars represent the averages of the
displayed data points, and error bars indicate SD. One-way ANOVA with Sidak’s post hoc test was
used for multiple comparisons. ns, not significant; **, P < 0.01; ***, P < 0.001.

This observation suggests that RoF is able to compete with RF in the RF transport pro-
cess. Furthermore, RF likely has a higher binding affinity for the transport protein(s)
given that RF at a lower concentration than that of RoF was capable of reversing the
RoF-mediated growth inhibition of B. burgdorferi.

RoF is bacteriostatic for B. burgdorferi. There is a paucity of information regarding
whether RoF is bacteriostatic or bactericidal for various bacteria (26). To assess this for
B. burgdorferi, we took advantage of our observation that RoF inhibited the in vitro
growth of B. burgdorferi and that inhibition could be alleviated by the addition of exog-
enous RF to the medium. If RoF is bactericidal for B. burgdorferi, then RF supplementa-
tion added at later intervals should not rescue borrelial growth. On the other hand, if
RoF is bacteriostatic, then RF supplementation should restore borrelial growth to levels
comparable to those of untreated control cultures. We first conducted growth curve
analyses of B. burgdorferi incubated in the presence of RoF to assess whether B. burg-
dorferi replicated early on but may have succumbed by the time that we assessed bor-
relial numbers (8 days postinoculation). Following an initial burst in growth 2 days
postinoculation, RoF-treated spirochete densities plateaued to 8 days postinoculation
(Fig. 5A). When these growth experiments with RoF were repeated but modified by
adding RF every 2 days (days 0, 2, 4, 6, and 8) over the 8-day period, borrelial cell den-
sities initially remained in the 10% to 10°-spirochetes/ml range but increased when RF
was added to the cultures (Fig. 5B). This trend continued throughout the 8-day incuba-
tion period. These results support the observation that RoF is bacteriostatic for B.
burgdorferi.

The rfuABCD mutant is growth deficient at room temperature. Wild-type B. burg-
dorferi and the 2D7 mutant were cultivated in BSK-Il medium at 25°C to compare their
growth patterns. Borrelial cell densities were assessed at 14, 21, and 28 days
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FIG 4 B. burgdorferi is inhibited by RoF. (A) B. burgdorferi was cultured in BSK-Il medium alone or in medium
supplemented with DMSO (RoF vehicle) or the indicated concentrations of RoF (0 to 200 uM). (B) B31 and 2D7
were grown in BSK-Il medium supplemented with DMSO or 100 uM RoF. (C) B31 was cultured in BSK-II
medium supplemented with DMSO or various concentrations of RF (0 to 200 wM). (D) B31 was cultured in BSK-
I medium alone or in medium supplemented with an inhibitory concentration RoF (100 M) and/or RF (50 or
100 wM). All cultures were grown for 8days at 37°C. The concentration of DMSO added to medium reflected
the amount of DMSO added for each respective RoF concentration. Bars represent the means from three
independent experiments. Error bars indicate SD. Two-way ANOVA and Tukey's post hoc test were used for
multiple comparisons. ns, not significant; **, P<0.01; ****, P<0.0001.

postinoculation. The mutant displayed significant growth defects at 25°C in comparison to
its wild-type parent (Fig. 6A). However, growth of the mutant was not impaired when it
was cultivated at 37°C (Fig. 6B).

The rfuABCD-like operon influences B. burgdorferi mammalian infectivity and
dissemination. Prior to murine infection experiments, we first confirmed that the 2D7
mutant maintained all mammalian infection-associated plasmids (Fig. S1B). C3H/HeN
mice were infected intradermally with either 10° or 10* spirochetes of either the wild-
type parent or the 2D7 mutant. Twenty-one days postinoculation, mice were eutha-
nized and ear, heart, and joint tissues were cultured for 21 days in BSK-Il medium. In
the case of the wild-type parent, as expected, spirochetes were observed growing in
all cultures of all tissues harvested from mice inoculated with either 103 or 10* bacteria.
However, in the case of the 2D7 mutant, none of the cultures of tissues harvested from
mice inoculated with 103 spirochetes were positive, and only 3 cultures, all from the
same mouse, inoculated with 10* borreliae yielded spirochetes (Table 1). These results
establish that mammalian infection and dissemination by the 2D7 mutant are mark-
edly attenuated. Of note, attenuation of the 2D7 mutant was unlikely due to disruption
of the virulence-promoting RpoN-RpoS regulatory pathway (27), because both upstream
(BosR) (28) and downstream (OspC) (29) transcripts (key components of the pathway)
were similarly expressed by wild-type B. burgdorferi and the 2D7 mutant (data not shown).

