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• Surveillance of viral RNA concentrations
at residential sewer sub-catchments re-
vealed spatial autocorrelation and clus-
tered behavior.

• The emergence of hot spots was found
to occur in waves, with outlying neigh-
borhoods lagging two weeks behind
hot spots across the urban center.

• PCA identified neighborhood clustering
over time, revealing three neighbor-
hoods types: central urbanized, outlying
urbanized, and suburban.

• Virus surveillance from the regional
water reclamation facility was corre-
lated to the central urbanized neighbor-
hoods.

• Demographic analysis identified that
some neighborhood groups had statisti-
cally significant differences.
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The response to disease outbreaks, such as SARS-CoV-2, can be constrained by a limited ability tomeasure disease
prevalence early at a localized level.Wastewater based epidemiology is a powerful tool identifying disease spread
from pooled community sewer networks or at influent to wastewater treatment plants. However, this approach
is often not applied at a granular level that permits detection of local hot spots. This study examines the spatial
patterns of SARS-CoV-2 in sewage through a spatial sampling strategy across neighborhood-scale sewershed
catchments. Sampling was conducted across the Reno-Sparks metropolitan area from November to mid-
December of 2020. This research utilized local spatial autocorrelation tests to identify the evolution of statistically
significant neighborhood hot spots in sewershed sub-catchments that were identified to lead waves of infection,
with adjacent neighborhoods observed to lag with increasing viral RNA concentrations over subsequent dates.
The correlations between the sub-catchments over the sampling period were also characterized using principal
component analysis. Results identified distinct time series patterns, with sewersheds in the urban center, outly-
ing suburban areas, and outlying urbanized districts generally following unique trends over the sampling period.
Several demographic parameters were identified as having important gradients across these areas, namely
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population density, poverty levels, household income, and age. These results provide a more strategic approach
to identify disease outbreaks at the neighborhood level and characterized how sampling site selection could be
designed based on the spatial and demographic characteristics of neighborhoods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Public health entities and local governments around theworld faced
unprecedented challenges in deploying clinical testing to monitor and
inform policy in order to slow the spread of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) disease, COVID-19. The accuracy
of the clinical testing data collected by public health officials was limited
by amultitude of factors, such as strained supply systems, public access,
the high occurrence of asymptomatic viral infections, and public accep-
tance. Respiratory viruses like SARS-CoV-2 are typically shed at lower
concentrations in human stool compared to viruses that infect the gas-
trointestinal tract, which often spread through fecal-oral transmission
(Wigginton et al., 2015). Although the transmission of SARS-CoV-2 is
primarily through fine droplets and an oral-oral route, there is evidence
that SARS-CoV-2 does replicate in the gastrointestinal tract (Ahmadiara,
2020; Kitajima et al., 2020; Yeo et al., 2020; Zhou et al., 2017) resulting
in abundant concentrationsmeasured fromhuman stool (Foladori et al.,
2020; Lee et al., 2020; Zhang et al., 2020; Zhou et al., 2020). Viral RNA
concentrations shed into sewage may range from 102 to 106.5 gene cop-
ies/L, when typical dilution rates of sewage are accounted for (Saawarn
and Hait, 2021). Wastewater-based epidemiology (WBE) arose as a
promising strategy to acquire less biased data regarding the viral prev-
alence in a community and to provide earlier detection of outbreaks.

As a member of the Coronaviridae family, SARS-CoV-2 are character-
ized by an enveloped structure with single-stranded, positive-sense
RNA genome (Kitajima et al., 2020). Although the survivability and
partitioning of SARS-CoV-2 in sewer networks has not yet been re-
ported, several studies have explored the potential fate and transport
characteristics of the virus based on its morphology and similarity to
other enteric viruses (Kitajima et al., 2020; Mohapatra et al., 2021;
Saawarn and Hait, 2021). Viruses with enveloped structures are more
readily inactivated in environments like sewer networks (Wigginton
et al., 2015). Ye et al. (2016) observed that enveloped viruses had
shorter survival times in sewage compared to nonenveloped viruses.
Thus, measurement of SARS-CoV-2 at neighborhood scale sewer sub-
catchments may provide superior characterization of disease spread
due to the shorter retention time compared to monitoring at the influ-
ent towater reclamation facilities (WRFs). These characteristics contrib-
ute to the value of WBE to monitor COVID-19 disease spread through
communities, particularly at more granular community scales.

The analysis of spatial patterns in pathogen levels through WBE may
provide several benefits in developing the understanding of social and
geographical characteristics that correlate to the distribution of disease
while also providing insight into the representativeness of sewage from
WRFs versus in neighborhood sub-catchments. Several studies have ex-
plored spatial patterns in disease with the goal of identifying social char-
acteristics that correlated to virus infection rates or the probability of
infection (McLafferty, 2015; Odoi et al., 2003; Samphutthanon et al.,
2014). This spatial approachhas recently beenextended tounderstanding
the COVID-19pandemic at the province scale to evaluate the social factors
that best correlated to geographic patterns in the reported COVID-19
cases (Mollalo et al., 2020; Ramírez-Aldana et al., 2020; Ren et al.,
2020). Few studies have applied spatio-temporal sewershed sampling
strategies to characterize the distribution of disease and data biases across
a catchment (e.g., Freeman et al., 2017; McCall et al., 2017; Wang et al.,
2012). As demonstrated by Hart and Halden (2020a), the
heteroskedasticity of socio-economic characteristics across a WRF
sewershed is an important spatial parameter to considerwhen evaluating
the potential biasing of WBE data because the biomarkers in sewage are
2

