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Drug‑resistant Staphylococcus 
aureus bacteria detection 
by combining surface‑enhanced 
Raman spectroscopy (SERS) 
and deep learning techniques
Fatma Uysal Ciloglu1, Abdullah Caliskan2,3, Ayse Mine Saridag4, Ibrahim Halil Kilic5, 
Mahmut Tokmakci1, Mehmet Kahraman4* & Omer Aydin1,6,7*

Over the past year, the world’s attention has focused on combating COVID-19 disease, but the other 
threat waiting at the door—antimicrobial resistance should not be forgotten. Although making the 
diagnosis rapidly and accurately is crucial in preventing antibiotic resistance development, bacterial 
identification techniques include some challenging processes. To address this challenge, we proposed 
a deep neural network (DNN) that can discriminate antibiotic-resistant bacteria using surface-
enhanced Raman spectroscopy (SERS). Stacked autoencoder (SAE)-based DNN was used for the rapid 
identification of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus 
(MSSA) bacteria using a label-free SERS technique. The performance of the DNN was compared with 
traditional classifiers. Since the SERS technique provides high signal-to-noise ratio (SNR) data, some 
subtle differences were found between MRSA and MSSA in relative band intensities. SAE-based DNN 
can learn features from raw data and classify them with an accuracy of 97.66%. Moreover, the model 
discriminates bacteria with an area under curve (AUC) of 0.99. Compared to traditional classifiers, SAE-
based DNN was found superior in accuracy and AUC values. The obtained results are also supported by 
statistical analysis. These results demonstrate that deep learning has great potential to characterize 
and detect antibiotic-resistant bacteria by using SERS spectral data.

Antimicrobial resistance is a growing problem globally, and 700,000 people die because of resistant infections 
annually. By 2050, it will threaten 10 million lives a year1. Inappropriate prescribing increases unnecessary anti-
biotic consumption, which triggers antimicrobial resistance with a short period2. Antibiotic resistance can be 
prevented by prescribing the proper antibiotics and raising public awareness. As another solution, new antibiotics 
can be discovered to compensate for antibiotic resistance. However, the number of discovered and approved 
antibiotics has declined between 1980 and 20143. Hence, rapid and correct diagnosis of bacterial infections is 
required to prescribe the right antibiotic, and this is so crucial to curb antibiotic resistance.

Antimicrobial susceptibility test (AST), categorized as phenotypic and genotypic, is utilized to determine 
bacteria’s antibiotic resistance. Phenotypic AST is reliable; however, it contains a time-consuming culturing step. 
On the other hand, genotypic AST provides fast results since it eliminates the need for culturing. Although it is 
highly sensitive, the existence of resistance genes does not mean expressed resistance. Further, genotypic AST 
requires trained personnel with advance knowledge4. Therefore, alternative diagnostic tools are needed for fast 
and reliable detection of antibiotic resistance.

Surface-enhanced Raman spectroscopy (SERS) is a promising biomedical diagnostic tool and spans broad 
applications in the biomedical field5–9. Within the last two decades, it has been successfully applied to discriminate 
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bacteria as well10–12. Therefore, the SERS technique also has a significant potential to detect bacteria’s antibiotic 
resistance13,14. Although SERS provides unique molecular information, SERS spectra of antibiotic-resistant and 
susceptible bacteria show subtle spectral differences. Therefore, the SERS technique requires advanced data 
processing algorithms to capture these minor differences. A vast majority of publications have reported that 
machine learning techniques can be employed to discriminate antibiotic-resistant and susceptible bacteria by 
using data obtained from SERS15–18.

There are three main steps, including preprocessing, feature extraction, and classification, to determine bac-
teria from the SERS data by using machine learning techniques. Therefore, obtaining a classification model is 
very tedious and time-consuming due to the rigid interdependency of the steps. Although some traditional 
machine learning techniques give reasonable accuracy results to detect the type of bacteria, they have several 
disadvantages, including overfitting, underfitting, requiring many user-supplied parameters, needing advanced 
nonlinear optimization techniques, etc. Fortunately, these challenges can be overcome using deep learning models 
whose achievement originates from large data volumes and sophisticated computational abilities. Deep learn-
ing models can learn significant raw data patterns without using advanced preprocessing and feature extraction 
techniques19. Thus, these algorithms seriously reduce the need for feature engineering20.

