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Robinow syndrome (RS) is a genetically heterogeneous disorder characterized by skeletal 

dysplasia and a distinctive facial appearance. Previous studies have revealed locus heterogeneity 

with rare variants in DVL1, DVL3, FZD2, NXN, ROR2, and WNT5A underlying the etiology 

of RS. The aforementioned ‘Robinow associated genes’ and their gene products all play a role 

in the WNT/planar cell polarity (PCP) signaling pathway. We performed gene-targeted Sanger 

sequencing, exome sequencing (ES), genome sequencing (GS) and array comparative genomic 

hybridization (aCGH) on four subjects with a clinical diagnosis of RS who had not had prior DNA 

testing. Individuals in our cohort were found to carry pathogenic or likely pathogenic variants in 

three RS related genes: DVL1, ROR2 and NXN. One subject was found to have a nonsense variant 

(c.817C>T [p.Gln273*]) in NXN in trans with an ∼1 Mb telomeric deletion on chromosome 17p 

containing NXN, which supports our contention that biallelic NXN variant alleles are responsible 

for a novel autosomal recessive RS locus. These findings provide increased understanding of the 

role of WNT signaling in skeletal development and maintenance. These data further support the 

hypothesis that dysregulation of the noncanonical WNT pathway in humans gives rise to RS.
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Introduction

Robinow syndrome (Robinow et al., 1969), RS, is a genetically heterogeneous disorder that 

is characterized by skeletal dysplasia, genital hypoplasia, and a distinctive facial appearance, 

that includes frontal bossing, hypertelorism and a short nose. RS can segregate as an 

autosomal-recessive (AR) (RRS [MIM#268310]) or autosomal-dominant (AD) trait (DRS 

[MIM#180700]) (Mazzeu and Brunner, 2020). Previous studies have identified six genes 

in which pathogenic variants can cause RS. Two genes are associated with recessive forms 

or RRS, ROR2 and NXN, whereas DRS results from heterozygous pathogenic variants 

in WNT5A, FZD2, DVL1 and DVL3. Additionally, biallelic loss-of-function variants in 

WNT5A were reported in one patient with RS (Birgmeier et al., 2018).

DVL1 and DVL3 are notable for small insertions and deletions (indels) that exclusively 

result in a −1 frameshift of the last coding exon. Collective evidence indicates that 

dysregulation of the noncanonical WNT planar cell polarity (PCP) pathway in humans gives 

rise to Robinow syndrome as all the RS associated genes and their protein products play 

a role in this specific pathway. RRS is caused by biallelic loss-of-function variant alleles 

(LoF) in ROR2, a transmembrane receptor essential for PCP signaling (Isao Oishi, 2003; 

Minami et al., 2010) or NXN, a gene that can act as a negative regulator of the WNT 

pathway (Funato et al., 2006; Funato et al., 2008). Biallelic LoF variants affecting NXN 
were recently found to cause RRS [MIM#618529]; however, only three patients, two of 

them siblings, have been reported to date (White et al., 2018).

Recently, de novo indels were found in two out of the three human paralogues of the 

Drosophila dishevelled (dvl) gene, DVL1 and DVL3. DVL1 and DVL3 are key downstream 

mediators of the WNT pathway via interaction with ROR2 (Gao and Chen, 2010; 
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Witte et al., 2010). These pathogenic variants are protein-truncating and clustered in the 

ultimate and penultimate exons, which is a frequent cause of DRS (DRS2 [MIM#616331], 

DRS3[MIM#616894])(Bunn et al., 2015; White et al., 2015; White et al., 2018; White 

et al., 2016). Invariably, pathogenic variants affecting DVL1 and DVL3 are predicted by 

conceptual translation via the genetic code to consistently generate a −1 frameshifting 

encoded protein with a premature termination codon (PTC) in the last exon. This type 

of specific variant allele, estimated to affect 33% of individuals with a diagnosis of RS 

(White et al., 2018), produce a mutant mRNA that is predicted to escape degradation via the 

nonsense mediated decay (NMD) RNA surveillance system (Coban-Akdemir et al., 2018; 

Danyel et al., 2018; White et al., 2015; White et al., 2016). As a result, mutant DVL1 and 

DVL3 proteins replace their normal C-terminus with a highly basic mutant C-terminal tail. 