expected to decay according to their residence timewithin the sewer net-
work. These researchers demonstrated that biomarker decay resulted in
the overrepresentation of the populations closest to the WRF when
WBE monitoring was performed from WRF influent. An extensive study
by McCall et al. (2017) explored uncertainty in WBE monitoring at nu-
merous sewer catchment scales, ranging from 14,000 to 370,000 persons,
and evaluated the variability of HRT and loss in the biomarkers of interest
across the spatial sampling areas. Notably, this study determined that the
biomarkers that were transformed due to biotic in-sewer processes
expressed the greatest variability and that these biomarker transforma-
tion rates were also the greatest source of uncertainty when modeling
the source population. Thus, the size of the sewer catchment captured
by aWBE sampling site is likely to influence themagnitude of data biasing
aswell as the representativeness of themeasured biomarker to a commu-
nity. Spatial sampling methods may address important sources of data
bias (Hart and Halden, 2020a; McCall et al., 2017) and also enhance the
detection of spatial clustering patterns (Wang et al., 2012).

WBE has been widely proposed as a necessary approach to avoid the
data biases associated with clinical testing of COVID-19 (Ahmed et al.,
2020; Thompson et al., 2020), however no studies were found that ap-
pliedWBE across small sewer catchments for spatially resolute early out-
break detection. Additionally, there was a need to examine the spatial
biasing of SARS-CoV-2 data collected fromWRFs, whichmay limit the ap-
plicability of such data as a means of detecting hot spots or localized
trends in SARS-CoV-2 spread. To this end, this study aimed to examine
the spatial patterns of SARS-CoV-2 viral shedding through a spatial sam-
pling strategy across neighborhood-scale sewershed catchments. Also, it
identified spatially clustered patterns of viral RNA concentrations in sew-
age according to geography, temporal patterns in viral shedding, and to
classify WRF and neighborhood monitoring sites into groups based on
spatio-temporal patterns in viral RNA concentrations.

2. Methods and materials

2.1. Study area

The spatial sampling protocol was implemented in the Reno-Sparks
metropolitan area (pop. 360,000) as the main population center for
WashoeCounty, Nevada, USA. Approximately 80%of thewastewater gen-
erated in the region is conveyed to the main regional WRF. TheWRF has
two main catchment areas; the northern channel catchment includes
sewer lines that largely fall within the boundaries of the City of Sparks
(pop. 100,600) while the southern channel catchment is representative
of the population from the City of Reno (pop. 246,500), and the rest in
the suburbanareas belonging toWashoeCounty, Nevada (USA). The sam-
pling program included both urban and suburban neighborhoods. Some
characteristics of the neighborhoods selected for sampling are provided
in Table SI-1, with additional descriptions presented in the Supporting In-
formation. The sampling strategy focused on spatial distribution over the
WRF service area, with one to two sampling locations in each of the resi-
dential postal zip codes. Demographic characteristics of each sampling
site were obtained from the American Community Survey according to
the location of sewershed sub-catchments in census tracts (U.S. Census
Bureau, American Community Survey, 2019).

2.2. Geospatial site selection

Sewershed sampling locations were established using geographic
information systems (GIS) (ESRI, Redlands, CA, USA) to analyze spatial
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locations, such as zip codes, sewer lines, manholes, water reclamation
facilities, parcels, and land use (ESRI, 2011). The application of GIS in de-
veloping the sewershed sampling locations for epidemiological surveil-
lance was developed from the field of medical geography (Ahmad et al.,
2015; Kassié et al., 2017). The GIS analysis encompassed the sewershed
of Truckee Meadows Water Reclamation Facility (TMWRF) with
population distribution, sanitary sewer network, and land use. This ap-
proach allowed for identification of residential neighborhoods (> 90%
residential land use for parcels in each neighborhood sub-catchment)
(Table SI-1).

The sampling site selection methodology was developed for
geospatial representation of neighborhood scale data (Fig. SI-1). These
criteria identified sewershed sub-catchments in which sewage flows
from neighborhoods approximating 500 to 1000 people piped to a sin-
gle sampling point and located within the WRF and single zip code
areas. Subareas this size are also large enough to assure individual resi-
dent anonymity. The focus was to locate the subareas which were
Fig. 1.Map of sewershed samplin
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predominantly residential andwithminimal commercial area contribu-
tion that provided diverse geographic representation across the TMWRF
service area (Fig. 1). Further, population from residential areas were
more likely to correspond accurately to regional land-use/population
density estimates and census data. The summary of the number of res-
idential units and estimated residential population, assuming 2.5 indi-
viduals per household, was presented in Table SI-1. The site
numbering system used in the study identifies sites according to their
location within either the Reno or Sparks (R or S) sewersheds, and
with numbers (1-6) corresponding to their ranked distance from
TMWRF, as measured by the length of sewer pipe.

