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Abstract

From social networks to biological networks, different types of interactions among the same set of

nodes characterize distinct layers, which are termed multilayer networks. Within a multilayer

network, some layers, confirmed through different experiments, could be structurally similar and

interdependent. In this paper, we propose a maximum a posteriori based method to study and

reconstruct the structure of a target layer in a multilayer network. Nodes within the target layer are

characterized by vectors, which are employed to compute edge weights. Further, to detect

structurally similar layers, we propose a method for comparing networks based on the eigenvector

centrality. Using similar layers, we obtain the parameters of the conjugate prior. With this

maximum a posteriori algorithm, we can reconstruct the target layer and predict missing links. We

test the method on two real multilayer networks, and the results show that the maximum a

posteriori estimation is promising in reconstructing the target layer even when a large number of

links is missing.

I. INTRODUCTION

Network science has been widely used in different areas, such as information diffusion,

infectious disease spread, and gene co-expression analysis. Through network analysis, one

can study the relations among nodes, and the robustness of a system [1, 2]. For example,

epidemiologists can predict the number of people infected by COVID-19 through epidemic

analysis. Then, they can provide advice to policymakers at an early stage to curb the

spreading of the disease [3]. By constructing co-expression networks, biologists can discover

crucial genes (nodes) by simply choosing genes with high degree centralities, closeness

centralities, or eigenvector centralities. In a typical protein network, five to seven layers are

considered to represent different types of molecular interactions [4, 5], including proteolysis,

genetic interaction, co-expression, etc. Such multilayer networks are obtained through

biological experiments, which could be expensive and time-consuming. A layer can be

particularly important but also incomplete, with many missing links. A critical research goal

is to reconstruct this important layer, called the target layer, without performing the

expensive experiments, but by exploiting all information embedded in the other layers. In

other words, we can estimate the target layer through existing layers [4, 6–9]. After
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constructing the target layer, researchers can devote restricted resources to the detection of

edges with high probabilities.

Various methods have been proposed to reconstruct networks and predict missing links, and

most of them are based on generative models [4, 6, 7, 10–24]. A generative model

reconstructs the network topology by fitting a stochastic network model [7, 13, 14, 25], and

uses a maximum-likelihood estimation (MLE) algorithm to find the optimal parameters that

can describe the network. In [13, 14], the authors presented a degree-correlated stochastic

block model to reconstruct a single layer network. Edges are computed through the tensor

product of node vectors, and the entries of the node vectors are the degrees of the nodes in

each community. Authors in paper [7] extended the single layer stochastic block model to

multilayer networks and used it to predict missing links and detect overlapping

communities. The authors tried all the layer combinations to find the layers that can improve

the maximum likelihood. However, when there are many layers, it is burdensome to try all

the layer combinations to find the interdependent layers. The authors validated the algorithm

through two real multilayer networks by hiding 20% of links and non-links.

In multilayer networks, there could be structurally similar layers. Therefore, it is possible to

take advantage of similar layers to help reconstruct the target layer. We propose comparing

the target layer with the remaining layers if the target layer is partially known. In the

literature, multiple methods have been proposed to compare networks [26–30]. The authors

in [27, 28] present a method called DeltaCon. The DeltaCon method compares the affinity

scores of every pair of nodes in two networks. The method is very sensitive to changes in the

number of edges, and the removal of edges results in a significant change in the distance.

Papers [29, 30] review and compare some network-comparing methods, including vertex/

edge overlapping, vertex/edge vector similarity, and the SimHash algorithm. The vertex/edge

overlapping method applies the rule that two graphs are similar if they share many vertices

and edges. According to the analysis in [29], the drawbacks of this method are that it is not

sensitive to changes in high-quality vertices, topology, and properties of networks. The

vertex/edge vector similarity method compares the node/edge weight vectors of two

networks. The drawback of this method is that it is not sensitive to changes in the topology

and other properties of networks. To take advantage of the features of networks, the

SimHash algorithm is introduced to compare networks. The PageRank [31] together with

edges are used as network features in SimHash algorithm to compare web page networks.

