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Introduction: COVID-19 has disrupted daily life and societal flow globally since December 2019; it intro-
duced measures such as lockdown and suspension of all non-essential movements. As a result, driving
activity was also significantly affected. Still, to-date, a quantitative assessment of the effect of COVID-
19 on driving behavior during the lockdown is yet to be provided. This gap forms the motivation for this
paper, which aims at comparing observed values concerning three indicators (average speed, speeding,
and harsh braking), with forecasts based on their corresponding observations before the lockdown in
Greece. Method: Time series of the three indicators were extracted using a specially developed smart-
phone application and transmitted to a back-end platform between 01/01/2020 and 09/05/2020, a time
period containing normal operations, COVID-19 spreading, and the full lockdown period in Greece. Based
on the collected data, XGBoost was employed to identify the most influential COVID-19 indicators, and
Seasonal AutoRegressive Integrated Moving Average (SARIMA) models were developed for obtaining
forecasts on driving behavior. Results: Results revealed the intensity of the impact of COVID-19 on driving,
especially on average speed, speeding, and harsh braking per 100 km. More specifically, speeds were
found to increase by 2.27 km/h on average compared to the forecasted evolution, while harsh brak-
ing/100 km increased to almost 1.51 on average. On the bright side, road crashes in Greece were reduced
by 49% during the months of COVID-19 compared to the non-COVID-19 period.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.
1. Introduction

The first cases of COVID-19 (also reported as SARS-CoV-2 or
simply Coronavirus) were reported in the city of Wuhan in China
in December 2019 (Cheng & Shan, 2020; Lau et al., 2020; Wu
et al., 2020). After a significant rise in the new cases across the
globe, it was declared a pandemic in March 2020 (WHO, 2020).
At present, confirmed cases of COVID-19 are more than 93.1 mil-
lion, while COVID-19-induced casualties are more than 1.98 mil-
lion (WHO, 2020).

In an effort to restrict the spread of the virus among susceptible
population groups, a ‘‘lockdown” restricting all non-essential activ-
ities was imposed by the majority of governments worldwide. Citi-
zens were also instructed to practice ‘‘social distancing” by means
of keeping at least 2 meters away from each other. Confinement
and ‘‘social distancing” aimed to slow down the spread of the
disease. Moreover, in combination with the aforementioned
measures, schools, theaters, cinemas, restaurants, fitness centers,
and shops were closed to avoid crowding. As a result, financial,
environmental, and social impacts were observed (Anderson
et al., 2020; Hendrickson & Rilett, 2020; Zhang et al., 2020a, 2020b).

Driving behavior also changed radically. Road traffic volume,
public transport users, and overall mobility activity reduced signif-
icantly (Apple, 2020; Google LLC, 2020; Moovit, 2020). For exam-
ple, a study in the city of Santander, Spain, analyzed the impact
of COVID-19 confinement and demonstrated that overall activity
decreased by 67% and public transport use decreased by 93%
(Aloi et al., 2020), while forecasts on travel demand revealed less
traffic, public transport usage, and congestion or flow levels (Aloi
et al., 2020; De Vos, 2020). In the same context, nearly 80% of peo-
ple in the Netherlands reduced their activities outdoors, and subse-
quently elderly people had a greater decrease (de Haas et al., 2020).
A behavioral change in mobility as a result of COVID-19 could also
be on track, as according to de Haas et al. (2020) 27% of Dutch peo-
ple stated that they will work from home more frequently, while
20% expressed the willingness to cycle and walk more in the
future. Road traffic crashes were found to be reduced as road traffic
and pedestrian volume decreased (Aloi et al., 2020). Furthermore,
data provided by TomTom showed that traffic volumes decreased
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by 70–85% in the majority of European cities (ETSC, 2020;
TomTom, 2020). Despite a dramatic decline in traffic volumes
due to COVID-19 restrictions, in urban areas there was a 35%
increase in speeding and an almost 200% increase in stunt driving
offences in the March 15–31, 2020 timeframe, compared to the
same period last year (City of Toronto, 2020).

Nevertheless, to date, the impact of COVID-19 on transportation
can only be assessed through individual reports (e.g., Molloy, 2020)
or web applications of data companies such as Google (Google LLC,
2020), Apple (2020), and TomTom (2020), which have recorded
mobility activities during the lockdown phase. Τhe impact on driv-
ing behavior still remains relatively unknown. This fact is the moti-
vation for the current paper, which aims at quantifying the effect of
the COVID-19 lockdown on driving behavior through a naturalistic
driving dataset captured through a novel mobile phone applica-
tion. More specifically data on driving speed, speeding, and harsh
braking/100 km are recorded before, during, and slightly after the
imposition of a lockdown state in Greece. Time series forecasts of
driving indicators based on the normal (pre-lockdown) phase are
used to compare observed driving behavior with a normal evolu-
tion of itself, so as to quantify the change during lockdown.

A variety of published studies and reports were examined con-
cerning road collisions, injuries, and fatalities. Road crashes were
reduced in the majority of countries as road traffic and pedestrian
volume decreased (Aloi et al., 2020). Road crashes in Germany
decreased by approximately 23% during a quarantine month,
injured people by 27%, and fatalities by 32% compared to the same
period last year (DW, 2020). The same impact was observed in the
Netherlands, where 50% less collisions were reported. Italy, France,
and Spain displayed a drop in road deaths of 40–70%, however, in
Australia the reported deaths had not declined despite the overall
reduced traffic (ETSC, 2020). Barnes et al. (2020) revealed that the
total number of crashes decreased; but unfortunately, crashes
involved individuals (especially males) from age 25 to 64. Lin
et al. (2020) highlighted that, although the number of nonfatal
crashes reduced, the severe and fatal cases of road crashes were
not changed during the pandemic. The overall number of road
crashes as well as crash fatalities reported across United States
was also reduced (Wagner et al., 2020). Although the number of
road crashes was in general positively correlated with the amount
of traffic volumes, the number of fatalities, surprisingly, was
observed to experience an increase at some states during COVID-
19 period (Vingilis et al., 2020).

This study is structured as follows: (a) an introduction to the
subject of the paper (see above); (b) a brief literature review on
driving behavior in relation with the effect of COVID-19 or other
pandemics on transportation; (c) a description of the methodolog-
ical approach and the utilized data; (d) XGBoost analyses, which
are used to explore the importance of contributor variables, are
then conducted; (e) the main part of the paper is dedicated to
time-series forecasting and the comparison between observed
driving behavior indicators and the forecasted ones; and (f) conclu-
sions on the impact of COVID-19 on driving behavior are drawn
and a discussion on how policy-makers and researchers should
take advantage of the analysis is provided.
2. Literature review

The literature research aimed to link driving behavior, mobility,
and transportation with the COVID-19 pandemic. The literature
search was conducted in popular scientific databases such as Sco-
pus, Science Direct and Google Scholar. The Boolean terms used to
search these databases were ‘‘COVID-19” or ‘‘Corona Virus” or ‘‘SARS
Cov 2” and ‘‘road” or ‘‘traffic” or ‘‘safety” or ‘‘accidents” or ‘‘collisions”
or ‘‘mobility” or ‘‘transport” or ‘‘transportation” or ‘‘behavior” or ‘‘be-
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havior.” The searches were limited to engineering and social
sciences, and the results included approximately 18,500 studies
(at present: 5/1/2021). These studies were screened concerning
their titles and abstracts, and the most relevant papers to the
investigating topic are included in this review.