2.3. Sample collection

Sample campaign was held since late October to December 2020
during the peak of the COVID-19 pandemic in the region. A total of
186 sampleswere collected during the sampling collection phase across
g sites across the study area.
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twelve sampling locations throughout the WRF service area of the be-
tween 7:00 am to 11:00 am to coincide with the approximate peak di-
urnal flow in residential neighborhoods (Table SI-8), two or three
times per week for each location. The collection of 24-hour composite
samples was not feasible due to constrained resources and the ability
to power autosamplers atmanholes across the urban area. Thus,manual
composite sampling techniques were used based on an equal time/
equal volume approach, with four grab samples measuring 250 mL col-
lected every 15min over the one-hour sampling period for a 1-liter total
volume in sterile Nalgene bottles. Samples were stored in a cooler at
4 °C, transported to the laboratory for further processing and analyses.

2.4. Virus recovery, RNA extraction and reverse transcription and quantitative
polymerase chain reaction

To detect SARS-CoV-2 viral RNA in the sewage samples, samples
were first inactivated using heat treatment as described by Wu et al.
(2020), then step filtration processes were followed to concentrate
and recover the viral RNA. The concentration and filtration processes
could concentrate the sample up to 70× the original volume and in-
cluded centrifugation and sequential membrane filtration. The sample
was first processed by centrifugation at 3500g for 15 min to remove
the big particles. The supernatant was processed through step filtration
with 1.5 μm, 0.8 μm, and 0.45 μmMilliporeSigma (Burlington,MA, USA)
membrane filters. Following these pretreatment steps, 15 mL filtrate
was then transferred into a 100 kDa Amicon®Ultra-15 Centrifugal Filter
Cartridge Units (MilliporeSigma, USA). The ultrafiltration cartridges
were used to concentrate the sample to a final volume of 500 μL in
each cartridge through centrifugation at 3500g for 5 min.

The process to extract RNA from the concentrated samples used the
AllPrep PowerViral DNA/RNA kit (QIAGEN, Inc., Germantown, MD,
USA), with RT-qPCR analysis conducted on the CFX96 Touch Real-
Time PCR Detection System (Bio Rad, Hercules, CA, USA) according to
MIQE guidelines (Johnson et al., 2014). The reaction contained 1× Reli-
ance One-StepMultiplex Supermix (Bio Rad, Hercules, CA, USA), 5 μL of
the total genomic RNA template, probes (0.2 μM) and primers (0.4 μM
each) in a total volume of 20 μL. qPCR standards were prepared in
each assay in the range from 200,000 to 2 gc/μL by 10-fold serial dilu-
tions. Non-template control was included in each qPCR assay to confirm
no contamination. Field blank and RNA extraction blank were con-
ducted once per month, and no contamination were identified. RT-
qPCR was carried out by the following program: Reverse transcription
at 50 °C for 10min, denaturation at 95 °C for 10min, followed by 45 cy-
cles of 3 s denaturation at 95 °C, 30 s annealing/extension and plate read
at 60 °C.

The recovery rate of the viral RNA concentration method was evalu-
ated using human coronavirus OC43 strain (HCoV-OC43) as a surrogate
for SARS-CoV-2due to its similar enveloped structure.Wastewater sam-
ple volumes of 180 mL were spiked with 100 μL HCoV-OC43. This was
followed by the previously described Amicon ultrafiltration concentra-
tion methods and then quantification of HCoV-OC43 following the
method described by Uppal et al. (2021). The recovery rate was deter-
mined to be 24 ± 2%. qPCR inhibitor was evaluated by ΔCt values of
10- and 100- folds dilution of extracted RNA of HCoV-OC43 spiked sam-
ples according to Li et al. (2020b). Sample limits of detection (SLoD)was
determined by the lowest dilution of the SARS-CoV-2 standards (IDT,
Skokie, IL, USA) with positive signals, which was 2 gc/μL in of RNA elu-
tion. The SLoD of each sewage sample was calculated by the concen-
trated factors when virus recovered, which is 2 gc/μL divided by the
overall concentration factors of the samples with the unit of gc/L in
sewage.

2.5. Statistical analysis

Recent studies have applied numerous indicators to evaluate spatial
autocorrelation in the SARS-CoV-2 pandemic based on clinical testing to
4