In this paper, we propose a maximum a posteriori (MAP) based-method for target layer

reconstruction as well as for link prediction. The MLE algorithm and entropy-related

approaches must depend on the known information of the target layer. Consequently, the

reconstruction is significantly affected by the available information of the target layer. In the

MAP algorithm, the layers that are similar to the target layer will be considered to compute

the parameters of the conjugate prior. Experimental results show that the MAP algorithm

provides more consistent results than the MLE method. The first contribution of this paper is

to discover an incomplete target layer by computing its edges through a dot product of node

vectors. The optimal entries of node vectors are obtained by maximizing the posterior

probabilities of the stochastic model. In our experiments, we find that the model accuracy

can be improved if we increase the dimension of node vectors, but the return is diminishing
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for large vector dimensions. Another contribution is that we introduce the eigenvector

centrality-based SimHash algorithm to detect structurally similar layers (interdependent

layers). The eigenvector centralities of nodes are extracted as network features, which allow

us to recover the structure of networks, as shown in the experimental results. In this work,

we assume that the number of edges between any pair of nodes follows Poisson distribution

[7, 13]. Hence, the Gamma distribution will be the conjugate prior for the Poisson

distribution [32]. We compute the parameters of the conjugate prior through the adjacency

matrices of similar layers, and the contributions of the similar layers are weighted by their

similarities. The number of edges between each pair of nodes is calculated as the dot product

of the node vectors. In our experiments, we show that similar layers are critical in improving

the robustness of link predictions.

The paper is organized as follows. In section two, we first introduce the MAP method on

target layer reconstruction. Next, we propose the eigenvector centrality-based SimHash

algorithm to find structurally similar layers. Then, we propose the process for identifying

parameters of the conjugate prior under different circumstances. In section three, we first

evaluate the eigenvector centrality based SimHash algorithm on two real multilayer

networks. Then, we evaluate the MAP algorithm-based target layer reconstruction on the

two real networks and compare the differences between the MLE algorithm and the MAP

algorithm. We conclude the paper in section four.

II. LAYER RECONSTRUCTION IN MULTILAYER NETWORKS

A. Maximum a posteriori based stochastic model

In this section, we define the stochastic model for both directed and undirected multilayer

networks. The adjacency matrix of the target layer is denoted by A. The goal of this

reconstruction is to estimate A, given a partial knowledge of the target layer and of other

layers in the multilayer network. To reconstruct the target layer, a set of parameters is

needed to describe the model, which we denote as θ. Based on Bayes’ theorem, the posterior

probability of θ is

P(θ ∣ A) = P(A ∣ θ)P(θ)
P(A) , (1)

where P(θ | A) is the posterior probability of θ, P(A | θ) is the likelihood of A under θ, P(θ)

is the prior probability of θ and P(A) is the marginal likelihood that contains all the

information of the network. Since P(A) is a constant, P(θ | A) is proportional to the product

of P(A | θ) and P(θ). Therefore, we have

P(θ ∣ A) ∝ P(A ∣ θ)P(θ) . (2)

For any pair of nodes in the network, we use Eij to denote the expected number of links

(which could be fractional) between node i and node j. In unweighted networks, the entries

of the adjacency matrix are denoted by 0 or 1. Here, since the entries Eij are real numbers,

we can interpret network A as a weighted network.
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Before we substitute any parameters into expression (2), we make the following

assumptions. The links in the target layer are independent and identically distributed. In

other words, the number of edges between node i and node j does not affect the relation

between node i and node k. Further, we assume the number of links between any pair of

nodes is extracted from a Poisson distribution, i.e., P Ai j ∣ Ei j =
e
−Ei j Ei j

Ai j

Ai j!
. We can rewrite

expression (2) after substituting Eij and Aij as

P(θ ∣ A) ∝ ∏
i, j

e
−Ei j Ei j

Ai j

Ai j!
P Ei j . (3)

In the MLE algorithm, the prior probability P(Eij) can be neglected since it is a constant. In

the MAP algorithm, we need to specify the prior distribution of P(Eij). The conjugate prior

distribution for the Poisson distribution is the Gamma distribution

P Ei j =
βi j

αi j

Γ αi j
Ei j

αi j − 1
e

−βi jEi j

∝ Ei j
αi j − 1

e
−βi jEi j,

(4)

where αij, βij and Γ(αij) are the shape parameter, the scale parameter, and the Gamma

function of the Gamma distribution, respectively. In section II C, we introduce a procedure

to determine αij and βij through the layers with high similarities. Substituting the conjugate

Gamma distribution into expression (3), we have

P(θ ∣ A) ∝ ∏
i, j

e
−(β + 1)Ei j Ei j

Ai j + α − 1
. (5)

Note that we have left out constant terms.