Besides DVL1 and DVL3, heterozygous missense mutations in WNT5A, the extracellular 

soluble ligand of ROR2, account for ~9.5% of individuals with a diagnosis of RS (DRS1 

[MIM#180700])(Person et al., 2010; Roifman et al., 2015; White et al., 2018). In addition, 

variants in FZD2, including a recurrent missense and multiple truncating variants, have been 

found to cause ∼14% of RS (White et al., 2018). FZD2 is a highly conserved seven-pass 

transmembrane protein of the Frizzled family of membrane receptors which function as 

WNT receptors and co-receptors.

In 2018, a Robinow Syndrome Family Conference was held in Houston, TX. Thirteen 

subjects (Supplemental Table 1) diagnosed as Robinow syndrome or Robinow-like 

phenotypes were recruited and evaluated clinically by specialists in a multidisciplinary team. 

Four out of 13 patients involved in this conference did not have a molecular diagnosis from 

previous investigations. Considering that the aforementioned Robinow genes all play a role 

in the WNT/PCP signaling pathway, we sought to search for variants in known RS genes as 

well as discover additional genes that may dysregulate the noncanonical WNT pathway in 

these four clinically diagnosed patients.

Methods

Subjects

Subjects were recruited from the 2018 Robinow Syndrome Family Conference in Houston, 

TX (Supplemental Table 1). All subjects (n=13) were clinically evaluated on the same day 

by a multidisciplinary team consisting of specialists in medical genetics, urology, psychiatry, 

and plastic surgery. This study was approved by the institutional review board at Baylor 

College of Medicine (IRB protocol no. H-43246). From the total of 13 enrolled subjects, 

four did not have a molecular diagnosis concluded from previous studies. Supplementary 

Table 1 shows the molecular findings for all 13 subjects.

Sanger sequencing

The molecular workflow of research samples from patients clinically diagnosed as RS is 

shown in Supplemental Figure 1. We performed a combination of gene-targeted Sanger 

sequencing, exome sequencing (ES), genome sequencing (GS) and array comparative 

genomic hybridization (aCGH) on 4 subjects (BAB10151, BAB9136, BAB10973 and 

BAB14232) with a clinical diagnosis of RS who had not had prior DNA testing. For 
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BAB9136 and BAB14232, we performed Sanger sequencing of all ROR2 exons; primers are 

shown in Supplemental table 2.

Exome sequencing

ES was performed on BAB10151 and BAB10973 at the Baylor College of Medicine­

Human Genome Sequencing Center (BCM-HGSC) as previously reported (White et al., 

2018). Specific population frequencies of variants were obtained from gnomAD v.2.1.1 

(https://gnomad.broadinstitute.org/) (Karczewski et al., 2020). Variants were reclassified by 

American College of Medical Genetics and Genomics (ACMG) guidelines (Richards et al., 

2015; Riggs et al., 2020). Criteria of ACMG classification are shown in Supplemental Table 

3.

Genome sequencing

GS was performed on BAB10973 as described (Lindstrand et al., 2019). Structural variants 

were analyzed using the FindSV pipeline, which combines CNVnator V0.3.2 (Abyzov et al., 

2011) and TIDDIT V2.0.0 (Abyzov et al., 2011). The resulting variant call file (VCF) was 

annotated using variant effect predictor (VEP) 87 (McLaren et al., 2016).

RNA analysis

Total RNA was extracted from lymphoblastoid cell lines from BAB10151 using the polytron 

method. The qScript cDNA SuperMix (Quanta Biosciences) was used for cDNA synthesis. 

DVL1 mRNA fragment was amplified using the primers and protocol as described (White et 

al., 2015).

Array comparative genomic hybridization

Customized aCGH in 2×400K format (AMADID# 085772, Agilent Technologies), which 

tiles the entire chromosome 17 (chr17:1–81195210, 1030 median probe space), was 

performed on genomic DNA isolated from blood obtained from subject BAB10973. 

Experimental steps of aCGH, including DNA fragmentation, DNA labeling and clean-up, 

array hybridization, array washing, and scanning were performed as previously described 

(Beck et al., 2019).