investigate the suitability of spatialmodeling due to the epidemiological
relevance of community spread and other geospatial characteristics that
may be deterministic in community prevalence (Kang et al., 2020; Li
et al., 2020a; Ramírez-Aldana et al., 2020). Importantly, these studies
have revealed spatial correlations in disease spread based on regional
demographic and environmental variables (Kang et al., 2020;
Ramírez-Aldana et al., 2020). Analysis was carried out with the N1
viral gene marker concentrations detected in sewage samples from
sampling sites over the study period due to themore frequent detection
of N1 compared to N2. Over the sampling period, themonitoring across
all sewershed sampling sites produced 11 observations out of 186 that
were below the detection limit, while no WRF influent observations
were observed below the detection limit. Although less robust than dis-
tributional methods, Farnham et al. (2002) demonstrated that substitu-
tion with zero can produce acceptable results with less bias in PCA
analysis than substitution when less than 25% of the data is non-
detect; thus, this method was selected to handle non-detects. The
heatmap reduced spatial dimensions to a single axis based on the
sewer pipe length from the sampling site to TMWRF, with the horizon-
tal axis presenting the sampling dates for time series trends in viral RNA
concentrations. Sewer pipe lengths were determined from sewage net-
work maps in ArcGIS software version 10.7.1 ESRI, Redlands, CA, USA.
The plots were produced in R studio (version) (R Core Team, 2020)
using ggplot2 (Wickham, 2016) and FactoMineR (Lê et al., 2008). The
statistical methods required data to conform to the assumption of nor-
mality. The Shapiro-Wilk test was used to evaluate the normality of
each variable. To adjust for the skewness of the data and achieve a dis-
tribution that met the assumption of normality, (Fig. SI-1) all statistical
analysis were carried out using logarithmic transformations of the viral
RNA concentrations measured in raw sewage.

2.5.1. Local spatial autocorrelation methodology
GIS has techniques and tools that focus on spatial autocorrelation of

the data. Parameters associated with spatial locations can be evaluated
for patterns with spatial autocorrelation tools to determine if the attri-
bute values are either defined as clusters/outliers or hot/cold spots.
This study selected two of thewidely used local spatial statistics, Anselin
Local Moran's I and Getis-Ord Gi*, following the methodologies of
Anselin (1995) and Getis and Ord (1992). These examine localized pat-
terns in autocorrelation in order to identify local pockets of hot and/or
cold spots (Gi* analysis) and to assess the influence of individual loca-
tions to identify outliers (Anselin I). Identifying autocorrelation at a
local scale is powerful for determining spatial characteristics of disease
spread that can be impacted by environmental impacts (e.g., Ahmad
et al., 2015; Guo et al., 2021) and socioeconomic characteristics
(Mollalo et al., 2020; Samphutthanon et al., 2014). The local patterns
of spatial autocorrelation were evaluated based on the viral RNA con-
centrations in sewage for each sampling date. Cluster and outlier analy-
sis (Anselin I) and hot spot analysis (Getis-Ord Gi*)were selected based
on their wide use in geospatial epidemiology research. These analyses
were conducted in ArcGIS, following the methodologies of Anselin
(1995) and Getis and Ord (1992). Reno and Sparks sampling events
were evaluated together by pairing the adjacent sampling dates (Mon-
day-Tuesday; Wednesday-Thursday).

Anselin I measured local patterns of spatial clustering and outliers
through a decomposition of the global spatial autocorrelation between
all sampling sites. This method to identify clusters was performed
using the average viral RNA concentrationsmeasured among neighbor-
ing sample sites. Hot and cold spot analysis through the Gi* autocorrela-
tion test calculated spatial autocorrelation by comparing individual
sampling locations to neighboring sampling locations. Locations at
which the local average viral RNA concentrationwas significantly differ-
ent from the expected value were identified as a hot or a cold spot.
Neighboring sites were identified based on the maximum distance be-
tween each site and its two nearest neighbors (determined to be amax-
imum of 8.3 km). This distance was then applied as a radius at each site



Fig. 2. Heatmaps of SARS-CoV-2 genetic marker concentrations in raw sewage at WRF
influent and sewershed sampling sites in the Cities of Sparks and Reno, Nevada.
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to identify neighbors. A p-value <0.05 was considered statistically sig-
nificant for Anselin I autocorrelation analysis (Li et al., 2020a). The
strength of clustering was evaluated based on p-values (p< 0.1 was as-
sociated with a confidence interval of at least 90%, p < 0.05 was associ-
ated with a confidence interval of at least 95%) was considered
statistically significant for Gi* autocorrelation analysis.

2.5.2. Multivariate analysis of site similarity from time series
Principal component analysis (PCA) was adopted as a transforma-

tional approach to examine the similarity of spatial sampling sites
based on the time series (Benedetti et al., 1994; Lhermitte et al., 2011;
Lobo and Maisongrande, 2008). This analysis has a powerful ability to
identify the most significant variations in the viral RNA concentration
according to spatial and temporal variations. Prior to PCA analysis,
data suitability was evaluated based on the Shapiro-Wilk test, which
identified the necessity of conducting analysis on the log-transformed
viral RNA concentrations to account for the assumption of normality
during analysis. The dataset was also assessed using Bartlett's test to en-
sure that no spatial sampling locations characterized an identity matrix,
and that the strength of correlations was sufficient to demonstrate that
observed patterns in variance could not be attributed to sampling error
and the Kaiser-Meyer-Olkin test to evaluate sampling adequacy (Field
et al., 2012).

The PCA technique used the Pearson correlation between sites with
similar temporal patterns in viral RNA concentration to project the data
onto axes that are linear combinations of the variables. Principal compo-
nents (PCs) for Reno and Sparks were developed as linear aggregates of
the sampling sites that shared similar patterns in data variance over
time. Although data at sampling sites had a similar range after log-
transformation, the variance observed across sampling sites varied
widely, with the smallest sampling sites exhibiting the greatest variabil-
ity. To ensure that sites withmore frequent non-detect observations did
not exert undue bias in the PCA, the analysis was conducted on the cor-
relation matrix rather than the covariance matrix. While the compo-
nents that describe the largest variance in the data are likely to
capture the desired phenomena, noise in the data is generally captured
in the high order components (Jolliffe, 2003).