The problem now has been simplified to finding the parameters Eij that can maximize the

posterior probability. However, an expression for Eij has not been specified. In this work, we

compute the links through node vectors. The nodes in the target layer are represented by

vectors. The expected number of links Eij can be computed by

Ei j = ∑
z = 1

K
sizt jz, (6)

where siz and tjz are respectively the zth entry of node i’s vector and node j’s vector. Here,

we use s and t to denote source and target nodes. K is the dimension of the vector. Some

MLE related works use tensor factorization to decompose the links, and the dimension of the

tensor is interpreted as the number of overlapping communities. As a result, there should be

an optimal number of communities that can maximize the estimation accuracy. However,
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this cannot be rigorously achieved and the tensor factorization can be simplified to the dot

product according to our analysis in appendix A.

Expression (5) is still intractable after substituting Eij with equation (6). We take the

logarithmic form of expression (5), which gives

L(θ ∣ A) = ∑
i, j

Ai j + αi j − 1 logEi j − βi j + 1 Ei j

= ∑
i, j

[ Ai j + αi j − 1 log∑
z

K
sizt jz

− βi j + 1 ∑
z

K
sizt jz],

(7)

where L(θ | A) is the log posterior.

To find the maximized posterior for expression (7), we apply the Jensen’s inequality

logx ≥ logx, which gives

log∑
z

K
sizt jz = log∑

z

K
qi jz

sizt jz
qi jz

≥ ∑
z

K
qi jzlog

sizt jz
qi jz

= ∑
z

K
qi jz logsizt jz − logqi jz .

(8)

The equality is satisfied when

qi jz =
sizt jz

∑zsizt jz
. (9)

After substituting expression (8) and equation (9) into equation (7), equation (7) can be

simplified to

L(θ ∣ D) = ∑
i, j, z

Ai j + αi j − 1 qi jzlogsizt jz

− βi j + 1 sizt jz . (10)

Taking the derivative of equation (10) and equating to zero, we obtain the values of siz and

tiz, the optimal node vectors that maximize the posterior probability:

siz =
∑ j Ai j + αi j − 1 qi jz

∑ j βi j + 1 t jz
, (11)
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t jz =
∑i Ai j + αi j − 1 qi jz

∑i βi j + 1 siz
. (12)

The procedure to obtain the optimized siz and tjz is to assign random initial values for siz and

tjz, then update equation (9), (11), and (12) iteratively until equation (7) converges. However,

before applying the above iteration, we need to identify αij and βij, which are introduced in

section II B and section II C.

B. Similarity and layer comparison

In section II A, we have detailed the procedure to compute the optimal node vectors by

maximizing the posterior probability. The parameters αij and βij for the prior distribution are

required to perform the posterior probability maximization. We propose to compute αij and

βij through the layers of the multilayer network that are similar to the target layer. Keep in

mind that there are missing links in the target layer, and the percentage of missing links is

not known at all. Therefore, the primary factor for an effective network-comparing method is

that the method must not be significantly affected by the percentage of missing links.

Networks can be characterized by multiple types of centralities, such as, degree centrality,

eigenvector centrality, closeness centrality. The degree centrality measures the importance of

a node by capturing the number of links the node has, while the eigenvector centrality can be

regarded as an extension of degree centrality in which node’s importance is also affected by

its neighbors’ importance. The closeness centrality of a node is the average length of

shortest paths between the node and all other nodes. One or more of the centralities can

describe the features of a network. To compare the target layer with the other layers, we can

compare the features of the layers. For our purpose, the eigenvector centrality is selected as

the network feature, and is used in the SimHash algorithm to compute similarities.

The SimHash algorithm works as follows [29, 30]. The feature of a network can be

expressed as a set of token-value pairs {(vi : wi)}, where vi is a node and wi is its measure

under the feature, for example its eigenvector centrality. Note that the target layer and the

layer to be compared have the same set of tokens. In cryptography, any messages can be

encrypted to a unique binary number (digest). Similarly, we can represent each token with a

unique binary number with ϕ bits (2ϕ > the number of vi). For each binary number (digest),

we map every 1 to wi, and 0 to −wi. Thus, each token is mapped to a weighted digest with ϕ
digits. To obtain the weighted digest of the network, we sum up all the weighted digests of

the tokens. Note that there is no carry in the summation.

To measure the similarities between the target layer and the other layers, we can compare the

digests of the layers. A simple way to compare the digests is to convert the weighted digests

to binary digests. The binary digest of a network can be obtained by setting positive digits to

1 and negative digits to 0. The similarity between the target layer m and any other layer r can

be measured by
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μm, r = 1 −
Hamming Hm

d , Hr
d

ϕ , (13)

where μm,r is the similarity between layer m and r, Hm
d  is the binary digest of the target layer,

and Hr
d is the binary digest of the layer to be compared, respectively.