In recent years, deep learning algorithms have been applied to analyze spectroscopic signals19. However, 
the number of studies in spectral analysis with deep learning is limited21–23. A few studies have been reported 
to discriminate antibiotic-resistant and susceptible bacteria with deep learning algorithms using Raman spec-
troscopy and SERS24,25. Ho et al. have utilized a convolutional neural network (CNN) to classify 30 common 
bacterial pathogens data obtained from Raman spectroscopy24. They have also shown that CNN distinguished 
Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) bacteria with 
89 ± 0.1% accuracy using Raman spectral data. Raman spectroscopy has a low signal-to-noise ratio (SNR) due 
to the low scattering efficiency. This low SNR may be masked easily by background noise. Since noisy Raman 
spectra make it difficult to detect subtle differences between spectra, the performance of the classifier may be 
decreased. Thrift et al. reported that variational autoencoders discriminate Escherichia coli and Pseudomonas 
aeruginosa bacteria’s metabolite profiles based on their SERS data25.

Among deep learning algorithms, autoencoders have been increasingly used in medical applications in recent 
years26,27. Although CNN is one of the most known and used deep learning algorithms, it is often preferred 
especially in the analysis of image data and provides successful results28,29. Therefore, to classify 1D SERS sig-
nals of MRSA and MSSA stacked autoencoder (SAE) based deep neural network (DNN) was preferred in this 
study. Autoencoders are used for dimensionality reduction from the original high-dimensional space to a new 
low-dimensional space. They are trained to reconstruct its input at the output by minimizing the loss between 
the original data and the data decoded from this representation. An autoencoder consists of two main parts: (1) 
encoder maps the input data into a low-dimensional feature space and (2) decoder trained to reconstruct the 
input from the features extracted by the encoder19. Becasuse of nonlinear activation functions, autoencoders 
can learn complex hierarchical features. To extract more complex new features, autoencoders can be stacked 
combining the desired number of trained autoencoder encoder parts and thus, an SAE is obtained. After the 
training of SAE in an unsupervised fashion, a powerful automatic feature extractor is acquired. A DNN is formed 
by combining obtained SAE and a softmax classifier that performs classification30. Thus, SAE-based DNN is 
formed to discriminate MRSA and MSSA spectral data.

Herein, we use an SAE-based DNN to classify MRSA and MSSA bacteria’s SERS spectra. MRSA has been 
shown as a serious threat according to the 2019 report on antibiotic resistance threats in the United States31. These 
bacteria are resistant to β-lactam antibiotics, including penicillin, cephalosporin, and carbapenem32. Undoubt-
edly, rapid and accurate detection of antibiotic resistance profiles of S. aureus bacteria will both reduce morbidity 
and mortality and slow down the development of antibiotic resistance.

We hypothesized that the cell wall structure of MRSA and MSSA might show some differences due to the 
resistance mechanism. SERS able to reflect these differences at the collected spectra. The discrimination of subtle 
spectral differences between MRSA and MSSA is a challenging problem. This study addresses this challenge by 
using an SAE-based DNN to discriminate  antibiotic-resistant and susceptible bacteria.

Figure 1 illustrates the general workflow of this study. We first collected SERS spectra of MRSA and MSSA 
using silver nanoparticles (AgNPs) as SERS substrate. The raw spectral dataset of antibiotic-resistant and sus-
ceptible S. aureus bacteria was classified using SAE-based DNN. Further, some traditional machine learning 
algorithms such as support vector machine (SVM), linear discriminant analysis (LDA), k-nearest neighbors 
(KNN), decision tree (DT), and a neural network (NN) were used to compare the performances of the DNN 
and traditional classifiers. To the best of our knowledge, this is the first report for discrimination of MRSA and 
MSSA SERS data by using SAE-based DNN. This work shows that SERS together SAE-based DNN can success-
fully discriminate MRSA and MSSA bacteria.