3. Results and discussion

3.1. Spatio-temporal distribution of SARS-CoV-2

The dynamics of the viral RNA surveillance across the spatial sam-
pling sites was first evaluated in collapsed space (latitude and longitude
collapsed into one dimension) using Hovmöller plots, or heatmaps
(Fig. 2a and b). Thesefigures compared the viral RNA concentrations ob-
served at each sampling site over time using a color gradient to indicate
the measured viral RNA concentration. The heatmaps illustrated two
important patterns in the data: the potential biasing of WRF surveil-
lance (shown as S-0-WRF and R-0-WRF) to certain sites, and the
similarity in the time series trends observed between sites (e.g., S-1
and S-3, R-4 and R-5). In both regions the mean viral RNA concentra-
tions exhibited an increasing trend to mid-November, with observed
viral RNA concentrations ranging from 2.62 × 104 to 2.16 × 106 gc/L.
At both Reno and Sparks sampling sites, the mean viral RNA concentra-
tions began to decline around November 10. In the City of Reno, this
trend continued through early December and reached the lowest ob-
servedmean concentration on December 8. This was followed by an in-
creasing trend in viral RNA concentration through to the end of the
study period. In the City of Sparks, the daily mean viral RNA concentra-
tions across all sampling sites were at their highest, due to several
observations at sites S-4 through S-6 that ranged from 7.67 × 105 to
1.73 × 106 gc/L until a decrease in early December.

The heatmap of viral RNA concentrations across the WRF sampling
sites (S-0-WRF) and six sewershed locations (1-6) further illustrate
the similarity between WRF surveillance with the three sites located
5

closest. During the early part of November, the most outlying sites
were observed to have the lowest concentrations, while the more cen-
tral sampling sites (S-1-S-3) generally hadmoderate to high concentra-
tions. During the following two weeks, viral RNA concentrations
increased by three orders of magnitude at the outlying sites (S-4-S-6).
This was followed by a period of decreased viral RNA concentrations
measured throughout sampling sites in early December and another pe-
riod of increased viral RNA concentration across city of Sparks sampling
sites through mid-December. Importantly, monitoring of concentra-
tions from the WRF (S-0-WRF) did not reflect elevated concentrations
on dates when the most distant sewershed sampling sites (S-5 and S-
6) were measured to have large increases.

In the Reno sampling areas, theWRF influent showed little variabil-
ity as did the two sewershed locations closest to the WRF. Conversely,
the R-5 and R-4 regions had more notable peaks and valleys in viral
RNA concentrations over time (Fig. 2b and Fig. SI-2). Both neighbor-
hoods were located near a university and may have higher incidence
of students and university employees compared to other neighbor-
hoods. The R-3, R-4, and R-6 sites had the greatest frequency of
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observations below the SLoD, but R-3 and R-4 also had the greatest fre-
quency of observations exceeding 1 × 106 gc/L. A statistical summary of
the viral RNA concentrationsmeasured at each site during the study pe-
riod is presented in the Supporting Information. Excluding the skewing
from non-detect observations, the R-3 and R-6 sites had the lowest av-
erage virus concentrations observed over the sampling period, which
may have contributed to the relatively high frequency of non-detects
at R-3 and R-5 sites. Additionally, the R-3 site was the smallest popula-
tion sample size (Table SI-1) as well as the largest observed standard
deviation, which indicates that the sample size may not have been
large enough to produce consistently representative samples for the
neighborhood.
Fig. 3. Clusters and outlier sampling sites for viral RNA concentrati

6

3.2. Spatial clustering through local autocorrelation analysis

The spread of COVID-19 through respiratory shedding was evalu-
ated to determine whether significant spatial patterns were observable
based on the proximity of each sampling location to a hot spot. Local in-
dicators of spatial analysis tests were utilized to evaluate these spatial
patterns over the five-week study period (from November 5 to Decem-
ber 10) in the sewer network to identify clusters, outliers, hot spots and
cold spots through Anselin I and Getis-Ord Gi* statistical tests. Because
not all sampling sites were tested on the same dates, the analysis was
accomplished by pairing neighboring date samples across all twelve
sampling sites, producing a total of ten sampling events which are
ons in the Cities of Reno and Sparks over the sampling period.
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discussed in the chronological order below. Monitoring over the first
week and a half of November identified high viral RNA concentrations
across sites near the urban centers of Sparks and Reno. Both the Anselin
I and Gi* statistics classified sampling sites across the urban centers as
clusters where viral RNA concentrations were high, referred to as
High-High (HH) clusters (Fig. 3) and hot spots (Fig. 4). The significance
of the cluster andhot spot analyses can be found in the supporting infor-
mation (Tables SI-2 and SI-3).