An alternative way to obtain the similarities is by computing the Pearson correlation

coefficient of the weighted digests.

The estimation results based on the Pearson correlation are shown in appendix B. In this

work, we measure the similarity between the target layer and the other layers through the

binary-based digests. The influence of the bit number is discussed in appendix C.

C. Identify the parameters of the Gamma distribution prior

Finally, we introduce the procedure to determine the parameters αij and βij of the conjugate

prior. We discuss this problem in two cases.

In the first case, we assume the structure of the target layer is partially known, i.e., the

entries of the adjacency matrix are partially known. In this case, we apply the layer

comparison method introduced above, and the L′ layers with highest similarities are

considered to identify the parameters of conjugate priors. The parameters of the Gamma

distribution prior are computed as

αi j = max ∑
r = 1

L′
μm, rAi j

r , 1

βi j = max ∑
r = 1

L′
μm, r,

∑r = 1
L′ μm, r

∑r = 1
L′ μm, rAi j

r ,
(14)

where m denotes the target layer, μm,r is the similarity between the target layer m and any

layer r. Ai j
r  is the adjacency matrix of layer r in L′. In equations (11) and (12), since Aij

could be zero, if αij is less than one, we obtain a negative sij. Thus, we need to limit the

range of αij. If ∑r = 1
L′ μm, rAi j

r ∈ (0, 1), we set αij = 1, and set βij to 
∑r = 1

L′ μm, r

∑r = 1
L′ μm, rAi j

r  to maintain

the means of the Gamma distribution prior unchanged. If ∑r = 1
L′ μm, rAi j

r = 0, we will set αij =

1, and set βij equal to a large number to ensure the MAP algorithm converges.

A special case is the structure of the target layer is not known at all. In this case, the

comparison between the target layer and the other layers is not feasible. In this case, an

alternative and heuristic way to compute the parameters of conjugate prior can be based on

the functionally similar layers. If available, we can use additional published networks and

data as a new multilayer network, in which layers are functionally similar. Thereafter, we

can apply the proposed MAP algorithm to compute the parameters of conjugate prior
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through this new multilayer network. The similarities between the target layer and the

functionally layers cannot be determined through any network comparison algorithm. Thus,

we assume the similarities are all ones. We assign the parameters of the Gamma distribution

as

αi j = ∑r = 1
L′ Ai j

r

βi j = L′ .
(15)

Similarly, if ∑r = 1
L Ai j

r < 1, we will set αij = 1, and set βij to a large number to make the

MAP algorithm converge.

In this scenario, we do not have any structural information regarding the target layer. If we

set Aij = 0 in equations (11) and (12), this equivalent to assuming zero presences of all the

edges in the target layer. To avoid this issue, we take the entries of Aij as the ratio of αij and

βij, i.e., Aij = αij/βij. The entries are assigned as the average presences over the other layers.

III. EXPERIMENTAL VALIDATION

In this section, we evaluate the method introduced in section II. First, the SimHash algorithm

is applied on two real networks, in which different percentages of links are removed

uniformly at random. Second, the effectiveness of the MAP algorithm for the two real

multilayer networks is evaluated, and the MAP algorithm is compared to the MLE

algorithm.

The first real network we use to evaluate our proposed MAP algorithm is the FAO (Food and

Agriculture Organization) trade network [33]. The FAO multilayer network is composed of

364 layers, and each layer represents a product trading among 214 countries. A link is

detected between two nodes in a layer if there is trading of the corresponding product

between the two countries. We show three layers of the FAO network in Fig. 1 through the

KiNG software [34]. Since the layers in the FAO network are not ordered in any particular

way, in the experiments, we only perform the evaluation by assuming that the target layer is

one of the the first nine layers of the FAO network. Note that all the 363 remaining layers are

always used in our experiments for detecting the similar layers.

The second real network (HVR network) we use to evaluate the proposed MAP algorithm

has nine layers and 307 nodes [35], which represent malaria parasite genes. The nine layers

correspond to nine highly variable regions on the genes themselves. An edge is detected if

two genes share an exact match of significant length in the highly variable region. We show

three layers of the HVR network in Fig. 1.