Results

Our experimental studies and analyses revealed novel pathogenic variants in three RS related 

genes: DVL1, ROR2 and NXN. BAB10151 harbors a novel single nucleotide deletion, 

c.1556del, p.Gly519Aspfs*130, (GenBank: NM_004421.2) in DVL1 (Table 1). This variant 

was not present in the maternal sample (father’s sample was not available for testing). 

WT and mutant alleles are expressed in BAB10151 as observed in Sanger sequenced 

cDNA extracted from Epstein-Barr lymphoblastoid B cell lines (Supplemental Figure 2). 

Expression of the mutant mRNA is consistent with previous experimental observations from 

White et al. 2015 (White et al., 2015) indicating that this allele escapes efficient NMD.

BAB9136 was found to have compound heterozygous ROR2 variants (Supplemental Figure 

3) including a missense variant c.899G>T (p.Cys300Phe) in exon 6 and a single nucleotide 

Zhang et al. Page 4

Am J Med Genet A. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gnomad.broadinstitute.org/


deletion c.990delC (p.Thr331Profs*114) affecting exon 7 (GenBank: NM_004560.3). The 

missense variant is not observed in gnomAD or ExAC databases, and the Combined 

Annotation Dependent Depletion (CADD) score is 28.1. The unaffected mother carries 

only one of the variants, the missense allele (c.899G>T [p.Cys300Phe]); the father was 

unavailable for segregation studies. TA cloning of exons 6 and 7 amplified as a single PCR 

product confirmed that the variants are present in trans in the patient sample (Supplemental 

Figure 3). BAB14232 was found to carry compound heterozygous missense variant alleles 

affecting ROR2 (Supplemental Figure 4). One allele, c.904C>T (p.Arg302Cys, exon 

6, CADD score: 27.6), was inherited from the father, BAB14234; in accordance with 

Mendelian expectations, the other variant allele c.1970G>A (p.Arg657His, exon 9, CADD 

score: 33) was inherited from the mother, BAB14233.

In the fourth patient, BAB10973, ES identified an apparent homozygous nonsense variant in 

NXN c.817C>T (p.Gln273*) (GenBank: NM_022463.4). The patient was adopted, and we 

had no information regarding consanguinity. NXN is located in chr17p13.3, heterozygous 

deletion of this region causes chromosome 17p13.3 deletion syndrome or Miller–Dieker 

lissencephaly syndrome (MDLS[MIM#247200]). The main phenotype includes core 

nervous system anomalies, seizure, and facial dysmorphism(Bi et al., 2009; Chen et al., 

2013; Gu et al., 2015). To examine copy number at the NXN locus, we proceeded 

with investigations by digital droplet PCR and aCGH that revealed an approximately 1 

Mb telomeric deletion of chromosome 17p (Figure 1) that includes NXN and 12 other 

genes (seq[GRCh37/hg19] del(17)(p13.3) chr17:g.pter_1026797del). This deletion does not 

include PAFAH1B1 or YWHAE related to Miller-Diecker deletion syndrome, and no other 

genes in this region have been associated with disease in the heterozygous state. To confirm 

the estimated size based on aCGH and further reveal the breakpoint junction of this deletion, 

both GS and standard Sanger sequencing were performed (Figure 1E, 1F). As a result, read 

depth analysis of GS data also confirmed the 17p telomeric deletion (data not shown). The 

breakpoint junction included telomeric repeats suggesting either a subtelomeric deletion or 

a terminal deletion and single ended double stranded DNA (seDNA) whose end was healed 

by a telomerase mediated event. Parental samples were not available for further testing so we 

could not investigate inheritance of either mutational event.

Discussion

The genetic and clinical findings from four RS patients are consistent with the proposed 

biological mechanism for this disease. For DVL1, one individual was found to have a 

novel 1 bp deletion located in exon 14. Dvl1-null mice showed abnormal social behavior 

rather than skeletal defects (Lijam et al., 1997; Long et al., 2004), which in addition to 

our identified DVL1 variants, strengthens the hypothesis that the pathogenic DVL1 variants 

act as gain-of-function (GoF) rather than by loss-of-function (LoF) and haploinsufficiency 

(White et al., 2018). Consistent with previously reported patients (Bunn et al., 2015; White 

et al., 2015; White et al., 2018; White et al., 2016), this frameshift allele creates a large 

mutant C-terminal tail of 129 amino acids.