Initially, De Vos (2020) analyzed the effect of COVID-19 in terms
of the impact of social distancing on travel behavior, while Budd
and Ison (2020) introduced a new theoretical concept of responsi-
ble transport that tries to reconsider transport policy due to behav-
ioral change of passenger during the pandemic. Moreover, Vingilis
et al. (2020) investigated the COVID-19 disease and its effects on
road safety and it was revealed that travel decreased and drivers
were exposed to a lower risk of collisions. Inada et al. (2020) indi-
cated that empty roads triggered some speed-related traffic law
violations among drivers, such as speeding, failing to stop at a stop
sign, red light running, and failing to yield to pedestrians. In addi-
tion, Neuburger and Egger (2020) revealed an increase in risk per-
ception of COVID-19, travel risk perception, and travel behavior
over a short period of time. However, the aforementioned studies
were limited to discussions over the impact of COVID-19 and did
not provide quantifiable results on the impact of the pandemic
on driving behavior.

Apart from studies discussing the impact of COVID-19 on travel
behavior, particular emphasis was given on descriptive statistics
regarding average speed, speeding, harsh events, mobile phone
use, and driving distance per trip during the pandemic. For exam-
ple, Aloi et al. (2020) conducted an empirical study and concen-
trated exclusively on urban mobility and COVID-19. Only
descriptive results were included in that study and the authors
demonstrated the change of mode choice, purpose of trip, number
of trips, macroscopic traffic flow, public transport trips travel time
and demands, and general trip features during lockdown. It was
also revealed that, in Tokyo, speeding increased by 52% in March
2020 compared to March 2019, while the police officially enhanced
enforcement of fines and penalties for speeding during the follow-
ing months (Inada et al., 2020). Similarly, Katrakazas et al. (2020)
provided descriptive evidence from Greece and Saudi Arabia on
the deterioration of road safety levels during the period of the lock-
down. In particular, it was shown that reduced traffic volumes due
to lockdown led to a slight increase in average driving speed by 6–
11%, but more importantly, to more frequent harsh accelerations
and harsh braking per 100 km (up to 12%). Additionally, during
March and April 2020, which were the months where COVID-19
spread was at its peak, mobile phone use while driving increased
by 42%, while driving within the risky hours (00:00am–05:00am)
dropped by up to 81%. Furthermore, spatial patterns of speeding
pre (2019) and post (2020) the COVID-19 outbreak were visualized
and compared in order to examine if the spatial extent of speeding
increased (Lee et al., 2020).

Regarding studies employing questionnaires, a large-scale sam-
ple survey was conducted by de Haas et al. (2020) with questions
concentrating mostly on mobility behavior, population, or demo-
graphic characteristics. Their findings concern the mobility behav-
ior change since the COVID-19 outbreak. They investigated the
change concerning the purpose of traveling, number of trips travel
modes, stated opinion for future outdoors activities, remotely
working, or education aspects. In the same context, Mogaji
(2020) conducted an online survey to evaluate the impact of
COVID-19 on transportation. More explicitly, the examined vari-
ables were mode choice, public transportation choice, and reduc-
tion of social, religious, and economic activities during the
COVID-19.

To date, only a few studies have conducted statistical analyses
on the effect of COVID-19 on driving behavior. One of them is
Stavrinos et al. (2020), which utilized multi-level modelling to
investigate driving behavior of adolescents in the United States
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before and during the pandemic period. Their results indicated that
after the appearance of COVID-19 pandemic and its corresponding
restrictions, driving days per week decreased by 37%, while vehicle
miles driven dropped by 35. Nevertheless, the data used were con-
cerned with self-reported driving behavior, and as a result a bias
existed. Within-subjects general linear models were used in Roe
et al. (2020) to investigate driving behavior of older adults during
COVID-19. Indicators used includedmean length in miles, the aver-
age speed in miles per hour of each trip, along with the mean num-
ber of three types of aggressive behaviors (i.e., harsh braking, harsh
accelerations, and speeding) per mile per trip. It was clearly high-
lighted that participants reduced the proportion of days driven
during the pandemic compared with the same period the year
before. At the same time, trips per day showed a similar decline.
Participants also took shorter trips, drove slower, had fewer speed-
ing incidents, and had different trip destinations.

As can be understood from the previous paragraph, no study
has statistically analyzed the impact of the COVID-19 pandemic
on driving behavior and road safety, nor has any study taken into
account time patterns in corresponding data. As a result, a gap in
the literature exists that the current paper hopes to fill by perform-
ing time-series analysis in driving behavior data during the COVID-
19 pandemic. In order to quantify the daily impact of COVID-19 on
driving behavior, time-series analysis is deemed the most appro-
priate method and, as a result, a review of the literature was also
conducted on methodological issues. Several published papers
have used the corresponding variables to estimate the driving
behavior.

3. Methodology

In order to quantify the daily impact of the COVID-19 pandemic
on driving behavior indicators, a statistical relationship between
COVID-19 and observed driving indicators had to be established.
Therefore, a feature importance algorithm was used to evaluate
the significance of variables on forecasting speed, speeding and
harsh braking/100 km. After the initial explanatory analysis, in
order to assess how driving behavior changed over time during
the pandemic, time-series forecasting was exploited. For each of
the three indicators (i.e., speed, speeding, harsh braking/100 km),
the daily time-series was extracted as well as the time-series
describing the evolution of COVID-19 cases and casualties. For
the time-series analysis using ARIMA models, the following steps
were followed according to Bisgaard and Kulahci, (2011),
Box and Jenkins, (1976) and Essi, (2018):

� Seasonal decomposition to identify the trend, seasonality and
residual variance

� Stationarity check using the augmented Dickey-Fuller test
(Dickey & Fuller, 1979)

� Consideration of a general ARIMA Model
� Autocorrelation and Partial Autocorrelation plots to explore the
relationship between time point and individual lags and find a
tentative model

� Determination of the model using a parameter search
� Split into training and test dataset
� Forecasting and evaluation of the predictions

The aforementioned methods and steps are further elaborated
in the following paragraphs.

3.1. XGBoost algorithms

As a preliminary step, Extreme Gradient Boosting (XGBoost)
algorithms were implemented so that the importance of the col-
lected variables, including the COVID-19 related variables, could
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be assessed and quantified in regards to the examined driving
behavior indicators (i.e., speed, speeding, and harsh brak-
ing/100 km). XGBoost is a potent machine learning (ML) technique,
encompassing multiple Classification And Regression Trees (CART),
also known as tree ensemble. Additionally, XGBoost belongs to the
family of supervised ML techniques, meaning that it uses labeled
training data, the structure of which is defined by the researcher.
In practice, this means that the independent/dependent variable
division is known and present in the examined variables, and the
outcome is a mapping function to the effect of y = f(x).