A. Numerical results on layer comparison

The evaluation of the SimHash algorithm is performed on both the FAO network and the

HVR network. The binary digest of each layer is obtained through the SimHash algorithm

based on the eigenvetor centrality of the nodes. The similarity of any two layers can be

computed through equation (13). In Fig. 2, each layer is respectively set as the target layer,
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and the similarities between the target layer and all the other layers are shown in

interquartile ranges (IQR). For the FAO network, we only show the results of the first nine

layers as target layers, and each IQR bar contains 363 similarity values. The similarities

obtained through the SimHash algorithm are between 0 and 1. A zero similarity means the

two layers have totally opposite eigenvector centrality distribution, while for 0.5 similarity

the two layers are independent. A similarity approaching one means the two layers are

similar. In the FAO network, the similarities are between 0.5 and 1, which indicates there are

no layers with totally opposite eigenvector centrality distribution. In the HVR network, most

of the layers are independent, since the similarities are all less than 0.8, except layer 7 and

layer 9.

The network-comparing method must be able to discover structurally similar layers even if

there are missing links in the network. To this end, we uniformly at random remove 20%,

40%, 60% and 80% of edges from the target layer to generate incomplete networks and

compare the incomplete networks with the target network. In Fig. 3(a), each layer of the

FAO network (first nine layers) and HVR network is set as target network respectively, and

we randomly remove 20%, 40%, 60% and 80% of edges from the target layer. The

similarities between the incomplete networks with removed edges and the target layer are

computed. From the top panels, we observe that the similarities are greater than 0.8 even

with 80% of edges randomly removed.

There are always differences between the target layer and similar layers. In the second

experiment, we show that missing links in the target layers do not affect the similarity

significantly between the target layer and its similar layers. For each of the target layers, we

choose five most similar layers from all the other layers, we then randomly remove 20%,

40%, 60% and 80% of edges from the target layer to generate incomplete networks. The

incomplete networks are compared to the five similar layers, and we can obtain five

similarities for different removal percentages. In the bottom panels, we show the average of

the five similarities. The results for the first nine layers of the FAO network are shown in

Fig. 3(c). We observe that the similarities decrease slightly even when 80% of edges are

randomly removed. For the HVR network, where the layers are heterogeneous, though we

randomly remove different percentages of links, the similarities are still maintained at low

levels.

B. Validation of layer reconstruction and link prediction

The MAP method we have introduced in this work has the goal of layer reconstruction and

missing link estimation. The similarity between the target layer and other layers can be

obtained through the SimHash algorithm as introduced above. In this part, we show the

effectiveness of the MAP algorithm, and compare the differences between the MAP

algorithm and the MLE algorithm performance. Other methods such as entropy-based

approaches, are equivalent to the MLE algorithm and are discussed in appendix D.

Here, we use the receiver-operator characteristic (ROC) curve and the area under the curve

(AUC) to evaluate the effectiveness of our method. The model is perfect when the AUC is

approaching one, and 0.5 means the model guesses the edge weights randomly.
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a. The dimension of node vectors.—The dimension of node vectors is a critical

factor for the MAP algorithm. In experiments, we find that there is no such number of

communities [36–40] that can maximize the estimation accuracy. For both the FAO network

and HVR network, we remove 40% of edges from the target layer to generate incomplete

networks. The five layers with highest SimHash similarities are used to compute the

parameters of the conjugate prior. The target layer is reconstructed through both the MLE

algorithm and the MAP algorithm. In Fig. 4, we can observe an increased estimation

accuracy with respect to the increment of the number of dimensions, though the gain

diminishes for dimensions greater than 40. In the following experiments, we use a

dimension of 50 which balances running time and estimation accuracy. Apart from the

dimension of node vectors, the estimation accuracy is also affected by the number of similar

layers. The influence of the number of similar layers on the estimation accuracy is analyzed

in appendix E.

b. Comparison between the MLE algorithm and the MAP algorithm.—Both the

MLE algorithm and the MAP algorithm have their own benefits and disadvantages. The

major difference between the MAP and MLE methods is that the MAP method can

incorporate prior information (other similar layers), while the MLE relies on the available

information of the target layer solely. The comparison between the MLE algorithm and the

MAP algorithm is performed on both the FAO network (first nine layers) and the HVR

network. The two algorithms are implemented on incomplete layers, which are generated by

randomly removing 20%, 40%, 60%, 80% and 100% of edges from the two networks. In

Fig. 5(a) and Fig. 6(a), we can see that the estimation based on the MLE algorithm is

significantly affected by the missing links. However, the robustness of the estimation is

greatly improved after we adopt structurally similar layers to reconstruct the target layer, as

shown in Fig. 5(b). On the contrary, the estimation accuracy deteriorates if we adopt layers

with heterogeneous structures to reconstruct the target layer, which is shown in Fig. 6(b).