Materials and methods
AgNPs synthesis.  AgNPs were synthesized according to the method reported by Lee and Meisel33. Briefly, 
90 mg silver nitrate (AgNO3, Merck, Darmstadt, Germany) was dissolved in 500 mL distilled water. This solution 
was heated until boiling. Then, 10 mL aliquot of 1% sodium citrate (Merck, Darmstadt, Germany) was added 
drop by drop into the solution. The solution was kept boiling for about 1 h. Synthesized AgNPs were centrifuged 
at 5500 rpm for 1 h and discard a portion of the supernatant to form 4 × concentrated AgNPs. To characterize 
AgNPs, the absorption spectrum was measured in the range of 300–700 nm using Thermo Scientific Evolution 
201 UV–Vis spectrophotometer (Waltham, USA). The morphology of the nanoparticles was determined using 
Scanning Transmission Electron Microscope (STEM) imaging (Zeiss GeminiSEM) that is performed with an 
acceleration voltage of 25 kV.
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Bacterial sample preparation.  Staphylococcus aureus strains (MRSA and MSSA) were used in this study. 
19 MRSA and 1 MSSA bacteria were obtained from our microorganism collection (Gaziantep University, 
Biology Department) with the ethical permission of Gaziantep University clinical research ethics committee 
(09.06.2014/195). In addition, S. aureus type strains ATCC 6538, and ATCC 25923 were purchased from The 
American Type Culture Collection. The antibiotic resistance of MRSA and MSSA was confirmed by the pres-
ence or absence of mec A gene using the Polymerase Chain Reaction (PCR) technique. Furthermore, the disc 
diffusion method was also used for the antibiotic resistance confirmation, and details can be found in our previ-
ous study15. According to PCR and disc diffusion method results, methicillin resistance was found in all MRSA 
bacteria.

The bacteria were grown at 37 °C on Mueller Hinton agar (Merck, Darmstadt, Germany). The samples were 
gathered with sterile inoculating loops after the 24 h cultivation. The collected bacteria were added into 1 mL 
ultrapure water, quickly vortexed, and centrifuged for 5 min at 7500 rpm. The supernatant was discarded, and 
this procedure was repeated 3 times. A 5 µL aliquot of each washed bacterial sample was added into 100 µL 
4 × concentrated AgNPs colloidal suspension. Then, samples were shortly vortexed to form homogenous mix-
tures. A 5 µL of each mixture was immediately dropped on CaF2 slide and dried at room temperature about 
30 min for SERS measurements.

SERS measurements.  SERS measurements were performed using Renishaw inVia Reflex Raman Micros-
copy System (Renishaw plc., Wotton -under-Edge, UK) using 50x (0.75 NA) microscope objective with 1 s expo-
sure from 785 nm excitation under the ~ 3 mW laser power. The laser spot size was calculated as 1.3 µm (1.22 × λ/
NA). The spectra were collected with a 5 µm step size to prevent overlapping. Two datasets were acquired on dif-
ferent days for reproducibility. In the first data set, spectra were collected from 4 different regions of the samples 
prepared for each isolate. Under the given measurement parameters, 750–775 spectra were collected from each 
isolate within 20 min. Samples were also collected from the second data set in the same way. A total of 1500–1550 
spectra were collected from each isolate from two dataset on different days. Hence, the total dataset consisted of 
33,975 spectra and this large dataset were acquired about 15 h. 1200 lines/mm−1 grating was used, providing a 
spectral range from 550 to 1700 cm−1.

Outlier detection.  To detect outliers in the dataset, the isolation forest algorithm proposed by Liu et al. was 
utilized34,35. This algorithm was applied in R programming language v.3.6.34336 using isolationForest() function 
in the solitude package37. In this technique, anomalies are detected by isolating samples in the dataset. To isolate 
samples, Isolation Tree or iTree a binary tree structure is used. Anomalies are isolated closer to the root of an 
iTree due to the susceptibility to isolation. On the other hand, normal samples are isolated at the deeper end of 
an iTree. Isolation forest or iForest algorithm constructs an ensemble of iTrees. In a given dataset, anomalies have 
short average path length on the iTrees. Thus, a lower average path length for a sample indicates a higher likeli-
hood that the sample is an anomaly. The average path length c(n) is calculated for a given dataset of n instances 
as following35:

(1)c(n) = 2H(n− 1)−

(

2(n− 1)

n

)

Figure 1.   General workflow of deep learning-based spectral data analysis for the discrimination of antibiotic-
resistant bacteria.
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where H(i) is the harmonic number estimated by the Euler’s constant. The anomaly score s for a given sample 
x is defined as below:

where h(x) is the path length of x, E(h(x)) is the average of h(x). In Eq. (2):

It is decided by looking at these score values whether the spectrum in the dataset is an anomaly or not. 
According to Eq. (3), using the anomaly score s following assessments can be made: (a) the score values close to 
1 indicate that those points are definitely anomalies, (b) the score values less than 0.5 indicates that they are not 
anomalies, and (c) if all the score values are around 0.5 indicates that the whole data do not have any anomaly34. 
Moreover, spectra with score values greater than 0.7 are accepted anomaly34 and discarded from the data set.

SAE‑based DNN.  SAE-based DNN presented here consists of the encoder layers of trained autoencoders 
and a softmax classifier.