At the beginning of the sampling period sampling sites in the urban
center of Reno-Sparks were measured as having significant clusters of
hot spots, as shown in Fig. 4a–c. The Gi* characterization shown in
Fig. 4 was less sensitive to the changes in viral RNA concentrations
Fig. 4. Hot spots and cold spots of viral RNA concentrations meas
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measured at individual sites compared to the Anselin I results presented
in Fig. 3, resulting in the additional detection of outliers within spatially
correlated clusters. In Fig. 3a, two sites (R-2 and S-1), were also classi-
fied as hot spots with a 90% CI (Fig. 4b). These hot spots also
corresponded to HH clusters in Fig. 3a–c. It was notable that several of
the hot spot neighborhoods were LH outliers over this same period ac-
cording to the Anselin I test. Specifically, the R-4 neighborhood was ini-
tially a LH outlier (Fig. 3a) before transitioning to part of the HH cluster
(p values of 0.030 and 0.044) (Fig. 3b and c). Conversely, several sites
(R-2, R-3, and S-1)were observed to havehigh viral RNA concentrations
that were declining over this period, Specifically, R-3 transitions from
higher viral RNA concentration as part of the hot spot (Fig. 4a) to an
ured in sewer sub-areas across the Cities of Reno and Sparks.
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LH outlier, whereas sites R-2 and S-1 transition from hot spots and HH
clusters to having no significance in the hot spots by Figs. 3c and 4c.
Overall, this period indicates that several neighborhoods in the urban
center (R-2, R-3, and S-1) lead the increase in viral RNA concentrations,
with other adjacent neighborhoods in the urban center (R-4 and R-5)
lagging behind. Significant spatial patterns were also observed in late
November; these were largely concentrated in the northern area of
Sparks and western Reno. Figs. 3e–f and 4e–f depict a period where
sites S-3 through S-6 had elevated viral RNA concentrations (refer to
Fig. 2). Similar to the hot spot identified in early November, the late No-
vember hot spot was first detected as an HH cluster at the S-3 sampling
site (Fig. 4e). This event was then followed by significant hot spot and
HH clusters across northern Sparks (Figs. 3f and 4f). This date
corresponded to the date that both S-4 and S-6 had viral RNA concentra-
tions of 9.79 × 105 and 9.6 × 105 gc/L, respectively (Fig. 2). Although the
sampling sites across northern Sparks had high viral RNA concentra-
tions throughout late November, their concentrations were only
Fig. 5. Representation of principal component analysis results acro
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significantly different from other neighboring sites on the event where
two neighbors hadmeasurements at least an order ofmagnitude higher
than other sampling sites. The concentration of hot spots in outlying
sites of northern Sparks strongly contrasted the cold spot (90% CI) in
the outlying site of western Reno (R-6) and its neighbor (R-5) over
the same period (Figs. 4e–f and 3e–f). These results indicated that
while disease spread appeared to flow from population centers out-
wards, social factors also likely played a role in spread and hot spots de-
velopment.

As discussed in the previous section, viral RNA concentrations ob-
served across the region over the first week of Decemberwere generally
moderate, and few spatial patternswere identified.However, several lo-
cationsweremeasured to have significant clustering based on their low
viral RNA concentrations, resulting in cold spots (Figs. 3g–h and 4g–h).
The Anselin I analysis identified two of these sites, R-5 and R-6, as LL
clusters due to relatively low viral RNA concentrations (< 1.85 × 104

gc/L). At the same time site S-4, with viral RNA concentration of
ss the geographic space of the Reno-Sparks metropolitan area.



Table 1
Correlations of sampling sites with principal components, developed separately for Reno
and Sparks city data.

City PC Sampling site Correlation p-value

Reno PC1 R-5 0.9148 3.07E-05
R-4 0.6903 1.30E-02
R-WRF −0.7466 5.27E-03

PC2 R-6 0.7928 2.10E-03
R-1 −0.7272 7.36E-03

PC3 R-2 0.6509 2.19E-02
Sparks PC1 S-3 0.8763 1.83E-05

S-1 0.8443 7.54E-05
S-WRF 0.6607 7.33E-03

PC2 S-6 0.9180 1.41E-06
S-2 0.7160 2.68E-03
S-5 0.5364 3.93E-02

PC3 S-4 0.8560 4.67E-05
S-5 −0.5320 4.12E-02

Table 2
One-way ANOVA test results of demographic parameters against PCs for Reno and Sparks.

Parameter City Mean Sq F value Pr(>F)

Median age Reno 257.09 4.757 0.0579
Sparks 50.84 1.975 0.233

% Below poverty Reno 222.25 10.97 0.00989
Sparks 48.1 0.827 0.489

Income to poverty ratio Reno 67,778 0.385 0.696
Sparks 88,039 0.376 0.705

Median family income Reno 7.94E+08 1.517 0.293
Sparks 8.47E+08 9.453 0.02

% Insured Reno 56.07 0.957 0.436
Sparks 77.29 1.265 0.359

Population density (pop/km2) Reno 3,618,111 4.126 0.0746
Sparks 1,521,926 2.364 0.189
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2.14 × 104 gc/L, was classified as a LH outlier due its proximity to down-
town sampling sites that had higher viral RNA concentrations, such as S-
2 and S-5 with 4.48 × 105 and 1.10 × 105 gc/L, respectively (Fig. 3g and
4g). During the following week the viral RNA concentration measured
at the R-4 sampling site increased by two orders of magnitude, to
7.05 × 105 gc/L, while neighboring sites had viral RNA concentrations
<5 × 104 gc/L. This caused the Anselin I analysis to identify its two
neighboring sites, R-5 and R-3 as HL outliers (p-values of 0.016 and
0.026, respectively), while the Gi* characterized the same neighboring
sites as cold spots, as illustrated in Figs. 3j and 4j.