October 2021 Volume 89 Issue 10 €00307-21

Infection and Immunity

iaiasm.org 6


https://iai.asm.org

An rfuABCD Operon in Borrelia burgdorferi

A. 100
- BSK-Il
108_
-m- DMSO
107_
-+ RoF-100 uM

Kk kk | kkkk

Borrelialml
-t
o
(-]
L

105-
10 4.
103 1 1 1 1 1
0 2 4 6 8 10
Days
B. 105+
108_
_ 107
% BSK-II
S 105+ DMSO
b
8 Day0
105+ Day2
Day 4
1044 -0 Day6
-8 Day8
103 T T T T

0 2 4 6 8 10 12 14 16
t 4+ 1+ 1+ 1 Days Riboflavin added
A VvV e o @

FIG 5 RoF-mediated growth inhibition of B. burgdorferi is bacteriostatic. (A) B. burgdorferi was
cultured in BSK-Il medium or in medium supplemented with RoF (100 wM) or DMSO (RoF vehicle). At
the indicated times, a portion of each culture was taken and the concentration of spirochetes/ml was
determined by dark-field microscopy. Spirochetes failed to replicate when cultured in the presence of
100 M RoF. Lines represents the averages of the indicated data points from three independent
experiments. The depicted comparison is between DMSO and RoF. Two-way ANOVA and Tukey's post
hoc test were used for multiple comparisons. **, P<0.01; ****, P<<0.0001. (B) B31 was grown in BSK-Il
medium or medium supplemented with DMSO or RoF (100 wM). At the indicated times, RF (50 uM)
was added to the cultures, and spirochetes were enumerated. Each data point represents an average
for three biological replicates.

DISCUSSION

RF is an essential micronutrient utilized by all organisms. Many bacteria are able to
synthesize RF utilizing genes similar to the ribGBAHT operon of Bacillus subtilis (30).
However, some bacteria have lost this capability and rely on exogenous sources and
uptake mechanisms to acquire RF (1). One of these groups comprises the closely related
pathogenic spirochetes Treponema pallidum and Borrelia burgdorferi. Until recently, it was
unknown what genes pathogenic spirochetes such as T. pallidum may utilize to import RF
(9), as many bacteria that take up RF seem to have evolved independent RF uptake mech-
anisms (1). Our laboratory demonstrated that recombinant RfuA of T. pallidum binds RF
and proposed that this protein was part of a larger ABC-type transporter complex that
likely mediates the uptake of RF. Additionally, we demonstrated that BB_0319 of B. burg-
dorferi was also capable of binding RF in vitro, suggesting that these two pathogenic spiro-
chete species may acquire RF via a similar mechanism(s) (9).

To investigate whether the rfuABCD-like operon encoded by B. burgdorferi may be
involved in the transport of RF, we generated a mutant lacking this operon and dem-
onstrated that it is refractory to the inhibitory action of the RF structural analog RoF
(Fig. 4). RoF is known to compete with RF during RF transport. Once within cells, RoF
can be converted into toxic forms of FMN and FAD (31), which further inhibit proper
functioning of target flavoproteins (32, 33). The observation that the inhibition of B.
burgdorferi by RoF could be alleviated when RF was added to the medium supported
the idea that the mechanism of RoF inhibition in B. burgdorferi involves limiting
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10* spirochetes/ml. The concentration of spirochetes was determined at the indicated times. Each
data point represents an average for three biological replicates. Two-way ANOVA and Tukey’s post
hoc test were used for multiple comparisons. *, P < 0.05; ****, P < 0.0001.