Autoencoders aim to reduce high-level features to a simpler representation in a low-dimensional space. They 
can extract better features than hand-engineered features since they can learn complex hierarchical features from 
the data. Although mean, standard deviation, and relative intensities of some band positions in the spectra, etc., 
are generally used in hand engineered-feature extraction, some features that will technically correspond to them 
but are not completely related to them are extracted in autoencoders. Features extracted from the autoencoder do 
not have a pattern; however, they are related to statistical properties of the input data such as the mean, standard 
deviation of the signal, or the determination of hard transitions in the signal.

A single autoencoder consists of encoder and decoder parts. The encoder part takes the input vector x (x ϵ 
RM×1) and maps this vector into hidden representation c known as code38. This process is as follows:

where ci ϵ RM×1 is the code, f is the encoding function, bi1 ϵ RM×1 is the bias vector, and Wi1 ϵ RM×N is the weight 
matrix of the encoder. The encoder part of an autoencoder is trained using unsupervised fashion to dig signifi-
cant feature information.

The decoder part reconstructs the input vector as x̂. Thus, an autoencoder tries to generate its input at 
the output layer by minimizing the error as much as possible between input x and output x ̂. Decoding of ci is 
expressed as follows:

where g is the encoding function, bi2 ∈ RN×1 is the bias vector, and Wi2 ∈ RN×M is the weight matrix of the decoder.
The objective function minimizing the error between the input and output is expressed:

Two regularization terms are added to Eq. (6), as seen in Eq. (7). λ is a regularization term and is used to 
prevent overfitting. β is the weight of the sparsity penalty term and is used to allow the autoencoder discovering 
hidden features related to raw data. The term ρ is the constant sparsity parameter, and ρ ̂j is the mean activation 
value of the jth neuron in the hidden layer.

KL(ρ‖ρ ̂j) term expresses the Kullback–Leibler divergence:

The number of neurons at the hidden layer is generally chosen lower than the input layer size. Therefore, the 
autoencoder is forced to extract new features with an unsupervised approach.

Softmax classifier, which generalizes logistic regression, is the supervised layer of the deep learning model38. 
It is based on the softmax function and used to classify the learned features by the autoencoder. The softmax 
classifier’s cost function attempts to decrease the difference between the actual label value and model output by 
tuning the model parameters.

To form an SAE-based DNN, desired number of the encoder part of the trained autoencoders and softmax 
classifier are joined together. The performance of the SAE-based DNN can be increased by performing back-
propagation on the model. This procedure is known as fine tuning and significantly improved the results of the 
SAE. Figure 2 shows frameworks of the SAE-based DNN used in this study. The training procedure of the DNN 
is as follows: (a) The first autoencoder is trained by feeding a 1024-dimensional input vector to a hidden layer 
with 30 neurons, as illustrated in Fig. 2a, (b) the second autoencoder is trained to feed the first autoencoder’s 

(2)s(x, n) = 2
− E(h(x))

c(n)

(3)
E(h(x)) → c(n), s → 0.5

When E(h(x)) → 0, s → 1

E(h(x)) → n− 1, s → 0

(4)ci = f (bi1 +Wi1x)

(5)x̂ = g(bi2 +Wi2ci)

(6)J(Wi , bi , xi) =
1

2
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hidden layer to the second autoencoder’s hidden layer with 15 neurons as depicted in Fig. 2b, (c) the encoder 
parts of the trained autoencoders and softmax layer are consecutively connected to construct an SAE-based 
deep learning model, as seen in Fig. 2c, and (d) finally, to achieve fine-tuning the backpropagation algorithm is 
performed, and weights are updated with labeled training data.

One of the main challenges in DNN models is hyperparameter optimization. It is a difficult and time-con-
suming process. The amount of data needed in such models should be much larger than the number of hyper-
parameters in the network. Otherwise, over-fitting an undesirable situation occurs. In such a scenario, while the 
network produces very successful results on the training set, it cannot generalize the model on the unseen test 
set. Therefore, hyperparameter optimization and the number of samples in the dataset is critically important. 
The hyperparameter optimization was done by random search. The specific parameters used to construct SAE-
based DNN are given in Supplemental Table S1. Ten-fold cross-validation was performed to prevent overfitting, 
to provide fair classification results. SAE-based deep learning model was constructed with MATLAB software 
(The MathWorks, Natick, USA).