XGBoost algorithms apply the gradient boosting decision tree
algorithm, also known as multiple additive regression trees,
stochastic gradient boosting, or gradient boosting machines. The
learning process of the algorithm is iterative and includes correc-
tion of previous errors in future iterations of the algorithm. A
detailed presentation of the algorithm is described in the seminal
study by Chen and Guestrin (2016). XGBoost has been demon-
strated to outclass other ML methods such as Random Forests
and Support Vector Machines in performance both in road safety
(Ting et al., 2020) and in other fields (Nielsen, 2016).

Furthermore, XGBoost algorithms have functions that can cal-
culate the importance of each predictor variable. This is known
as Gini feature importance, or, equivalently, Mean Decrease in
Impurity (MDI), and was proposed in a seminal study by Breiman
(2001). One definition for Gini Importance for tree-based algo-
rithms is the following: Gini Importance is the value obtained as
the sum over the number of splits that include the feature across
all trees, optionally divided by the number of samples it splits. This
allows for powerful and accurate models to be created by utilizing
only the most important predictor variables from a given dataset.

In XGBoost, three particular variable importance metrics are
observed (XGBoost developer team, 2019):

� Gain, describing the improvement in accuracy added by a fea-
ture to the branches it is on.

� Cover, describing the relative quantity of observations (or num-
ber of samples) concerned by a feature.

� Frequency, describing the number of times a feature is used in
all generated trees.

These variable importance metrics used by the XGBoost algo-
rithms were calculated in the analysis and examined to reveal that
variables are informative to describe the examined driving behav-
ior indicators.

3.2. Time-series forecasting

Autoregressive Integrated Moving Average (ARIMA) type mod-
els are considered the most popular time-series models, and are
extensively used in the transportation research field. Their popu-
larity can be explained due to their well-defined theoretical back-
ground and their quite straightforward calculations (Karlaftis &
Vlahogianni, 2009). Thus, ARIMA models were deemed the most
appropriate to model the impact of COVID-19 on daily driving
behavior. An ARIMA model is a generalization of an Autoregressive
Moving Average (ARMA) model and are generally denoted as:

ARIMA p; d; qð Þ ð1Þ
where: p denotes the autoregressive order (i.e., number of time
lags), d denotes the differencing (i.e., the number of differencing
transformations required by the time series in order to become sta-
tionary.), q denotes the non-seasonal moving average order (i.e., the
lag of the error component, which is the part of the time series not
explained by trend or seasonality).

Then, the model can be written more formally as (Wang et al.,
2020):
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Up Bð Þ 1� BÞdyt ¼ hq Bð Þ�t
�

ð2Þ

where: U2Rp is a vector of coefficients for the AR terms, h2Rq is a
vector of coefficients for the MA terms, yt is the outcome variable
measured at time t, B is a vector used equivalently to indicate the
lag operator, �t is random error (white noise, residual) associated
with measurement t with et�N(0,r2)

On the other hand, Seasonal ARIMA models are used when the
time series exhibits seasonality. These models are similar to ARIMA
models and they are usually denoted as:

ARIMA p;d; qð Þ P;D;Qð Þm ð3Þ
where: p denotes the non-seasonal autoregressive order, d denotes
the non-seasonal differencing, q denotes the non-seasonal moving
average order, P denotes the seasonal autoregressive order, D
denotes seasonal differencing, Q denotes seasonal moving average
order, m is the number of periods in each season and the seasonal
ARIMA model can be generalized as:

Up BS
� �

Up Bð Þ 1� BÞd 1� BS
� �

yt ¼ hq BS
� �

hq Bð Þ�t
�

ð4Þ

where: p denotes the non-seasonal autoregressive order, S is the
period at which the seasonal trend occurs, B is a vector used equiv-
alently to indicate the lag operator, U is a vector of coefficients for
the AR terms, d denotes the non-seasonal differencing and yt is the
outcome variable measured at time t.

3.2.1. Seasonal decomposition and stationarity
In cases of evident seasonality, ARIMA models can be extended

to seasonal ARIMA (SARIMA) models. SARIMA models are consid-
ered as a straightforward extension of the non-seasonal ARIMA
(Hipel & McLeod, 1994). With regards to SARIMA models, related
studies were found to perform better than models of random walk
(Clark et al., 2003; Ghosh et al., 2005;Williams, 2003), support vec-
tor regression (SVR) (Lippi et al., 2013), historical average (Chung &
Rosalion, 2001; Williams, 2003) as well as regular ARIMA (Lippi
et al., 2013; Clark et al. in Williams, 2003). Another study reported
that the seasonal ARIMA models predicted more accurately, com-
pared to the best performing k-NN (k-nearest neighbors algorithm)
forecast models (Smith et al., 2002 in Kumar & Vanajakshi, 2015).

As a first step for the model identification and the interpretation
of time-series data, the decomposition of the time series of the
observed variable was required in order to identify its fundamental
(and unobserved) parts: trend, seasonality, and residuals. A time
series decomposition was used to measure the strength of trend
and seasonality in a time series (Wang et al., 2006). The manner
in which the decomposition is performed depends on whether
time-series data are multiplicative or additive (Hyndman &
Athanasopoulos, 2018). The decomposition can be written as:

yt ¼ Tt þ St þ Rt ð5Þ
where: yt is the outcome variable measured at time t, Tt is the
smoothed trend component, St is the seasonal component, Rt is a
remainder component.

It was also essential to make sure that the utilized time series
were stationary (Hyndman & Athanasopoulos, 2018). In order to
make a time series stationary, a transformation was applied to
the data, using the method of differencing. The latter removed
the changes in the level of a time series, eliminating trend and sea-
sonality and consequently stabilizing the mean of the time series.
In order to check a time series for stationarity the Augmented
Dickey-Fuller test was utilized (Dickey & Fuller, 1979). The Aug-
mented Dickey-Fuller (ADF) test is checking if u ¼ 0 in models of
the form:

Dyt ¼ aþ bt þuyt�1 þ d1Dyt�1 þ d2Dyt�2 þ � � � et ð6Þ
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where: yt is the observed time series data, a is a constant, b is the
coefficient of the time trend, et is a zero-mean error term. Using
the ADF test, ifu = 0, then a unit root does not exist for the observed
time series and the time series is non-stationary. In the different
case that u < 0, the time series is stationary.

3.2.2. Autocorrelation and partial autocorrelation
In order to identify an initial ARIMA model, the plots of the

Autocorrelation (ACF) and Partial Autocorrelation functions (PACF)
were used.

Correlation between two random variables X and Y can be
defined as (Dettling, 2018):

Corr X;Yð Þ ¼ Cov X;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð ÞVar Yð Þp ð7Þ

where: Corr X; Yð Þ is the correlation between the two variables,
Cov X;Yð Þ is the covariance of the two variables, and
Var Xð Þ;Var Yð Þ are their individual variances.