sufficient RF internalization and synthesis of FMN and FAD. However, because we were
able to generate an rfuABCD-deficient mutant, it is reasonable to conclude that B. burg-
dorferi likely is capable of acquiring RF through an alternative unknown uptake mecha-
nism, at least when growing in vitro. This hypothesis is bolstered by the fact that the
import of labeled RF by wild-type B31 or the 2D7 mutant was similar (Fig. 3). Although
believed to be uncommon, some bacteria such as Clostridioides difficile encode multiple RF
uptake mechanisms. C. difficile encodes a RibU (ypaA) (7), an RF transporter commonly
found in many bacteria such as Bacillus subtilis, Lactococcus lactis, and Staphylococcus aureus.
C. difficile also encodes an exclusive RF transporter designated RibZ (1). Thus, it is plausible
that B. burgdorferi encodes more than one RF uptake mechanism, especially when one con-
siders its disparate zoonotic life cycle and its consequent need to cycle between the diverse
tick and mammalian host environments. However, one enigmatic feature of this multiple

TABLE 1 Mammalian infectivity and dissemination are attenuated for the 2D7 mutant?

No. positive/total

Joint Heart Skin (ear)
Strain 103 10% 103 10* 103 10%
B31 10/10 9/9 10/10 9/9 10/10 9/9
2D7 0/10 1*/9 0/10 1*/9 0/10 1*/9

aMice were intradermally inoculated with 10% or 10* spirochetes of either wild-type B31 or the 2D7 mutant.
Twenty-one days postinoculation, mice were euthanized, and joint, heart, and ear tissues were collected for
culture. Tissues were incubated for 21 days at 37°C in BSK-Il medium supplemented with BAM (antibiotic
cocktail). Cultures were observed every 3 days, up to 21 days, for the presence of spirochetes. *, same mouse.
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transporter hypothesis concerns why wild-type B. burgdorferi was sensitive to the action of
RoF whereas the 2D7 mutant was not. Although there is no clear explanation for the dis-
cordance at this time, this property may serve as a strategic tool for the identification of
genes encoding the alternative RF transport mechanism(s).

We hypothesized that if B. burgdorferi indeed maintains an alternative RF uptake
mechanism, then growth of the 2D7 mutant may be attenuated under conditions that
somewhat mimic the unfed tick midgut, such as growth at ambient temperature. As
such, we incubated wild-type B31 and the 2D7 mutant at room temperature and com-
pared their growth kinetics. Replication of the mutant strain was significantly attenu-
ated at 25°C, suggesting that one or more of the rfu genes are important for RF acquisi-
tion at environmental temperature when B. burgdorferi is within its tick host. However,
it remains possible that the normal growth of the mutant at higher temperature is due
to the induction of a second transporter that may not be expressed at lower tempera-
ture. Nonetheless, when we compared the infectivity profiles between wild-type B31
and the 2D7 mutant following murine infection, the mutant was highly attenuated for
its mammalian infectivity phenotype; the results for the one mouse infected with an
inoculum of 10* bacteria could have been due to spirochete clumping, which may
have inadvertently resulted in a much higher intradermal dose of bacteria. Of note, it
was somewhat counterintuitive that the 2D7 mutant grew normally in vitro at 37°C but
displayed diminished infectivity for mice. Nevertheless, our mouse infection results are
very consistent with a previous report showing that a mutant lacking the rfuB (bb0318)
gene also was attenuated for murine infectivity (34). This prompts an extended hy-
pothesis that B. burgdorferi may have evolved multiple mechanisms to acquire RF and
that the competition for RF in mammalian hosts requires maintenance of the rfuABCD
RF transport genes for proper growth and spirochetal tissue dissemination. It also
remains possible that variable micronutrient availability in differing tissue compart-
ments, as well as ensuing host immune responses, also contributed to clearance of the
2D7 mutant.