To compare the performance of SAE-based DNN with the state-of-the-art classifiers, SVM, LDA, KNN, DT, 
and NN were used. These classifiers were performed using MATLAB software. The whole data were standardized 
before applying to SAE-based DNN and traditional classifiers. In standardization procedure all spectral vec-
tors were standardized using standard normal variate. In the standardization step the mean value and standard 
deviation of each spectral vector were set to 0 and 1, respectively. Then, all standardized vectors were scaled in 
the range of [0, 1]. Here, 1 corresponds to the maximum value of the features in the standardized data set. Thus, 
each data point is scaled into an interval suitable to the logistic sigmoid activation function that is used encoder 
and decoder parts of the autoencoder.

Statistical analysis.  The Mann Whitney U test was utilized for statistical analysis. This analysis was per-
formed using MATLAB software and > 95% confidence level was selected (P < 0.05 means there is a significant 
difference between the groups).

Results and discussion
SERS spectra of MRSA and MSSA.  There are a lot of SERS substrates using in the studies. These sub-
strates can be different forms such as colloidal, solid, and flexible39. Noble metal colloids40–44 and noble metal 
surfaces17 are broadly utilized in bacteria detection studies. Among them, solid substrates provide good repeat-
ability, but they have low SNR ratio and are not easy to manufacture45. Bacteria and nanoparticles directly inter-
act in many points when noble metal colloids are used as the SERS substrate, and this situation increases the SNR 
of the collected spectrum. However, reproducibility of the collected spectra can be low because nanoparticles 
do not properly form hot-spots. To improve reproducibility, concentrated nanoparticles are used to increase 
possibility of hot-spot formation10. Gold (Au) and silver (Ag) are mainly used due to the higher enhancement 
factor in SERS39. Between them Ag are widely preferred in bacterial SERS studies since AgNPs provides high 
signal enhancement factor, wide tunability, and are cost effective43,46. Therefore, the citrate reduced AgNPs were 
used in this study due to their high SERS activity and providing reproducible spectra. The UV–Vis spectrum 
and STEM image of the synthesized AgNPs are showed in Supplemental Fig. S1. The maximum absorption of 
AgNPs was found at 420 nm, and they were mostly spherical in the range of 50–60 nm as seen in the inserted 
image in Supplemental Fig. S1.

To collect a large dataset 33,975 spectra were acquired from 19 MRSA and 3 MSSA bacterial isolates for 2 
measurement times. The isolation forest algorithm was used to determine whether there is an outlier in the data. 

Figure 2.   The structure of the proposed deep learning model. (a) First autoencoder that reveals the features 
from the input data. (b) Second autoencoder that reveal the new features from the first autoencoder’s hidden 
layer. (c) The deep learning model that is formed stacking the two autoencoders and softmax classifier.
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The results of this algorithm are shown in Fig. 3a. The score values that show whether the spectrum is outlier 
or not are in the range of [0.572, 0.875]. The mean ± standard deviation of them was found to be 0.574 ± 0.009. 
Further, the 95th percentile of the score values was found as 0.577; in other words, 95% of the score values are 
lower than 0.577. A vast amount of score values are distributed around 0.5, as seen in Fig. 3a indicates that these 
spectra do not really anomaly. Only 24 score values were determined greater than 0.7, and the spectra to which 
these values belong were accepted as anomalies and removed from the dataset. Different score values belong to 
a few spectra are depicted in Supplemental Fig. S2. As illustrated in this figure score values above 0.7 are seen 
differently from other spectra.

SERS spectra are acquired by illuminating the whole bacterium, which interacts with the colloidal AgNPs. 
Thus, the collected spectra are generated by the outermost of the bacterial cell wall because of the distance 
dependence of SERS enhancement47,48. Since the SERS spectra collected from bacteria reflect composition of the 
cell wall in close proximity with the SERS substrate. Peptidoglycan layer, teichoic acids, surface proteins, capsular 
polysaccharides, and phospholipids are the primary components of the bacterial cell wall49. The peptidoglycan 
layer in the bacterial cell wall is a protective envelope found on the outside of the cytoplasmic membrane where 
composes of glycan strands crosslinked with short peptides50. Staphylococcus aureus which is a gram-positive 
bacterium has a thick peptidoglycan layer at the outermost of the cell wall. Peptidoglycan biosynthesis is an 
excellent target for most of the antibiotics, including β-lactams49. Correspondingly, some structural differences 
are anticipated between MRSA which is resistant to β-lactams and MSSA cell wall that SERS could reveal these 
differences.