For stationary time series, autocorrelation (i.e., the correlation
of a specific variable with its earlier iteration) can be defined as a
function of the lag k (Dettling, 2018):

q kð Þ ¼ Corr Xtþk;Xtð Þ ð8Þ
where: Xt is the measurement at time t and Xtþk is the measure-
ment at lag k. It can be understood that the ACF defines the corre-
lation of an observation Xtþk with previous measurements Xt of
the same variable.

Similarly, partial autocorrelation at lag k can be defined as:

p kð Þ ¼ Corr Xtþk;Xt jXtþ1 ¼ xtþ1; � � � ;Xtþk�1 ¼ xtþk�1ð Þ ð9Þ
which denotes the association between Xtþk and Xt , given that the
linear dependence between Xtþ1 and Xtþk�1 is removed.

By plotting both ACF and PACF it was easier to identify the cor-
relation between more recent observations of the variable and
simultaneously the existence of either actual lagged autocorrela-
tions or autocorrelations caused by other measurements.

3.2.3. Model identification
In order to decide the parameters p, d, q for the ARIMA model as

mentioned in equation (3) and the corresponding parameters for a
potential SARIMA model, an automatic search of the best parame-
ters according to the Akaike information criterion (AIC) or Bayesian
Information Criterion (BIC) was used. The automatic search was
based on popular packages in R and Python programming lan-
guages (Hyndman & Khandakar, 2007; Smith, et al., 2017), which
have been found to be implemented successfully in recent publica-
tions (Ma et al., 2018, 2020). The best fitting model was selected
based on the smallest AIC and BIC.

The Ljung-Box test (Ljung & Box, 1978) a popular diagnostic tool
to test model fitness was also utilized. The Ljung-Box test is
defined as:

� H0 :The model does not exhibit lack of fit
� H1 :The model exhibits lack of fit

given the test statistic:

Q ¼ n nþ 2ð Þ
Xm
k¼1

br2k
n� k

ð10Þ

where: n is the length of the time series, brk is the estimated autocor-
relation of the time series at lag k and m is the number of lags being
tested.

The test rejects the null hypothesis if:

Q > v2
1�a;h ð11Þ



C. Katrakazas, E. Michelaraki, M. Sekadakis et al. Journal of Safety Research 78 (2021) 189–202
where: v2
1�a;h is the chi-square distribution table value with h

degrees of freedom and signicance level a. The degrees of freedoms
should be equal to m� p� q, where m is the number of residual
autocorrelations that need to be checked, and p; q are the autore-
gressive and moving average ARIMA parameters, respectively.

3.2.4. Choosing the training and testing samples
As the purpose of this paper was to quantify the effect of

COVID-19 on three driving behavior indicators (i.e., driving speed,
speeding, and harsh braking/100 km), the ARIMA models were
trained using a representative dataset of normal operations (i.e.,
prior to COVID-19) and tested on the early stages of COVID-19
spread in Greece when no countermeasures were taken. Following
the development of training and testing procedures for the algo-
rithm, then forecasts of these normal operations-based models
during the lockdown time period would give a picture of how these
traffic indicators would normally evolve and could enable compar-
isons between the actual observations during the lockdown phase
and the forecasted ones. In order to assist comparisons, time series
models were trained using data from the months of January and
February (i.e., when no COVID-19 case was reported in Greece),
were tested on the period before the lockdown and were validated
on the time period concerning mid-March until early May when
the lockdown status was lifted. It should be noted that the training,
test, and validation set was the same for all the examined variables
(i.e., average speed, speeding, harsh braking/100 km). Fig. 1 depicts
an example of training, test, and validation set.

3.2.5. Evaluation of predictions
After developing the ARIMA models on the testing and valida-

tion sets, forecasts were evaluated using popular forecasting eval-
uation metrics such as:

� Mean Error (ME), which gives the mean of the forecasting error:

ME ¼ 1
N

X
et ð12Þ

� Mean Absolute Error (MAE), which gives the mean of the abso-
lute forecasting error:
Fig. 1. An overview of training
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MAE ¼ 1
N

X
etj j ð13Þ

� Mean Percentage Error (MPE), which gives the mean of the fore-
casting error in percentage:

MPE ¼ 1
N

X et
observedt

� 100 ð14Þ

� Mean Absolute Percentage Error (MAPE), which depicts the
mean error in percentage terms:

MAPE ¼ 1
N

X etj j
observedt

ð15Þ

� Root Mean Squared Error (RMSE), which is the square root of
the average squared error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
e2t

r
ð16Þ

where: N is the number of forecasted points, and et is the error (i.e.
observedt � forecastedt)

Finally, statistical significance of the non-seasonal and seasonal
components of the ARIMA models was checked.

4. Data overview

For the purposes of this study, a large naturalistic dataset of
daily driving trips was used. The datasets correspond to a complete
5-month timeframe spanning from 01/01/2020 to 09/05/2020 in
Greece. The timeframe was chosen so that sufficient periods are
available both before the spread of COVID-19 to represent normal
operations and during the COVID-19 pandemic to quantify the
effect of the lockdown measures.

The first case of COVID-19 in Greece was diagnosed on
26/02/2020. The first reactive measure that was enforced in
Greece, after the initial diagnosis of coronavirus, was the nation-
wide suspension of the operation of educational institutions of
all levels on 10/03/2020. This was followed by the decision to close
, test and validation sets.



Table 1
Driving performance indicators along with their corresponding description (Source: OSeven, Data processing: NTUA).

Variables Unit Description

Average speed km/h Average speed during driving with stops excluded from the duration of the trip
Average total speed km/h Average speed during the total duration of the trip
Speeding km/h Average speed over the speed limit
Duration of speeding sec Total duration of speeding in a trip
Harsh accelerations/100 km – Number of harsh acceleration events per distance (100 km)
Harsh braking/100 km – Number of harsh braking events per distance (100 km)
Total distance km Total trip distance
Total duration sec Total trip duration
Driving duration sec Total duration of driving, i.e. duration of stops has been excluded
Risky hours driving km Distance driven during risky hours (00:00–05:00)
Duration of mobile phone use sec Total duration of mobile usage
GR-Total Cases – Total number of confirmed cases due to COVID-19 pandemic in Greece

Table 2
Descriptive statistics for the examined variables for the complete subset of trips in
Greece (from 01/01/2020 to 09/05/2020).

Variable Mean Standard
deviation

Maximum
value

Minimum
value

Average speed (km/h) 43.16 2.65 49.68 38.82
Speeding (km/h) 4.09 0.53 5.28 2.68
Harsh braking/100 km 13.07 1.91 20.33 7.06
Total trips 122,275
Sample size of each

variable (N)
130

Table 3
Descriptive statistics for the examined variables for the months of COVID-19 in
Greece (from 26/02/2020 to 09/05/2020).