Although we have reported evidence supporting the idea that bb0379 (Bb_RfuA)
likely is the RF-binding component of the rfuABCD operon (9), additional experiments
are warranted to explore more completely the function and roles of the other three
members of this operon in B. burgdorferi. One caveat relative to the interpretations in
this study is that phenotypic characterizations of the 2D7 mutant are potentially lim-
ited by the lack of a genetically complemented strain; numerous attempts to generate
a genetic complement (either in cis or in trans) to the 2D7 mutant thus far have been
unsuccessful for unknown reasons.

To our knowledge, this is the first study to demonstrate that B. burgdorferi is capa-
ble of synthesizing FMN and FAD from exogenous RF. Unlike Treponema pallidum,
which encodes a version of the bifunctional riboflavin kinase/FAD synthetase (TP0888)
found in most bacteria (15, 35), the relevant enzyme(s) in B. burgdorferi remains elusive
(14, 36). Alternatively, one could propose that B. burgdorferi may import FMN and/or
FAD from external sources. Previous investigations into RF uptake in Lactococcus lactis
indicate that RibU can facilitate the uptake of RF and, to a lesser extent, FMN (25).
However, we believe that it is unlikely that FMN and FAD are imported by B. burgdor-
feri. Our combined experiments showed that prior to cultivation, we could not detect
labeled FMN or labeled FAD in the medium, but after subsequent cultivation of
B. burgdorferi in medium containing labeled RF, we detected labeled FMN and labeled
FAD, supporting the idea that the spirochetes actively synthesized FMN and FAD from
the labeled RF.

The RF derivatives FMN and FAD as coenzymes are of paramount importance to the
cell, impacting many types of metabolic functions. FMN is generated from RF via ribo-
flavin kinase, and FAD is made from FMN by the action of FAD synthetase (37, 38).
FMN and FAD, bound either covalently (39, 40) or noncovalently (41, 42), subsequently
serve as cofactors for many types of enzymes (flavoproteins) that impact cellular me-
tabolism. Given the broad metabolic impact on the cell, it is thus not surprising that a
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finely controlled balance of intracellular flavin is requisite for maintaining proper cellu-
lar homeostasis, of which flavoprotein biogenesis is an important component. With
respect to flavoproteins, KEGG genomic data predict at least six flavoprotein genes
within the B. burgdorferi genome. These are bb0515 (trxB; FAD-dependent thioredoxin
reductase), bba76 (thyX; FAD-dependent thymidylate synthase), bb0178 (gidA; FAD-de-
pendent tRNA uridine 5-carboxymethylaminomethyl modification enzyme), bb0684
(fni; FMN-dependent isopentenyl-diphosphate delta-isomerase), bb0728 (cdr; FAD-de-
pendent CoA-disulfide reductase), and bb0812 (dfp, coaBC; FMN-dependent coenzyme
A [CoA] biosynthesis [bifunctional protein]).

Dfp (CoaBCQ) catalyzes two steps in the synthesis of CoA from pantothenate (43, 44).
In B. burgdorferi, dfp (coaBC) has been shown to have increased expression at 35°C rela-
tive to growth at 25°C (21), and we have shown that this gene is regulated by BosR,
which is an essential regulator of B. burgdorferi virulence (28). In Borrelia, CoA, which is
an essential cofactor involved in many cellular processes in bacteria, also may serve to
help protect spirochetes from reactive oxygen species. Specifically, reduced CoA is the
major low-molecular-weight thiol in Borrelia and, in conjunction with CoADR (bb0728)
(which regenerates oxidized CoA back to reduced CoA), is able to reduce H,0, CoADR
also is regulated by BosR (45), and is likely an important ROS protection mechanism
during mammalian infection (46). Given the importance of all of these cellular proc-
esses, it is thus not surprising that B. burgdorferi growth was inhibited by RoF. Taking
these results together, it is tempting to speculate how the broad metabolic vulnerabil-
ity engendered by flavin essentiality may be exploited to develop additional structural
analogs of RF; the application of contemporary principles of medicinal chemistry (8,
47) may engender other analogs inhibitory for B. burgdorferi, potentially representing
new candidate therapeutics for Lyme borreliosis.

MATERIALS AND METHODS

Ethics statement. The Institutional Animal Care and Use Committee at the University of Texas (UT)
Southwestern Medical Center approved all experiments involving animals in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of
Health (48).