ROR2 variants have been identified by many previous studies of RS (van Bokhoven et 

al., 2000). In this study, a single nucleotide deletion c.990delC (p.Thr331Profs*114) and 

Zhang et al. Page 5

Am J Med Genet A. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a heterozygous missense variant at the position c.899G>T (p.Cys300Phe) were found in 

patient BAB9136 (Table 1). This novel rare variant c.899G>T is located in exon 6 where 

pathogenic variants have been frequently observed. Variants in exon 6 have been shown 

to affect a cysteine rich domain of ROR2 that is important for intracellular localization 

(Ali et al., 2007). Alterations in the amino acid structure in this domain may perturb 

correct folding of ROR2, potentially by a Cys requirement and for a Cys-Cys disulphide 

linkage and secondary structure formation which may affect the export of ROR2 from the 

endoplasmic reticulum to the plasma membrane. The second novel 1 bp deletion identified 

in this patient at c.990delC ( p.Thr331Profs*114) was found in trans. This rare variant 

located in exon 7 of ROR2 likely leads to an RNA that is degraded by the NMD RNA 

surveillance system, as predicted by our NMD prediction tool NMDescPredictor (https://

nmdprediction.shinyapps.io/nmdescpredictor/) (Coban-Akdemir et al., 2018) resulting in a 

null allele.

An additional heterozygous missense variant located in exon 6 of ROR2 was found in 

patient BAB14232 (c.904C>T [p.Arg302Cys]) (Table 1) and was recently reported in a fetus 

with RRS (Yang et al., 2019). In addition, a likely pathogenic missense variant c.1970G>A 

(p.Arg657His) in exon 9, with CADD score of 33, was observed in trans in BAB14232. 

Pathogenic variants in ROR2 have been related to two distinct human disorders, RRS and 

autosomal dominant Brachydactyly type B (MIM# 113000). Ben-Shachar et al reported 

that distinct phenotypes and different inheritance patterns can potentially be explained by 

triggering or escaping NMD (Ben-Shachar et al., 2009). Different phenotypes may be 

determined by the relative degree of protein retention/degradation and the amount of mutant 

protein reaching the plasma membrane (Schwarzer et al., 2009). In summary, these findings 

support the initial hypothesis that RRS results from biallelic variants in ROR2 causing LoF.

We also identified biallelic variants in NXN in one RS subject (Figure 1). Thus far, only 

three RS patients from two families, including affected siblings from the same family, have 

been reported to carry biallelic variants in NXN (White et al., 2018).The observation in an 

unrelated third family of a fourth patient with biallelic variants further supports NXN as an 

RRS gene. NXN encodes an oxidative stress response protein nucleoredoxin that is highly 

expressed in the developing limb bud of mice (Kurooka et al., 1997). NXN was found to 

be a negative regulator of the WNT pathway (Funato et al., 2006; Funato et al., 2008). 

Additionally, pull-down assays of mouse fibroblasts indicated that Nxn is a substantial 

interacting partner of Dvl1, particularly under oxidative conditions, often stimulated by 

growth factors (Funato et al., 2006; Sundaresan et al., 1995). The interaction between NXN 

and DVL is hypothesized to be a key regulatory mechanism to maintain a spatial or temporal 

balance between canonical and noncanonical WNT pathways during development (Funato et 

al., 2010).

It has been reported that the β-catenin-independent pathway can be activated by binding of 

Wnt5a to Frizzled2 (Fz2) with the help of Ror2 (Sato et al., 2010). Thus, it is possible 

that perturbation of this specific pathway, which is activated by WNT5A, FZD2 and 

ROR2 causes RS. Based on our experimental findings and previous published reports on 

Robinow syndrome, we adapted, modified and updated a representative model from White 
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et al, which illustrates the physical interactions between all identified Robinow-associated 

proteins with a role in the WNT/PCP pathway in humans (White et al., 2018) (Figure 2).

In summary, multiple novel variants were found to be related to RS in our patient 

cohort. More importantly, we report a patient carrying biallelic variants in NXN, which 

unambiguously confirms our previous observation that NXN can cause recessive RS, i.e. 