Variable Mean Standard
deviation

Maximum
value

Minimum
value

Average speed (km/h) 44.34 2.68 49.68 38.82
Speeding (km/h) 4.17 0.61 5.28 2.68
Harsh braking/100 km 13.26 2.08 20.33 7.70
Total trips 46,614
Sample size of each

variable (n)
56
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down all cafes, restaurants, bars, shopping centers, sports facilities,
museums, and all services in the areas of religious worship of any
religion and finally, a restriction on all non-essential movement
was put in place on the 23/03/2020. The lockdown was lifted on
the 04/05/2020 after 42 days.

For the purpose of the analyses, microscopic trip data and a rep-
resentative subset of 122,275 trips was provided by OSeven Telem-
atics. It should be noted that the microscopic trip data used
referred to the users of OSeven smartphone application and not
the entire population of Greece. Both male and female drivers aged
18–65 participated and a large database of thousands of trips was
obtained through the OSeven application. The sample utilized in
this research was also counterbalanced regarding age group and
gender, in order to be as representative as possible. The raw driving
behavior data from the mobile phone sensors (i.e., GPS, accelerom-
eters, or gyroscope) was collected through driving behavioral ana-
lytics platforms, state-of-the-art technologies and smart
algorithms, reliable metrics and novel gamification schemes,
developed by OSeven. Several published studies have used natural-
istic driving data from smartphone sensors provided by OSeven
Telematics for investigating driving parameters such as driving
behavior (Papadimitriou et al., 2019; Stavrakaki et al., 2020;
Tselentis et al., 2019). Regarding data collection, data from smart-
phone sensors have been shown to allow for continuous and rapid
data collection and seamless storage and analysis. Since smart-
phones are programmable, flexible implementation possibilities
become available. However, there are increased demands in data
storage and analysis, and considerable upfront costs during devel-
opment of the data handling infrastructure, with much lower costs
as time progresses and participant numbers increase (Ziakopoulos
et al., 2020).

It should be mentioned that as privacy and security consist two
of the platform’s main design principles, all data are stored and
specific measures are taken to protect them based on encryption
standards for data in transit and at rest. The above procedure is
done using the latest technologies that comply with the national
regulation in EU as well as with the General Data Protection Regu-
lation (GDPR). As a result, all data has been provided by OSeven
Telematics in a completely anonymized format. Readers are also
referred to the studies provided in section 2.1 for a more detailed
description of the OSeven application and platform in the scientific
literature.

The collected trip data contained information on driving perfor-
mance regarding average driving speed, average total speed, aver-
age speed limit exceedance (speeding), harsh events (i.e., harsh
accelerations, harsh braking), other trip characteristics (i.e., total
distance and total duration), as well as mobile phone use or driving
during risky hours (00:00am–05:00am). The descriptive statistics
of the aforementioned indicators during the collection period
(i.e., between 01/01/2020 and 09/05/2020) are depicted in Table 1.
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Within this paper, three variables were selected and analyzed in
detail:

� average speed (km/h)
� speeding (km/h); namely average excess speed over the limit
� harsh braking per distance (100 km)

Furthermore, the enforcement of quarantine measures during
the critical period for Greece is treated as a binary quantity: the
value 1 is assigned for trips during the period from 23/03/2020
to 05/05/2020, and the value 0 is assigned for all other examined
trips.

Table 2 illustrates descriptive statistics (i.e., mean, standard
deviation, maximum value, minimum value) with regards to the
examined variables for the complete subset of trips (122,275 trips),
while Table 3 depicts descriptive statistics for the examined vari-
ables for the months of COVID-19 in Greece (46,614 trips). It
should be also noted that the sample size for each variable in
Table 2 is N = 130, while for the examined variables for the months
of COVID-19, the sample size is denoted by n = 56 values.
5. Exploratory feature analysis with XGBoost

An initial exploration of feature importance as yielded by the
implementation of XGBoost methodology is conducted in this
section. All variables are positive continuous variables, and are



Table 7
Feature importance of speeding XGBoost algorithms.

Feature Gain Cover Frequency

1 Total distance 0.551 0.558 0.467
2 GR-Total Cases 0.212 0.224 0.228
3 Trip duration 0.130 0.142 0.152
4 Duration of mobile use 0.054 0.053 0.076
5 Quarantine 0.027 0.018 0.033
6 Risky hours 0.026 0.006 0.043

Table 8
Examined and optimized hyperparameters for harsh braking/100 km XGBoost
algorithms.

Hyperparameter Examined range Optimized Value

Learning rate 0.001–0.6 0.374
Gamma 0.001–10 1.37
Maximum tree depth 2–10 6
Minimum child weight 1–10 1
Number of rounds 1–250 242
Mean Squared Error as low as possible 0.018
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therefore examined with a regression with squared loss function.
In order to calibrate the XGBoost tree ensemble, a uniform split
was applied in the described data: 75% was randomly designated
as the training subset, while the remaining 25% was randomly des-
ignated as the test subset. Furthermore, a number of hyperparam-
eters can be optimized for each XGBoost ensemble, such as
learning rate (eta), gamma, maximum tree depth, minimum child
weight, number of rounds and mean squared error. The selection
of the optimal values is conducted by examining large numbers
of hyperparameter combinations, as described by Bischl et al.
(2016); in this research, a grid search of 5000 hyperparameter
combinations was conducted for each analysis. All XGBoost analy-
ses were conducted in R-studio (R Core Team, 2019).

5.1. Average speed (km/h)

The examined range and obtained parameters from the
XGBoost tuning for average speed are provided in Table 4.

The predictive power was provided by the application of the
XGBoost tree ensemble on the test subset, and yielded
RMSE = 1.106 and MAPE = 0.024. The respective obtained feature
importance is provided in Table 5.

5.2. Speeding (km/h)

The examined range and obtained parameters from the
XGBoost tuning for speeding is provided in Table 6.

The predictive power was provided by the application of the
XGBoost tree ensemble on the test subset, and yielded
RMSE = 0.318 and MAPE = 0.062. The respective obtained feature
importance is provided in Table 7.

5.3. Harsh braking/100 km

The examined range and obtained parameters from the
XGBoost tuning for harsh braking/100 km is provided in Table 8.
Table 4
Examined and optimized hyperparameters for average speed XGBoost algorithms.

Hyperparameter Examined range Optimized Value

Learning rate 0.000–1.000 0.38
Gamma 0–100 4.17
Maximum tree depth 1–50 9
Minimum child weight 1–10 2
Number of rounds 1–1000 42
Mean Squared Error as low as possible 1.256

Table 6
Examined and optimized hyperparameters for speeding XGBoost algorithms.

Hyperparameter Examined range Optimized Value

Learning rate 0.000–1.000 0.06
Gamma 0–100 0.34
Maximum tree depth 1–50 2
Minimum child weight 1–10 4
Number of rounds 1–1000 250
Mean Squared Error as low as possible 0.177

Table 5
Feature importance of average speed XGBoost algorithms.