Bacterial strains and culture conditions. Borrelia burgdorferi strain B31 and all described mutants
were cultured and maintained in Barbour-Stoenner-Kelly Il medium supplemented with 6% heat-inacti-
vated rabbit serum (Pel-Freeze Biologicals, Rogers, AR) at a pH of 7.6 (BSK-Il) (49). When needed, BSK-II
medium was supplemented with kanamycin (300 wg/ml). Plasmid content of each B31 strain was eval-
uated using PCR primers as previously described (50, 51). BSK-Il medium was inoculated with B. burgdor-
feri at a concentration of 10* spirochetes/ml and grown to stationary phase (10 spirochetes/ml) under
an atmosphere of 5% CO,. All cultures were incubated at 37°C, except where otherwise noted.

Generation of the 2D7 mutant. GeneArt seamless cloning and assembly enzyme mix (Thermo
Fisher Scientific) was used to generate the suicide plasmid construct for removal of the RF transporting
locus (bb0319-bb0316) in B. burgdorferi. Four DNA fragments were used in the simultaneous assembly:
(i) the pUC origin was amplified from pUC19 (Thermo Fisher Scientific), (ii) the flgB-kan antibiotic resist-
ance cassette was amplified from OY153 (52), and the flanking sequences (iii) upstream and (iv) down-
stream of bb0319-bb0316 were amplified from B31 genomic DNA. All PCRs were conducted using
Phusion high-fidelity DNA polymerase (Thermo Fisher Scientific). The four PCR fragments were purified
with a QIAquick gel extraction kit (Qiagen) according to the manufacturer’s protocol, mixed together in
a 1:1:1:1 molar ratio, and ligated following the procedures provided with the GeneArt enzyme mix. The
ligation product was then transformed into NEB 10-beta competent Escherichia coli cells (New England
Biolabs). Bacteria carrying the suicide plasmid were selected using LB agar with 50 ng/ml of kanamycin.
The suicide plasmid was extracted with a QlAprep Plasmid Plus maxikit (Qiagen) and confirmed by
Sanger sequencing. B. burgdorferi strain B31 was transformed via electroporation with the suicide plas-
mid, and Abb03719-bb0316 mutants were identified using the 96-well liquid culture method as previ-
ously described (53). Mutants were verified for loss of the operon and maintenance of essential viru-
lence-associated plasmids (Fig. S1).

Quantification of B. burgdorferi spirochetes. B. burgdorferi cultures were vortexed to ensure an
even distribution of spirochetes. Wet mounts were then prepared by spotting 10 ul of each culture onto
glass slides. Dark-field microscopy was used to enumerate B. burgdorferi spirochetes from 32 random
fields per culture (Olympus BX41 microscope, 40x objective). The average number of spirochetes per
field was used to determine the density of spirochetes/ml in each culture.

Detection of RF, FMN, and FAD. (i) Growth conditions. Fifty-milliliter cultures of B. burgdorferi strain
B31 or the 2D7 mutant were grown to stationary phase (~ 108 spirochetes/ml) and pelleted at 3,000 x g for
30 min at 25°C. Cell pellets were resuspended in 1 ml of BSK-Il medium supplemented with heavy-isotope-la-
beled riboflavin (riboflavin-['*C,,'°N,]dioxopyrimidine; Santa Cruz Biotechnology) to a final concentration of
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100 uM. Cultures were incubated at either 25°C or 37°C for 12 h in a 5% CO, incubator. Bacteria were pel-
leted at 16,000 x g for 15min at 4°C and washed three times in BSK-Il medium. The supernatant was saved
for LC-MS analysis. The final pellet was snap-frozen using liquid nitrogen and stored at —80°C.