The normalized mean SERS spectra ± standard deviation of MRSA and MSSA are depicted in Fig. 3b in the 
range of 550–1700 cm−1. The shaded area shows the variations of measured spectral intensities. SERS spec-
tra of MRSA and MSSA bacteria depict a lot of similar peak positions except for some differences in relative 
band intensities. The primary SERS spectra of MRSA and MSSA are characterized by strong bands at 658 cm−1 
(COO−deformation of guanine)51, 732 cm−1 (flavin adenine dinucleotide derivatives, glycosidic ring mode of the 
N-acetyl D-glucosamine and N-acetylmuramic)52–54, 958 cm−1 (CN deformation of saturated lipids)42, 1333 cm−1 
(C-N stretching mode of Adenine)55, 1450 cm−1 (CH2 deformation of saturated lipids)56, and 1576 cm−1 (CN 
stretching of amide II)57. It is clearly illustrated in Fig. 3b that the spectral profile of MRSA and MSSA bacteria 
is quite similar. However, a notable difference between MRSA and MSSA is the intensity of 732 cm−1 peak posi-
tion. Interestingly, this sharp peak is drastically increased in MRSA. The source of this band is explicitly assigned 
by some groups to flavin adenine dinucleotide (FAD) derivatives and glycosidic ring mode of the N-acetyl 
D-glucosamine (NAG) and N-acetylmuramic (NAM) which are building blocks of the peptidoglycan layer52–54. 
Kahraman et al. reported that both band assignments are correct, and it is possible for bands originating from 
both NAG and FAD to overlap58.

The prominent increase in the 732 cm−1 band in MRSA may indicate differentiation in the peptidoglycan layer 
of MRSA. Since β-lactam antibiotics work by targeting Penicillin Binding Proteins (PBPs) in the peptidoglycan 
layer. It is possible to observe some differences for peak intensities or positions originating the peptidoglycan 
layer. Genotypic changes that cause antibiotic resistance are usually represented in the induced phenotype that 
inhibits the action of an antibiotic. Garcia et al. measured the cell wall and septum thickness of MRSA and 
MSSA59. They report that the cell wall and septum thickness of MRSA and MSSA have been found statistically 

Figure 3.   (a) Histogram plot of the anomaly score values obtained by the isolation forest algorithm. (b) 
Normalized average SERS spectra ± standard deviation of MRSA, MSSA and the difference of MRSA-MSSA.
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different. Besides, they have correlated the cell wall thickness of MRSA with the resistance mechanism. There 
are also some minor differences in the intensity of 658, 958, and 1333 cm−1 peaks. These peaks are more intense 
for MRSA than MSSA. The changes between MRSA and MSSA SERS spectra indicate that there is a variation in 
the amount of some biomolecules in the cell wall. Thus, SERS has the potential to reveal the variations between 
MRSA and MSSA.

SAE‑based DNN and traditional classifiers for the classification of MRSA and MSSA SERS 
spectra.  The spectral features of MRSA and MSSA are highly similar, as clearly seen in Fig. 3b. There are 
only some subtle differences in the relative intensities of the SERS peaks of MRSA and MSSA that can be deter-
mined by the naked eye such as 1500–1600 cm−1 spectral region as seen in Fig. 3b. However, trained personnel 
is needed to determine this difference for every spectrum. Furthermore, this difference may not be seen in some 
spectra collected from different isolates or it may not be prominent as seen in Fig. 3b. This situation necessitates 
using a robust algorithm for data analysis. To correctly classify SERS spectral data of MRSA and MSSA bacteria, 
an SAE-based DNN was utilized.

The total dataset consists of 33,951 SERS spectra of MRSA and MSSA. The 29,452 of them belong to 19 
MRSA isolates, and the remaining belong to 3 MSSA isolates. The entire data were used without preprocessing 
and feature extraction steps. In spectral data analysis, preprocessing and feature extraction are two important 
steps that show a major impact on the classifier performance. However, misuse of these methods can seriously 
distort the original data and adversely affect classifier performance60.