Feature Gain Cover Frequency

1 GR-Total Cases 0.574 0.306 0.308
2 Total distance 0.387 0.489 0.500
3 Trip duration 0.035 0.154 0.154
4 Risky hours 0.005 0.051 0.038
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The predictive power was provided by the application of the
XGBoost tree ensemble on the test subset, and yielded
RMSE = 1.279 and MAPE = 0.08. The respective obtained feature
importance is provided on Table 9.

In summary, the COVID-19-related parameter of total cases in
Greece seems to exert a considerable influence in allowing the pre-
diction of average speed, speeding, and harsh braking/100 km, as
expressed by the gain scores of each XGBoost tree ensemble. This
applies for the presence and enforcement of quarantine measures
for average speeding as well. It is apparent that the exposure vari-
ables of total trip distance and duration also affect all examined
quantities, and a small contribution is also provided by driving
during risky night-time hours.

6. Time-series modelling assessment

6.1. Model specification

Following the identification of the influence of COVID-19-
related parameters on driving behavior indicators, Seasonal
Autoregressive Integrated Moving Average (SARIMA) modelling
was followed to quantify the impact of the pandemic. The three
components (i.e., trend, seasonality, and residuals) for the time-
series of the considered indicators were analyzed. It was observed
that the seasonal component for all three indicators changed over
time, and similar patterns were observed for consecutive months.
However, later observations displayed greater difference. With
regards to average speed and speeding, there was an overall
increasing trend through the months, which means that there
was a significant rise in average speed and speeding during the
period of COVID-19 pandemic. Taking into consideration harsh
braking/100 km, a smaller seasonal trend was evident. With
regards to the non-seasonal trend, values reached a maximum dur-
ing mid-March, but started to decrease thereafter. Lastly, the con-
tribution of random noise was negligible for all the examined
variables.
Table 9
Feature importance of harsh braking/100 km XGBoost algorithms.

Feature Gain Cover Frequency

1 Duration 0.541 0.396 0.327
2 Totaldist 0.278 0.211 0.173
3 GRTotalCases 0.075 0.043 0.135
4 Risky_hours 0.058 0.206 0.192
5 Time_mobile_usage 0.049 0.144 0.173
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As described in the methodology, the next step in the time ser-
ies pipeline was to check for stationarity. For that purpose, the ADF
test was performed for the 1st difference (Yt-Yt-1) of average speed,
speeding, and harsh braking/100 km. In order to eliminate the sea-
sonal effect from the time series observations, a seasonal first dif-
ferencing was utilized for all considered time-series. The first
difference was used because all the original time series were not
stationary. Such a transformation also assisted to consolidate the
variance of a time series. Moreover, differencing can help stabilize
the mean of a time series by removing changes in the level of a
time series, and therefore eliminating, or reducing, trend and
seasonality.

Table 10 illustrates the ADF test for the original variables, while
Table 11 depicts the ADF test for the 1st difference of each variable.
In addition, Table 12 illustrates the Box-Ljung Test (white noise
check) for the examined variables, which was performed on the
1st difference of average speed, speeding and harsh
braking/100 km.

ACF and PACF plots for the 1st difference of driver behavior
indicators (i.e., average speed, speeding and harsh braking/100 km)
were performed that indicated the levels at which the autocorrela-
tion is significant and determined the order of the autoregressive
term. It was found that both ACF and PACF dropped to zero
Table 11
Augmented Dickey-Fuller Test for the 1st difference of each variable.

Augmented Dickey-Fuller Test

Variable Test statistics Lag order p-value

diff(Average speed) �8.94 5 0.01
diff(Speeding) �10.09 5 0.01
diff(Harsh braking/100 km) �8.39 5 0.01

Table 12
Box-Ljung Test for the 1st difference of each variable.

Box-Ljung Test

Variable X2 df p-value

diff(Average speed) 78.1 24 1.218e-07
diff(Speeding) 55.64 24 2.563 e-04
diff(Harsh braking/100 km) 44.75 24 6.22 e-03

Table 13
Summary of estimated candidate SARIMA models for the 1st difference of each variable.

Variable Candidate model Estimate Std

diff(Average speed) ma1 �0.95 0.1
sma1 �0.74 0.3

diff(Speeding) ar1 �0.60 0.1
sar1 �0.49 0.1

diff(Harsh braking/100 km) ma1 �0.45 0.1
ma2 �0.34 0.1
sar1 0.66 0.2
sma1 �0.92 0.3
sma2 0.69 0.3

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 10
Augmented Dickey-Fuller Test for the considered variables.

Augmented Dickey-Fuller Test

Original Test statistics Lag order p-value

Average speed �2.49 5 0.37
Speeding �3.59 5 0.04
Harsh braking/100 km �3.53 5 0.04
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relatively quickly. For all the candidate SARIMA models, p-values
of the autoregressive and seasonal autoregressive terms were
found to be less or equal to 0.05, which indicates their statistical
significance. Table 13 shows the final selected candidate models
along with their corresponding ARIMA terms. The specifications
of the best model per driving behavior indicator with regards to
AIC and BIC are also demonstrated.

Following the observation of the ACF and PACF plots, the best
models were obtained through the forecast package in R
(Hyndman et al., 2020), as described in Table 14. The number in
brackets (i.e. [7]) represents the exponential decay in weekly lags.
As described in section 3.2, the corresponding values for the best
SARIMA models denote the non-seasonal and seasonal autoregres-
sive order, differencing as well as moving average order,
respectively.

In order to further validate the models, their residuals were also
checked. As depicted in Fig. 2, the residuals appear to be randomly
scattered, and no evidence of the error terms being correlated with
each other exists. Consequently, the residuals or errors can be con-
ceived as independently and identically distributed (i.i.d.)
sequences with a constant variance and a zero mean. Therefore,
the developed SARIMA models appeared to be well-fitted and were
chosen to be used for prediction.

Table 15 illustrates the results of the estimated SARIMA models
for each of the three variables. With regards to the error terms of
RMSE and MAE, the values of RMSE were proven to be larger,
which means that all the errors are not of the same magnitude;
actually, the greater difference between them, the greater the vari-
ance in the individual errors.

Regarding RMSE, the best performance is observed for speeding
with 0.45, while the worst performance is observed using the aver-
age speed time series. Looking, however, at the MAPE indicator, it
is distinguishable that the speed time series resulted in the best
forecasting performance, with only 3.46% difference from the
observed measurements. This is further resembled in the MPE indi-
cator with speed having a 0.23% difference from the observed val-
ues. Lastly, with regards to the first-order autocorrelation
coefficient (ACF1), all three SARIMA models perform well, with
the speeding time series having the best performance. It should
be noted that as the autocorrelation function can provide the cor-
relation among different points separated by various time lags,
ACF1 is a measure of how much is the current value influenced
by the previous values in a time series.
. Error z value Pr(>|z|) AIC BIC

3 �7.12 1.07e-12 *** 116.94 122.36
6 �2.01 0.042 *
2 �4.99 6.15e-07 *** 25.11 30.53
4 �3.65 2.61e-04 ***
3 �3.43 6.09e-04 *** 194.11 205.70
4 �2.49 0.013 *
2 2.93 3.337e-03 **
1 �2.95 3.174e-03 **
7 1.87 0.061 .