(ii) Sample preparation. Cell metabolites were extracted by suspending bacterial pellets in acetoni-
trile-methanol-water (40:40:20) with 0.1% formic acid and incubating at —20°C for 20 min. Insoluble
materials were removed via centrifugation at 16,000 x g for 10 min. Resulting supernatants were transferred
to an autosampler vial and stored at —80°C until LC-MS analyses (54). The cellular protein content of the pel-
leted insoluble material was determined using the Pierce bicinchoninic acid (BCA) protein assay kit (Thermo
Fisher Scientific) following solubilization in 1% SDS and 0.1 M NaOH. Sample contents were adjusted based
on total protein to account for differences in bacterial numbers among the samples. Metabolites were
extracted from spent medium by adding methanol containing d5-phenylalanine (100 ng/ml) as an internal
standard to a final concentration of 75% methanol. Samples were incubated at —20°C for 1 h and insoluble
materials removed by centrifugation at 1,500 x g for 10 min. The resulting supernatant was dried under vac-
uum and stored at —80°C. Prior to LC-MS analyses, the dried extract was suspended in 50% methanol (55).

(iii) LC-MS analyses. Metabolite extracts were applied to a XBridge BEH C,; XP column (2.5-um par-
ticle size, 2.1 mm by 100 mm) (Waters, Milford, MA, USA) and eluted with an 11-min linear gradient of
4% to 90% methanol in 5mM ammonium acetate using a Waters Acquity H-class ultraperformance lig-
uid chromatography (UPLC) system (Waters, Milford, MA, USA) (32). Extracts were analyzed using a
Bruker maXis quadrupole time-of-flight mass spectrometer equipped with an electrospray ionization
source operated in positive ion polarity. Source parameters were as follows: endplate offset, 500 V; capil-
lary voltage, 3,500 V; nebulizer, 3.0 x 10° Pa; drying gas, 10 liters/min; and dry temperature, 300°C.

Labeled and unlabeled versions of RF, FAD, and FMN, as well as d5-phenylalanine, were quantified
using Skyline (56). Specifically, molecular ions m/z 383.1531, m/z 792.1719, and m/z 463.1194 for labeled
RF, FAD, and FMN, respectively, and m/z 377.1456, m/z 786.1644, and m/z 457.1119 for unlabeled RF,
FAD, and FMN, respectively, were identified in the chromatographic spectra. The molecular ion m/z
171.1103 was used for d5-phenylalanine. The peak area of each molecular ion was determined in Skyline
and normalized by the total protein content (in milligrams) for the metabolites extracted from cells or
the peak area of d5-phenylalanine for the metabolites extracted from the medium.

Flavin treatment of Borrelia cultures. RF or RoF was solubilized in dimethyl sulfoxide (DMSO) at a
concentration of 10 mg/ml following overnight agitation at room temperature. One milliliter of BSK-II
medium supplemented with the indicated concentrations of RF and/or RoF was inoculated with 10* spi-
rochetes/ml and incubated at 37°C in a 5% CO, incubator for 8 days. DMSO controls correspond to the
amount of DMSO added to each culture minus the indicated compound. For the RoF bacteriostatic
growth curve, the appropriate volume of RF stock (10 mg/ml) was added to the indicated cultures at the
indicated times to a final concentration of 50 M RF.

Murine infectivity and dissemination. Four-week-old female C3H/HeN mice (C3H/HeNCrl; Charles
River Laboratories) were anesthetized with a ketamine/xylazine cocktail (30 mg/ml and 4 mg/ml, respectively),
shaved, and then inoculated with 10° or 10* organisms of wild-type B. burgdorferi strain B31 or the 2D7 mutant
intradermally on the lower right back quadrant. Twenty-one days postinfection, infected mice were euthanized,
and the left ear, left joint, and apex heart tissue were collected and incubated in BSK-Il medium supplemented
with BAM cocktail (sulfamethoxazole, fosfomycin, rifampin, trimethoprim, and amphotericin) for 21 days at 37°C
in a 5% CO, incubator. Mice were considered infected if spirochetes were detected in any of these tissues.

Statistical analysis. Data were analyzed and graphs generated using GraphPad Prism 9. An
unpaired two-tailed Student's t test was used when two groups were compared, and when multiple
comparisons were made, an analysis of variance (ANOVA) and Tukey’s or Sidak’s post hoc test for multi-
ple comparisons was utilized.
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