Intuitively, the MLE method reconstructs the target layer through the known information of

the target layer itself. As a result, the estimation accuracy is related to the available

information, i.e., the percentage of known links. In the MAP algorithm, the estimation is not

only affected by the known information of the target layer but also the similar layers. In real

applications, if the percent of missing links is less than 20%, it is recommended to use the

MLE algorithm, since it provides more accurate results than the MAP algorithm.

Conversely, the MAP algorithm is the better choice if researchers are unaware of the

percentage of missing links.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we present a novel MAP estimation-based algorithm for target layer

reconstruction in multilayer networks. In multilayer networks, some layers are structurally

similar; thus, we can take advantage of the similar layers to reconstruct the target layer. In

section II, we first derive the maximum a posteriori estimation for target layer reconstruction

in multilayer network. Second, the eigenvector centrality-based SimHash algorithm is

introduced to detect structurally similar layers. The SimHash algorithm compares network

features, thus it is not affected by the missing links. Third, we introduce two scenarios to
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obtain the parameters of the Gamma conjugate prior. In the first case, where the target layer

is partially known, the SimHash algorithm is adopted to detect structurally similar layers. In

the second case, where the target layer is not known at all, functionally similar layers is used

to compute the parameters of the conjugate prior. In section III, we first show that the

eigenvector centrality-based SimHash algorithm is able to return consistent similarity levels

for different percentages of missing links. Then, we show that the estimation accuracy can

be improved by increasing the number of dimensions of node vectors, and the gain is

diminishing for dimensions greater than 40 for the two networks. We find that with a great

number of similar layers, we can obtain more consistent estimation results. Finally, the MLE

method and MAP method are compared on two real networks. The experimental results

suggest that if there are less than 20% of missing links, the MLE method has better

performance. However, if the percentage of missing links is 40% or more, the MAP method

returns results that are more consistent.

However, there are still some limitations to the MAP method we present. The first limitation

is that the missing links in the target layer are required to be removed uniformly at random.

The similarities are obtained through network feature comparison, which means the

structure of the target layer needs to be maintained. Targeted removal of links will change

the structure of the network. The second limitation concerns the unknown relation between

the vector dimension and network size. In our numerical experiments, we test multiple

dimensions and adopt a dimension of 50, which balances running time and estimation

accuracy.

Recent results in [41–44] present some methods to estimate the eigenvector centralities

based on nodal data without requiring the network structure. Recall that SimHash algorithm

is based on the eigenvector centrality obtained from the target layer. Therefore, estimating

eigenvector centrality without constructing network is a good alternative for future work.

The MAP algorithm we present to reconstruct a target layer in a multilayer network shows

promising results when we can identify the similarities between the target layer and other

layers. The experimental results show that the estimations of our MAP method are less likely

to be affected by missing links, which is not known in real applications. Therefore, our MAP

method can be used to direct experiments, especially when there is no information about the

target layer.
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Appendix A:: tensor factorization

In [7, 13, 14], nodes are factorized by membership vectors. The dimension of membership

vectors is interpreted as the number of overlapping communities. In addition, each edge is

computed through the tensor product of the membership vectors. The number of

communities is obtained by maximizing the likelihood. Vectorization is also used in some

natural language processing algorithms [45–49] in which words are embedded as vectors to

preserve their relations to contexts. However, the dimension of word vectors does not have

Kuang and Scoglio Page 11

Phys Rev E. Author manuscript; available in PMC 2021 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



any semantic meaning, rather the choice of the vector dimension is first affected by the data

set size. According to [46, 49], larger dimensions can improve model accuracy, but the gain

diminishes for vectors larger than 200 dimensions. The choice of dimension is also related to

the available resources, and it is better to reduce the dimension as long as the choice does

not affect the estimation accuracy substantially. In fact, the tensor factorization can be

simplified to dot product, we prove this point as follows.

We assume the number of edges between any two nodes is the tensor product of two node

vectors and the control matrix, i.e., Eij = Σsiktjlwkl. wkl (k is not equal to l) is the parameter

that controls the edges from any source node i (in community k) to any target node j (in
community l). Then, we have

Ei j = ∑sikt jlwkl
= sikt jkwkk + sikt jlwkl + silt jlwll
+ ∑simt jnwmn − sikt jkwkk − sikt jlwkl − silt jlwll .