Table 14
SARIMA models for the 1st difference of each variable.

Variable SARIMA Model

diff(Average speed) (0,1,1)x(0,1,1)[7]
diff(Speeding) (1,1,0)x(1,1,0)[7]
diff(Harsh braking/100 km) (0,1,2)x(1,0,2)[7]



Fig. 2. Residual Plots for the 1st difference of each variable: (a) average speed, (b) speeding, (c) harsh braking/100 km.

Table 15
Performance metrics for the estimated SARIMA model on the test set.

Variable ME RMSE MAE MPE MAPE ACF1

diff(Average speed) 0.19 2.23 1.51 0.23 3.46 0.17
diff(Speeding) �0.05 0.45 0.31 �1.98 7.25 �0.01
diff(Harsh braking/100 km) �0.33 1.98 1.61 �5.60 15.04 0.34
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6.2. Forecasting

After validating the performance of the developed model, focus
was given on the forecasting performance. The results of the mod-
els with regards to the COVID-19 lockdown period is described in
the following sections.

6.2.1. Average speed (km/h)
With regards to average speed, the forecasted values were

based on the (0,1,1)x(0,1,1) SARIMA model. It can be observed that
speed significantly increased over the COVID-19 lockdown with
large fluctuations, while in normal conditions speed would not
increase above 46 km/h. To further illustrate the effect of COVID-
19 lockdown on average speed, the differences between forecasted
and observed values, as well as the RMSE, MAPE and ACF1 were
estimated. Fig. 3 depicts the SARIMA model for average speed for
the prediction time along with the differences between average
speed observed and predicted values.

6.2.2. Speeding (km/h)
Concerning speeding, the forecasts were based on the (1,1,0)x

(1,1,0) best-fit SARIMA model. It is evident that speeding was fore-
casted to be increased during the months of March and April, but
actually demonstrated a downwards trend during the pandemic.
Regarding the difference between the observed and forecasted val-
ues, Fig. 4 illustrates that in the beginning of March and until the
beginning of April, the actual values for speeding were higher than
the potential normal forecasted values, while within April speeding
gradually decreased.
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6.2.3. Harsh braking/100 km
It was found that observed values differ a lot from the forecasts.

In more detail, harsh braking/100 km was forecasted to have a fre-
quency of around 12 and 13 events/100 km, but observed values
are largely higher than the forecasts, reaching a maximum of 21
and minimum of 9 harsh braking/100 km. From Fig. 5, it is further
validated that during the COVID-19 pandemic, values for harsh
braking/100 km were much higher than the forecasted values.

6.2.4. Overall evaluation
In order to have an overall picture of the difference between

forecasted and observed values, the MAPE, RMSE, ACF1 errors as
well as the minimum and maximum and average of the three indi-
cators were obtained and are described in Table 16.

From Table 16, it can be observed that in terms of RMSE, speed
is performing worse than the rest of the three indicators, but better
in terms of MAPE. As a result, forecasts for speed tend to be more
accurate than forecasts for speeding and harsh braking/100 km.
With regards to the average difference between observed and fore-
casted values, similar to RMSE speed provided larger errors but this
is due to the fact that speed units (i.e. km/h) are larger than the
measurement units of speeding or harsh braking per distance.
Finally, observing the dates for minimum and maximum values
of forecasts, the minimum difference between observed and fore-
casted values was identified on the 3rd of May, the last day of
the lockdown, for speed and speeding, while the minimum differ-
ence for harsh braking/100 km was found on the 9th of March. In
addition, the maximum difference for the average speed and
speeding time series was observed on the 25th of March, a tradi-
tional Greek holiday (i.e., Greek Independence Day), and with
regards to harsh braking/100 km, the maximum difference was
identified in the 11th of April.

7. Discussion

This study aimed to quantify the effect of the COVID-19 pan-
demic on driving behavior by forecasting the evolution of time-



Fig. 3. SARIMA model forecasts for average speed and Differences between observed and predicted average speed values.

Fig. 4. SARIMA model forecasts for speeding and differences between observed and predicted speeding values.
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series data based on values before the pandemic and comparing
forecasts with actual values during the COVID-19 lockdown in
Greece. Initially, the importance of COVID-19 indications (e.g.,
cases, casualties, lockdown countermeasures) was investigated
using the feature importance extracted from XGBoost algorithms.
The number of total cases was one of the two most important fac-
tors for three out of the three examined indicators (i.e. speed,
speeding, and harsh braking/100 km). As a result, it can be derived
198
that the spread of the virus had a significant effect on driving
behavior. Total distance and trip duration were also among the
most influential factors for all examined indicators. This can be
explained by the significant decrease in trip duration and distance
driven during the lockdown phase as seen in Fig. 6.

The effect of the lockdown initiation was not found to have a
significant effect on driving behavior indicators, as was indicated
in section 5 of the current paper. This is probably explained by



Fig. 5. SARIMA model for harsh brakings /100 km and differences between observed and predicted harsh braking values.

Table 16
MAPE, RMSE, ACF1, min, max, average difference for observed and forecasted values.

Variables MAPE RMSE ACF1 Minimum Difference (Date of occurrence) Maximum Difference (Date of occurrence) Average

Average speed 7.12 3.76 0.50 �5.30 (3/5/2020) 7.51 (25/3/2020) 2.27
Speeding 17.76 0.87 0.44 �2.72 (3/5/2020) 1.11 (25/3/2020) �0.22
Harsh brakings/100 km 12.27 2.51 0.43 �3.06 (9/3/2020) 8.37 (11/4/2020) 1.51

Fig. 6. Total duration and distance of trips during the COVID-19 period in Greece.
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the fact that Greek drivers did not change their behavior due to the
lockdown but rather because of the spread of the virus that led
them to minimize trips and car driving.

The authors recognize that there is no immediate causal con-
nection between total COVID-19 cases and/or quarantine presence
and road safety, in the form of an established road safety risk factor
or measure. The findings of the exploratory analysis through
XGBoost, however, suggest a correlational value of the parameter
of number of cases at least temporally. Therefore, they provided
additional incentive for the time-series modelling and examination
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of trends that impact the three examined road safety indicators, as
the pandemic progresses.

Τhe effect of COVID-19 on driving behavior in terms of average
speed, speeding, harsh braking/100 km both during the COVID-19
pandemic and the time period before the first case of the disease
in Greece was quantified through seasonal time series modeling
approach. With regards to the forecasting of the ‘‘normal evolu-
tion” (i.e., the potential evolution if COVID-19 had not spread
and no lockdown measures were applied) it was observed that
the best model was obtained for average speed with only 3.46%



Table 17
Road crashes and persons injured from January to April 2020 in Greece (Hellenic Statistical Authority (2021)).