Specific trends noted in the study area included repeating pattern of
spatial clustering across the study area, with sites R-4 and R-5 (urban-
ized north Reno neighborhoods near a university) as well as R-2
appearing as either clusters or LH outliers. The results are consistent
with recent research from Ramírez-Aldana et al. (2020), who noted
that in Iran the sites most likely to be HH clusters were themost urban-
ized and connected areas. The results also indicated directional patterns
in disease spread, with sites that neighbored hot spots frequently be-
coming hot spots themselves within one to two weeks. As noted by
McLafferty (2015), these spatial relationships may have important un-
derlying processes such as commuting to work or recreational activities
that are not easily characterized.

3.3. Time series similarity of sampling

The prior section described the significance of spatial correlation
patterns at a single point in time, but spatial analysis can fail to identify
correlations between sites that were not located in close proximity and
only considered observations at a single point in time. Thus, a multivar-
iate approach through PCA was developed to describe how the sites
were correlated over time. In both the Reno and Sparks sewersheds,
three principal components were able to describe more than 75% in
the total data variance. Fig. 5 Illustrates which sampling sites were ag-
gregated into each PC based on their patterns of viral RNA concentra-
tions during the sampling period. Orange represents sampling sites
important to PC1; green represents sampling sites important to PC2,
and purple represents sampling sites important to PC3. Additionally,
PCs were differentiated by the size of site markers: as PC1 described
the most important source of data variance the sites were assigned
large markers with marker size decreasing for each PC. Because Sparks
and Reno sites were analyzed separately, they were represented in
Fig. 5 by different shapes, with circles to represent Reno sites and dia-
monds to represent Sparks. The shade of colors described the weights
of each site in characterizing a given PC; these weights represent the
scaling coefficient that was assigned to each sampling location based
on its importance in describing a given PC.

Among Sparks sampling sites, the first three components explained
79% of variance across all sampling sites over the sampling period.
Among them, a close relationship was observed between the Sparks
WRF influent and two of the closest sites to the WRF: S-1 and S-3
(Fig. 5). These three sites had significant positive correlations to PC1,
as shown in Table 1. Although S-2 did have a moderate correlation to
S-3 (Pearson correlation of 0.43, p-value=0.11), it wasmost correlated
to S-6 (correlation of 0.64, p-value= 0.01). Subsequently, sites S-6, S-5,
and S-2 were highly correlated to PC2 (Table 1). Finally, S-4 and S-5
were significantly correlated to PC3, but in opposite directions
(Table 1). This was the result of their opposing patterns in viral RNA
concentrations, with one peaking when the other was at a relatively
low observed value.

Across the Reno WRF sewershed, two neighborhood sites and the
WRF were significant on PC1 (Table 1 and Fig. 5). The central Reno
sub-catchments (R-4 and R-5) and WRF monitoring described 42% of
the total data variance over the sampling period and comprised PC1.
Along this component R-5 had the largest contribution and was R-4
and R-5 were positively correlated to one another (Pearson correlation
0.64, p-value = 0.26), and significantly positively correlated to PC1
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(Table 1). Conversely, the WRF had a strong negative correlation to
PC1 (−0.75, p-value= 0.005). The second component (PC2) described
32% of the total variance and related the sampling sites R-6, R-1, and R-4
(Fig. 5). This corresponded to a weak positive correlation between R-6
and R-4 (Pearson correlation 0.12, p-value >0.05) and a moderate neg-
ative correlation between R-1 and R-4 (Pearson correlation -0.062, p-
value = 0.03). Finally, PC3 described 14% of total dataset variance. De-
spite the proximity of the R-2 and R-3 sampling sites, it was notable
that their magnitudes along PC3 were in opposite directions, with R-2
positively correlated to the component and R-3 having a negative corre-
lation that was below the significance level (p > 0.05).

The PCA results did have similarity to the clustering identified
through the Getis Ord Gi* spatial autocorrelation tests. As the previous
section described, the neighboring S-1, S-3, and R-4, R-5 sites that had
the largest weights in PC1 were also among the most likely to have sig-
nificant clustering andwere identified as hot spots, HH clusters, LL clus-
ters, and LH outliers throughout the sampling period. The PCA
correlations also highlighted the observation that was depicted in
Fig. 4, with the evolution of hot spots first occurring in neighborhoods
that were part of the urban center (PC1 sites). Two weeks later, at a
time where viral RNA concentrations in sewage decreased across the
urban center, a new hot spot emerged across several outlying suburban
neighborhoods of Sparks, which were correlated with PC2 and PC3.
While analysis with PCA and spatial autocorrelation identified similar
patterns, PCA was better able to characterize suburban sites, such as
R-6 and S-3, which were often not correlated to the urban sites that
they neighbored.