RRS, due to LoF. Finally, our study shows that the genetic and allelic heterogeneity in 

RS can challenge molecular diagnosis and, in some patients, may require utilizing multiple 

genomic technologies including aCGH and next-generation sequencing to fully uncover the 

underlying gene and genetic mechanisms in this Mendelian disorder. For a clinical workflow 

to establish a molecular diagnosis in RS (Supplemental Figure 1B) we suggest a gene panel 

for all the known WNT-pathway genes (DVL1, DVL3, FZD2, NXN, ROR2, and WNT5A) 

followed by ES in unsolved cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Location of DNA variants affecting NXN resulting in RRS
A: Below the chr17 ideogram, region p13.3 (red box) is expanded to show all genes in the 

genomic interval. The variant c.817C>T (red circle) is indicated on the NXN gene, which is 

a nonsense variant followed by a representation of subtelomeric deletion (green rectangle) 

containing NXN. This deletion does not include PAFAH1B1 or YWHAE related to the 

Miller-Diecker deletion syndrome. B: Family pedigree. Patient BAB10973 carries biallelic 

variants affecting NXN. Parental samples are not available for testing. C: Sanger sequencing 

results confirm the nonsense variant affecting NXN as detected by ES; D: Array CGH 

result (AMADID#085772) from chr17p reveals a telomeric deletion spanning 1.027 Mb that 

includes NXN (green probes shadowed by a red rectangle); E: Integrative Genomics Viewer 

(IGV) screenshot showing 30x GS Illumina short-reads spanning the breakpoint junction 

of the telomeric deletion. Grey dotted line indicates that the breakpoint junction maps at 

chr17:1,026,797. F: Sequencing alignment of the breakpoint junction from the telomeric 

deletion as confirmed by standard Sanger sequencing. The color-matched junction sequence 

is aligned to the telomeric repeats and the distal genomic references at ABR. Strand of 

alignment (+ or -) is indicated in parenthesis.
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Figure 2. Robinow syndrome-associated genes involved in the WNT/PCP pathway identified in 
human subjects
The establishment of WNT/PCP signaling is vital for vertebrate development. All Robinow 

syndrome associated genes result in proteins that play a role in WNT/PCP signaling, 

therefore, dysregulation of the WNT pathway in humans may be the cause of Robinow 

syndrome. ROR2 is a co-receptor of FZD2, which binds to extracellular ligand WNT5A, 

together they can activate the non-canonical WNT signaling, which is associated with 

planar cell polarity in drosophila and the equivalent convergent-extension movement during 

gastrulation in vertebrates (Isao Oishi1, 2003; Sokol, 2000; Yamanaka et al., 2002). DVLs 

are key downstream mediators of the WNT pathway and NXN was found to be a negative 

regulator of the WNT pathway. This model is adapted and revised from a previous version 

(White et al., 2018). We removed a potential candidate gene RAC3 since the clinical 

phenotype of the patient who has a potentially pathogenic variant in RAC3 is more 

consistent with clinically distinct RAC3-related neurodevelopmental disorder (Costain et 

al., 2019; de Curtis, 2019; Hiraide et al., 2019) than with DRS.

Zhang et al. Page 12

Am J Med Genet A. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 13

Table1:

Summary for variants found in patients diagnosed with RS in our cohort

Individual 
ID Gene Variant 

Type Zygosity Transcript Variant Effect Frequency 
(gnomAD)

ACMG 
classification

BAB10151 DVL1 −1 fs Het NM_004421.2 c.1556del p.Gly519Aspfs*130 0 Pathogenic

BAB9136 ROR2
Missense Compound

Het

NM_004560.3 c.899G>T p.Cys300Phe 0 Likely 
pathogenic

−1 fs NM_004560.3 c.990del p.Thr331Profs*114 0 Pathogenic

BAB14232 ROR2

Missense
Compound

Het

NM_004560.3 c.904C>T p.Arg302Cys 0.000004455 Likely 
pathogenic

Missense NM_004560.3 c.1970G>A p.Arg657His 0.00001415 Likely 
pathogenic

BAB10973

NXN 
+ 12 
genes

Deletion Compound 
Het

NA
seq[GRCh37 / hg19] 

del(17)(p13.3)
chr17:g.pter_1026797del

NA 0 Likely 
pathogenic

NXN Nonsense NM_022463.4 c.817C>T p.Gln273* 0 Pathogenic

Het: heterozygous; fs: frameshift; NA: Not Applicable
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