January February March April Change (March–April) – (January–February)

Road crashes 788 858 507 326 �49%
Fatalities 49 47 24 21 �53%
Severe injuries 46 31 26 21 �39%
Slightly injuries 909 965 545 332 �53%
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of MAPE. In general, no large errors were observed with harsh
braking/100 km (i.e., the variable with the larger MAPE) being able
to forecast with 84.96% accuracy on the test dataset. Βy applying
the developed models on the validation dataset that described
the lockdown period in Greece and looking at the difference
between observed and forecasted values, the effect of COVID-19
could be evaluated for all three indicators.

With respect to average speed, it was revealed that the
observed values were higher than the forecasted ones, which
means that a significant increase in average speed was identified
during the COVID-19 lockdown. Τhe maximum difference (7.51)
between observed and predicted values of average speed was iden-
tified in 25/03/2020, during the lockdown period due to COVID-19,
which seems reasonable as the 25th of March is a public holiday.
Conversely, the minimum difference (-5.30) between actual and
forecasted values of average speed was found in 03/05/2020, a
day before the gradually lift restrictions in Greece, when drivers
started to restart their business activity and return to their daily
routines. On average, it was demonstrated that observed speeds
are 2.27 km/h higher than the forecasted ones, but as seen from
the maximum and minimum values a lot of variance existed. This
finding can be explained by the fact, that with emptier streets and
much lower volumes, average vehicle speed tends to be increased.
This finding can be supported by Inada et al. (2020) who indicated
that the empty roads possibly triggered speed-related violations
among drivers.

Speeding was forecasted to be increased during the months of
March and April; however, a downward trend during the pandemic
was demonstrated, but the models failed to predict it. Especially in
March, it was demonstrated that actual values for speeding were
higher than forecasted, while within April speeding gradually
decreased, with an overall average difference of 0.22 fewer events
between observed and predicted values. The demonstrated average
reduction is contradicting with the increase of speed that was
observed, but can be explained by the fact that the forecasting
model for speeding was the worst in terms of RMSE and MAPE.
As a result, the forecasting ability of the model cannot capture suc-
cessfully the evolution of speeding occurrence and results should
be interpreted with caution.

The forecasting results on harsh braking/100 km demonstrated
that if no lockdown was imposed, the average number of harsh
brakings/100 km would be lower for the majority of the lockdown
days. Increases of harsh braking/100 km with lower traffic and
higher speeds are compliant with recent research using similar
data (i.e., from smartphones), where it is stated that with higher
speeds more harsh braking events occur (Petraki et al., 2020).

Lastly, a more comprehensive picture of the effects of COVID-19
pandemic on road safety can be drawn from the high quality data
on total number of road crashes along with the corresponding
fatalities, severe and slight injuries. Table 17 illustrates the differ-
ence in the total number of road crashes and persons injured from
January to April 2020 in Greece. In particular, a 49% reduction in
the total number of road crashes was observed during March-
April 2020 (i.e., months of COVID-19) compared to January–Febru-
ary 2020 (i.e., when no COVID-19 case was reported in Greece).
Furthermore, during March–April 2020, the total number of fatali-
ties decreased by 53%, severe injuries were reduced by 39%, while
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slight injuries were reduced by 53% compared to January–February
2020.

Despite the fact that provisional data for road crashes occurred
in 2020 (Hellenic Statistical Authority, 2021) showed that there
was a decrease in absolute numbers of crashes, fatalities, and inju-
ries, driving performance was found to be more careless and more
risky overall during the lockdown period. This finding can be sup-
ported by previous studies in which it was found that less vehicle
traffic volumes and empty roads led to higher speeds and harsh
events (Carter, 2020). Results from the current research are also
consistent with findings reported by Wagner et al. (2020), who
analyzed U.S. data from the second quarter of 2020 compared to
the first quarter. It was revealed that the total number of road
crashes and fatalities reported across states was reduced, while
drivers were more willing to take risks that included speeding,
driving while impaired, and not using their seat belts. These dri-
vers, along with a potential reduction in law enforcement and
safety messaging, were identified as possible factors that created
an environment favoring risky driving. The same finding was
recently reported by Brodeur et al. (2020) who used difference-
in-differences in order to evaluate the impact of Stay-at-Home
orders on road crashes for five states in the United States and a
50% reduction in road crashes was identified. However, some of
the conclusions delivered from Lin et al. (2020) were found to be
different compared to the present ones. In particular, the impact
of COVID-19 on road traffic safety in Los Angeles and New York
was examined. Results indicated that the pandemic has dispropor-
tionately affected certain age groups and that nonfatal road crashes
decreased, while the number of fatal crash cases remained the
same during the pandemic (Lin et al., 2020).
8. Conclusions

This paper presented an investigative approach to quantify the
impact of the COVID-19 pandemic on driving behavior using natu-
ralistic driving data obtained from smartphone sensors and time
series forecasting in Greece. The evaluation of the impact of
COVID-19 was based on the comparison between observed values
for three driving indicators (i.e., speed, speeding, and harsh brak-
ing) and forecasts based on the period before the coronavirus
spread. Methodologically, the influence of COVID-19 was initially
evaluated with explanatory XGBoost feature importance and was
primarily modelled using seasonal ARIMA models, which have
been a popular choice for transportation-related forecasting.

Results demonstrated the magnitude of the impact due to the
COVID-19 lockdown, as it was observed that the ‘‘natural evolu-
tion” of the three aforementioned indicators was forecasted with
major differences compared to the actual observations. Measure-
ments regarding speed were the ones demonstrating the larger dif-
ference. The most reliable forecasting model for speed
demonstrated that speeds increased by 2.27 km/h on average and
up to 7.5 km/h on a national holiday day during the lockdown. Fur-
thermore, the increase in speeds also assisted in manifesting an
increase in harsh braking/100 km, which is supported by recent lit-
erature. The number of road crashes and road traffic fatalities and
injuries decreased during the COVID-19 period (i.e., from March to
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April 2020), compared to non-COVID-19 period (i.e., from January
to February 2020).

Nevertheless, this paper is not without shortcomings. The
developed models for speeding have limitations and do not seem
to capture the trend and seasonality of the original time series
effectively. More sophisticated models, such as deep neural net-
works (e.g., Convolutional Neural Networks (CNNs) or Long
Short-Term Memory Networks (LSTMs)) could have a better fit
on the time series data and provide better forecasts. Furthermore,
rates for harsh acceleration events per km were not found statisti-
cally significant in this work, but the aforementioned sophisticated
models could succeed in forecasting using these variables as well.

Future research should initially concentrate on comparing
COVID-19 driving indicators from different countries so as to com-
pare and contrast different effects. Furthermore, the development
of more sophisticated models (as those mentioned in the previous
paragraph), as well as multivariate forecasting models using Vector
AutoRegression (VAR) in order to capture the interdependencies
between time series should provide more insights on the impact
of COVID-19 on driving behavior. Finally, more driving behavior
indicator time series, such as the use of mobile phone during driv-
ing or aggressiveness levels, would also assist in quantifying the
effects of lockdown on driving.
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