(A1)

In equation A1, we denote the sum of the first three terms as Ei j
kl. Then, we can incorporate

wkk into sik, and denote it as sik′ = sikwkk. Similarly, sil′ = silwll. Therefore, we have

Ei j
kl = sik′ t jk + sik′ t jl

wkl
wkk

+ sil′ t jl

= sik′ t jk + sik′
wkl
wkk

+ sil′ t jl .
(A2)

Since nodes between different communities are loosely connected, we have wkl < wkk, and

we assume ϵ = wkl/wkk. Then, equation A2 can be written as

Ei j
kl = sik′ t jk + ϵsik′ + sil′ t jl

= sik′ t jk + sil″t jl,
(A3)

where sil″ = ϵsik′ + sil′ . For every inter-community edge originating from node i in community

k, we can incorporate it into community l by incrementing ϵsik to sil′ . Edges can be factorized

through the dot product of node vectors. Therefore, the tensor factorization is equivalent to

the dot product.

Appendix B:: Estimation based on the Pearson correlation

With the SimHash algorithm, the weighted digest of each layer can be obtained. The

similarity between any two layers can be measured by computing the Pearson correlation of

the weighted digests. In Fig. B.1, we show the estimation results based on the Pearson

correlation coefficient. We observe that the estimation is as consistent as the results based on

the Hamming distance. Therefore, the correlation can be an alternative for the Hamming

distance.
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FIG. B.1.
The estimation results based on the Pearson correlation of the weighted digest.

Appendix C:: The choice of the number of bits

The choice of ϕ affects the resolution and the consistency of the similarity. If the number of

tokens is large, it is recommended to employ large ϕ. In our work, the sizes of the two

networks are not too large, so we adopt ϕ = 512 bits. In Fig. C.1, we validate this choice on

the FAO network. We set each of the first nine layers of the FAO network as the target

network (original network), and randomly remove 20%, 40%, 60% and 80% of edges from

the target network to generate incomplete networks. We then compare the incomplete

networks with the original network. In the experiments, we adopt ϕ = 16, 64, 256, and 512

digits, respectively. We can observe that the similarities obtained with 256 digits are close to

that obtained with 512 digits, while the similarities obtained with 16 and 64 digits vary

remarkably.
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FIG. C.1.
Comparison of varying the number of digits (based on the Hamming distance). The four

panels show the results based on 20% (a), 40% (b), 60% (c), and 80% (d) of edges randomly

removed.

Appendix D:: Comparison between the MLE algorithm and entropy-based

approaches

In section III B, we compared the MAP algorithm with the MLE algorithm. In fact, the

entropy-based approaches are equivalent to the MLE algorithm. In the following, we prove

that the MLE algorithm is equivalent to the entropy-based approaches.

Given a network G, we assume the number of nodes is fixed, and the edge weights are

variables. Thus, we can define the entropy of a network in terms of edge weights as

H(G) = − ∑
G

∑
u

pU(u)logpU(u)

= ∑
G

∑
u

pU(u)log 1
pU(u)

,
(D1)

where U is any edge in the network G, u is the weight of edge U. pU(u) is the precise

probability of edge U with weight u. We assume for any edge U, it can take nU values. If the

nU values follow uniform distribution, then we have pU(u) = 1
nU

. In this case, the network
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has the largest entropy, which means the network is totally uncertain. On the other hand, for

any edge U, if there is a value us with pU(us) = 1, the entropy of the network will be zero,

which indicates all the edge weights in the network are known.

In our problem, the goal is to find a model to reconstruct the target layer, thus, we need a set

of parameters to describe the model. If the model is close to the true network, the entropy of

the model is minimized. Hence, the problem is transformed to finding the parameters of a

model with minimum entropy, i.e., reducing uncertainty.

Equation D1 can be written in expectation form

H(p) = ∑
G

E
U pU(u)

log 1
pU(u)

. (D2)

Consider the Kullback-Leibler divergence (KL divergence). We assume θ is the parameter

set that can describe the model, the probability of edge U with weight u is qU(u; θ). Thus,

the relative entropy is

Dkl(p‖q) = ∑
G

∑
u

pU(u)log pU(u)
qU(u; θ)

= ∑
G

E
U pU(u)

log pU(u)
qU(u; θ)

= ∑
G

E
U pU(u)

log 1
qU(u; θ)

− ∑
G

E
U pU(u)

log 1
pU(u)

.

(D3)

The second term in the right-hand side is equation D2 and the first term in the right-hand

side is the cross entropy, which is

H(p, q) = ∑
G

E
U pU(u)

log 1
qU(u; θ)

. (D4)

Recall that our problem is to reconstruct the target layer and equation D2 is the entropy of

the target layer. Equation D2 is determined by the data (network) solely. Thus, the problem

can be simplified to minimizing the cross entropy, i.e., minimizing equation D4.