It was notable that in both the Reno and Sparks sewersheds, the
trends in WRF influent were grouped with the urban centers, which
may represent a relatively large portion of the residential influent
flows to the WRF. The most distant sampling sites (S-6, S-5, S-4) were
poorly correlated to WRF influent, which has important implications
for the inability of WRF monitoring to identify increasing viral RNA
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trends or the formation of hot spots in outlying communities. Overall,
these observations were consistent with the analysis of Hart and
Halden (2020b), who identified the importance of consideringWRF in-
fluent data biasing based on sewer residence time and conditions. How-
ever, in the case of Reno and Sparks, WRF monitoring was a good
representation of community trends, whichmay be due to the relatively
small sizes of these catchments and the proximity of the WRF to most
population centers (McCall et al., 2017). These results also characterize
spatial relationships similar to Malaria which was observed to spread
differently across urban areas compared to rural areas (Lana et al.,
2017).

3.4. SARS-CoV-2 distribution across demographic parameters of principal
components

Exploratory data analysis was performed in order to examine differ-
ences that could be explain the grouping of sampling sites by PCs. As the
previous sections noted, there was a relationship between the north-
central sampling sites in Reno and Sparks, which were all grouped
into their respective PC1 components and hot spots around the same
dates. These were among the most urbanized neighborhoods and indi-
cated that some social-demographic or lifestyle characteristics might
be shared by these sites that describes their correlated behavior. Simi-
larly, the more suburban neighborhoods were often clustered together
but were not always located in close spatial proximity, additionally
these sites were sometimes negatively correlated according to PCA
analysis (e.g., R-1 and R-6, S-2 and S-6).

The demographic parameters included differences in economic sta-
tus (percent of the population below poverty, ratio of income to poverty
level, and median family income), median age, percent of population
with insurance (including employed and unemployed people), and
the population density. The one-way ANOVA test examined the differ-
ences in mean values across sampling sites grouped according to PCs
in Reno and Sparks. The analysis identified two parameters with a
high level of significance (% below poverty and median family income)
(refer to Table 2). However, neither was significant in both Reno and
Sparks sampling areas. Additionally, median age and population density
had relatively high levels of significance in Reno sampling sites (p =
0.058 and 0.075, respectively). As illustrated in the boxplots of Fig. 6,
there were generally large differences in the demographic parameters
Fig. 6. Boxplots of demographic parameters
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between PC1 and PC2, however the sampling sites grouped in PC3 did
not exhibit a clear pattern. Apart from population density the results
do not show a consistent geographic structure between the demo-
graphic and disease spread patterns in both Reno and Sparks, the results
do reveal that certain traits may influence the likelihood of disease. It is
important to note that this analysis relied on census data available at the
census tract scale, which does not capture all the demographic and eco-
nomic characteristics that describe how lifestyle and employment fac-
tors may impact the timing and level of SARS-CoV-2 outbreaks in a
neighborhood.

4. Conclusions

The spatial patterns of SARS-CoV-2 in sewage were evaluated using
a spatial sampling strategy across twelve neighborhood-scale
sewershed sub-catchments. Our results led us to the following conclu-
sions:

• The use of spatial sampling across a sewershed can reveal important
relationships aswhere disease hot spots occur, and the patterns of dis-
ease spread. Specifically, both PCA and spatial autocorrelation analysis
identified that statistically significant hot spots occurred in outlying
suburban neighborhoods approximately two weeks following the
emergence of statistically significant hot spots across neighborhoods
in the urban center.

• Spatial autocorrelation testswere useful at identifying hot spots when
two or more adjacent neighborhoods were impacted, while PCA anal-
ysis confirmed these relationships andwas also able to detect correla-
tions between sites that were not adjacent but generally had similar
characteristics of population density, age, poverty, and income.

• PCA identified that the sites with the highest peaks in viral concentra-
tions (sites located on PC1) had a lower median age, generally had
higher rates in poverty and lower family incomes and had higher pop-
ulation densities. These siteswere also in the largest hot spot detected,
which occurred in early November.

• WRF influent showed evidence of spatial biasing when compared to
spatial sampling sites. Specifically, WRF influents were found to be
most correlated to sampling sites along PC1, which corresponded to
the most urbanized neighborhoods that were generally closest to
the WRF.
across sampling sites, grouped by PCs.
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• The collection of samples from community manholes presented sev-
eral challenges that may have impacted the variability and represen-
tativeness of data collected. Specifically, it was not feasible to deploy
autosamplers for collection of 24-h composite samples due to power
requirements and safety concerns. Future studies should further ex-
plore how this sampling method impacts the representativeness of
sewage monitoring data with disease prevalence.

While this research demonstrates how spatial monitoring of SARS-
CoV-2 from the sewer network was able to detect hot spots and com-
munity patterns of disease spread, the method should be further devel-
oped by evaluating the link between sewage monitoring at the
neighborhood level and clinical data of disease incidence. This research
provides insight into some spatial and socio-economic gradients that
correlated to patterns in viral RNA concentrations shed into sewage.
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