In this study, preprocessing steps such as noise elimination were not required since SERS can provide high  
SNR data. Moreover, feature extraction, which is a challenging process, was not used due to the ability of SAE-
based DNN about revealing critical features from the raw data. This deep learning model can extract relevant 
features thanks to the multiple autoencoders. Thus, the dimension of the input data passing through the hid-
den layers of each autoencoder is significantly reduced. The raw input data were standardized before applying 
SAE-based DNN and traditional classifiers. The whole raw data were shuffled randomly before implementing 
into classifiers. Ten-fold cross-validation technique was used to measure the performance of the model and this 
procedure was repeated for 30 runs for each classifier. The mean accuracies of SAE-based DNN and traditional 
classifiers for 30 runs are depicted in Fig. 4a. The accuracy values seen in Fig. 4a are sorted in ascending order to 
illustrate the accuracy values between the classifiers in depth. Therefore, the accuracy value obtained at the 30th 
run is seen as the highest value. It is clearly seen that SAE based deep learning model shows better classification 
performance than traditional classifiers. This model provides the best mean accuracy with 97.66 ± 0.26%, among 

Figure 4.   Performance comparisons of SAE-based DNN and traditional classifiers. (a) Accuracies of classifiers 
for 30 runs. (b) AUC values obtained from ROC curve of classifiers for 30 runs.
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others. Traditional classifiers have close classification performance and SVM gives slightly better results with 
95.87 ± 0.01%, among them. The mean, maximum, minimum, and standard deviation of each classifier accura-
cies acquired from 30 runs are given in Table 1.

A classifier performance can be measured by different metrics, and accuracy is one of them. However, accu-
racy is not enough to measure the performance of a classifier. Especially in dataset where the amount of data 
in classes is unbalanced, measuring the classifier performance with the only accuracy parameter does not give 
reliable results. The receiver operating characteristic (ROC) curve shows a classifier performance for all clas-
sification threshold values. This curve is plotted with the true positive rate (y-axis) against the false positive rate 
(x-axis). The area under a ROC curve abbreviated as AUC is frequently used to measure classification perfor-
mance and is one of the most important evaluation techniques. The value of AUC is in the range of [0, 1] and 
when the AUC value is getting closer to 1, classification error decreases. Figure 4b illustrates the AUC values of 
SAE-based DNN and traditional classifiers for 30 runs. As seen in Fig. 4b, SAE based deep neural network has 
the best AUC values through 30 runs. The mean AUC value of it was found 0.993 ± 0.002 which means the deep 
learning model can distinguish MRSA and MSSA with a high performance as depicted in Fig. 5a. KNN gives the 
worst AUC values for each run, while LDA, SVM, NN, and DT have better results than traditional classifiers. In 
addition, the mean, maximum, minimum, and standard deviation of each classifier AUC values obtained from 30 
runs are provided in Table 2. The confusion matrix of SAE-based DNN is demonstrated in Fig. 5b. The accuracy, 
sensitivity, specificity, and precision of the deep learning model were calculated as 97.7%, 99.2%, 87.6%, and 
98.2%, respectively. Misdiagnosing MRSA as MSSA causes more serious results than the reverse situation. Only 
236 SERS spectra of MRSA were misdiagnosed as MSSA as seen in Fig. 5b.

The above results show that SAE-based DNN has better classification performance than traditional classifiers. 
However, these findings should be supported with statistical analysis. Statistical analysis was used to compare 
the AUC values obtained from SAE-based DNN against state-of-the-art classification techniques such as SVM, 

Table 1.   Mean accuracies of the classifiers with maximum, minimum and standard deviation for 30 runs.

Method Mean (%) Maximum (%) Minimum (%) Standard deviation

SAE 97.66 98.14 96.98 0.26

SVM 95.87 95.88 95.85 0.01

NN 95.38 95.66 94.56 0.26

DT 95.41 95.52 95.23 0.08

LDA 94.69 94.71 94.64 0.02

KNN 94.06 94.12 93.91 0.05

Figure 5.   Binary classification results of MRSA and MSSA by the SAE based deep learning model. (a) The 
ROC curve with an AUC of 0.99. (b) Confusion matrix showing the results of ten-fold cross validated bacterial 
identification.

Table 2.   Mean AUC values of the classifiers with maximum, minimum and standard deviation for 30 runs.

Method Mean Maximum Minimum Standard deviation

SAE 0.9931 0.9961 0.9872 0.0020

SVM 0.9632 0.9634 0.9630 0.0001

NN 0.962 0.9695 0.9507 0.0054

DT 0.9257 0.9302 0.9192 0.0026

LDA 0.9780 0.9783 0.9777 0.0002

KNN 0.8688 0.8709 0.8657 0.0014
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NN, DT, LDA, and KNN for 30 runs. The Mann Whitney U test with a significance level of 0.05 was used for 
this purpose. The statistical results were interpreted according to the p-values. SAE-based DNN is found better 
than traditional classifiers in terms of the statistical analysis results for the discrimination of MRSA and MSSA 
spectral data.