Then, we consider the MLE method. The MLE algorithm is to find the parameter set θ that

most likely fit a given set of data (network) D. We skip some intermediate steps and use the

logarithm form directly as following
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θ = argmaxθP(G ∣ θ)

= argmaxθ∑
G

∑
u

logpU(u; θ) .
(D5)

pU(u; θ) is the model with parameter set θ to describe the true data D. We assume that edge

U can take nU values and the nU values follow the uniform distribution, then we have

pMLE
U (u) = 1

nU
. Introducing pMLE

U  to equation D5 does not change the results, we have

θ = argmaxθ∑
G

∑
u

1
nU

logpU(u; θ)

= argmaxθ∑
G

E
u pMLE

U (u)
logpU(u; θ) .

(D6)

Our goal is still to find a set of parameters that can reconstruct the layer. Then, we can

generalize this problem by replacing pMLE
U (u) with pU(u), and replacing pU(u; θ) with qU(u;

θ). The replacements can be regarded as taking real data (network) into equation D7. We

have

θ = argmaxθ∑
G

E
u pU(u)

logqU(u; θ)

= argmaxθ∑
G

− E
u pU(u)

logqU(u; θ)

= argmaxθ∑
G

E
u pU(u)

log 1
qU(u; θ)

.

(D7)

Thus, the MLE algorithm is equivalent to minimizing the cross entropy.

Appendix E:: The number of similar layers on the estimation accuracy

If more similar layers are employed to compute the parameters of the conjugate prior, the

influence of similar layers on the reconstruction will be promoted. Consequently, the

influence of the known part of the target layer will be down weighted. On the contrary, if we

trust the known part of the target layer, we can employ less similar layers to compute the

parameters of the conjugate prior. The experimental results are shown in Fig. E.1, top 3, 5,

10, and 20 similar layers are adopted to compute the parameters of the conjugate prior. We

observe that the estimation based on 10 and 20 similar layers are robust with respect to the

missing links, while the estimation based on three and five similar layers are influenced by

the missing links significantly.
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FIG. E.1.
The number of similar layers on the estimation results. 20% (a), 40% (b), 60% (c), and 80%

(d) of edges are randomly removed from the target layer. Different numbers of similar layers

are used to compute the parameters of the conjugate prior. The experiments are conducted

on the first nine layers of the FAO network. Each AUC is averaged over 10 runs of cross-

validations.
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FIG. 1.
Three layers of the FAO (a) network and HVR (b) network. Nodes in different layers share

the same plane coordinates.
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FIG. 2.
Layer comparison of the FAO network (a) and HVR network (b). (a) shows the similarities

between the target layer and all the other 363 layers in the FAO network. (b) shows the

similarities between the target layer and the other eight layers in the HVR network. Note that

each similarity value is averaged over 10 runs.
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FIG. 3.
Eigenvector centrality-based SimHash algorithm. Panel (a) shows the comparison between

the first nine layers of the FAO network and their incomplete counterparts, where 20%, 40%,

60% and 80% edges are removed uniformly at random from the target layer. Panel (b) shows

the same experiment on the HVR network. Panel (c) compares the reduced networks (the

first nine layers of the FAO network) with the five most similar layers. The mean of the

similarities is shown in the panel. Similarly, 20%, 40%, 60% and 80% edges are removed

uniformly at random from the target layer. Panel (d) shows the same experiment on the HVR

network. Note that each similarity value is averaged over 10 runs.
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FIG. 4.
AUC vs. the dimension of node vectors. Panel (a) shows the MLE method on the first nine

layers of the FAO network, where each layer is set as the target layer respectively. Panel (b)

shows the results of MAP method when the five layers with highest similarities are adopted

to compute the parameters of the conjugate prior. Panel (c) shows the results of the MLE

method on the HVR network. Panel (d) is the results of MAP method on the HVR network.

Note that the results are averaged over 10 runs of cross-validations.
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FIG. 5.
Comparison of the MLE and MAP methods on the FAO network. Panel (a) shows results of

the MLE method. Panel (b) shows the results of the MAP method. Results are averaged over

10 runs of cross-validations.
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FIG. 6.
Comparison of the MLE and MAP methods on the HVR network. Panel (a) shows results of

the MLE method. Panel (b) shows the results of the MAP method. Results are averaged over

10 runs of cross-validations.
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