The SAE-based DNN more accurately classified SERS spectral data of MRSA and MSSA bacteria. Our model 
applied here for rapid and reliable identification of antibiotic-resistant, and susceptible bacteria requires min-
imum sample preparation procedure, does not require special labels, and eliminates long incubation times 
required for phenotypic AST. Although raw data were used in our study, high classification accuracy and AUC 
were found thanks to the SERS technique with high SNR using SAE-based DNN which successfully extracts 
features from the data. Our group previously has applied traditional classifiers such as KNN, SVM, DT and 
naïve Bayes (NB) for the discrimination of MRSA, MSSA, and Legionella pneumophila bacteria15. KNN classifier 
has provided the best accuracy with 97.8%, among other techniques. However, as the size of the data set grows, 
the success of traditional classifiers falls behind the deep learning algorithms. Therefore, SAE-based DNN can 
provide more successful results for SERS spectral data of antibiotic-resistant bacteria with high accuracy and 
sensitivity.

Culture-based techniques are accepted as the gold standard for bacterial identification and antibiotic sus-
ceptibility test in clinical use. In this study, true classes in the confusion matrix were determined using both 
culture-based technique and PCR. Model predictions were then compared to results found at culture-based and 
PCR techniques that are accepted true classes. When the predictions of model largely overlap with the real class 
labels, the accuracy, sensitivity, specificity, and AUC values are high. As a result, the closer the model’s accuracy 
value is to 100%, the more consistent the results are with clinical results. It is very important for the clinical use 
potential of the proposed method that the subtle differences in the SERS spectra of MRSA and MSSA can be 
distinguished by the model with a classification accuracy above 95%.

Although deep learning-based algorithms use sophisticated computing tools, thanks to the developing tech-
nology, these models can be used by people who are not experts in the field. It can be made available to peo-
ple who need it using transfer learning. By transfer learning, the proposed method can be applied to similar 
problems. Thus, non-professionals about deep learning algorithms can be enabled to analyze the data using 
pre-trained networks.

In this study, SERS spectral data of MRSA and MSSA bacteria have been successfully characterized and 
identified by SAE-based DNN. The results show that the proposed technique has a potential application for 
the detection of antibiotic-resistant bacteria in clinical utilization (Fig. 6). Compared with the phenotypic or 
genotypic AST techniques frequently used, the proposed method has advantageous in terms of easy use and 
fast detection. Thanks to the easy sample preparation and fast signal acquisition in SERS technique, antibiotic 
resistance in bacteria can be detected faster than culture-based techniques. Since culture based techniques 
requires additional about 24 h for antibiogram tests after the bacteria are grown in culture. Proposed method 
may render possible the detection of antibiotic resistant and susceptible strains in a shorter time. As a result, by 
reducing the unnecessary use of antibiotics, the development of antibiotic resistance will be slowed down, and 
morbidity and mortality will decrease.

Figure 6.   The graphical abstract of the study representing the main steps of the study consisting of AgNPs are 
mixed seperately with MRSA and MSSA and obtaining SERS spectra which are processed with deep learning 
techniques to distinguish the differences.
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Conclusions
Rapid bacterial diagnosis is essential to combat antibiotic resistance. Label-free SERS provides a fingerprint 
spectrum of the sample with high SNR. Therefore, it is an attractive technique for bacterial identification studies. 
However, interpreting of SERS spectra is a difficult process due to the high molecular similarities of bacterial 
species. Detection of spectral differences between antibiotic-resistant and susceptible bacteria becomes even more 
difficult. Advanced data analysis techniques are indispensable at this step. Deep learning algorithms perform 
outstanding success by using SERS data for the discrimination of antibiotic-resistant bacteria.

Here we illustrate that SAE-based DNN can be used for the SERS-based label-free identification of antibiotic-
resistant and susceptible strains of S. aureus bacteria. SERS technique providing high SNR reveals the subtle 
spectral differences between MRSA and MSSA. SAE-based DNN automatically extracts features needed for 
classification from the raw spectral data. Therefore, complex preprocessing and feature extraction steps are 
eliminated. Compared with the traditional classifiers, SAE-based DNN shows a more accurate diagnostic model 
with accuracy and AUC of 97.66%, 0.99, respectively. The proposed method provides a label free, rapid, and 
reliable technique with high sensitivity.

In conclusion, the proposed method has a great potential for clinical use, considering that rapid diagnostic 
methods have a great effect on combating antibiotic resistance. Further, this technique has a high application 
potential not only in the detection of antibiotic-resistant bacteria but also for a lot of label-free SERS applica-
tions in the biomedical field.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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