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Musical components important 
for the Mozart K448 effect 
in epilepsy
Robert J. Quon  1,4*, Michael A. Casey2,3, Edward J. Camp4, Stephen Meisenhelter4, 
Sarah A. Steimel1, Yinchen Song1,4, Markus E. Testorf4,5, Grace A. Leslie6, 
Krzysztof A. Bujarski1,4, Alan B. Ettinger7 & Barbara C. Jobst  1,4

There is growing evidence for the efficacy of music, specifically Mozart’s Sonata for Two Pianos in 
D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known 
about the mechanism underlying this beneficial “Mozart K448 effect” for persons with epilepsy. 
Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges 
(IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found 
reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED 
rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we 
observed increased frontal theta power during transitions from prolonged musical segments. All other 
presented musical stimuli were associated with nonsignificant IED alterations. These results suggest 
that the “Mozart K448 effect” is dependent on the duration of exposure and may preferentially 
modulate activity in frontal emotional networks, providing insight into the mechanism underlying this 
response. Our findings encourage the continued evaluation of Mozart’s K448 as a noninvasive, non-
pharmacological intervention for refractory epilepsy.

Epilepsy impacts approximately 1% of the global population, and of these people, 1/3 suffer from medication-
resistant or refractory epilepsy1. Besides seizures and their associated comorbidities, persons with epilepsy 
experience interictal epileptiform discharges (IEDs). IEDs arise from the brief, synchronous firing of neural 
populations that are typically involved with epileptic networks2. These IEDs are known epileptic biomarkers that 
are associated with seizure frequency and impaired cognition3–6. Thus, IED-related interventions may provide 
insight into novel therapies for epilepsy and its related comorbidities.

An IED-related intervention with accumulating evidence is the use of music as a noninvasive, non-pharma-
cologic form of neuromodulation7,8. Specifically, Mozart’s Sonata for Two Pianos in D Major (K448) has been 
shown to reduce ictal and interictal epileptiform activity in several scalp-EEG and fMRI studies9–12. While effect 
sizes varied, a meta-analysis demonstrated that approximately 84% of subjects had significant IED reductions 
during Mozart’s K44813. This reputed “Mozart K448 effect” was first described in 1993 by Rauscher et al.14 when 
they demonstrated enhancement on a spatial task during exposure to K448. Later, Hughes et al. (1998)15 were 
the first to witness the “Mozart K448 effect” in persons with epilepsy by showing that K448 was associated with 
reduced epileptiform activity. Following Hughes et al.’s discovery, there has been continued support for the 
“Mozart K448 effect” in epilepsy research—generally demonstrating that exposure to K448 was associated with 
some therapeutic reduction in seizures and IEDs7,9,12,16,17.

Apart from one other composition—Mozart’s Piano Sonata in C Major (K545)—the therapeutic proper-
ties of K448 could not be replicated with other musical stimuli18. Stimuli previously tested were other Mozart 
compositions16, Beethoven’s Fur Elise19, and a string version of K44810. This led to several theories about the 
mechanisms underlying Mozart’s therapeutic effects for epilepsy; however, the specific properties driving the 
“Mozart K448 effect” remain unknown. Consequently, there is a general reluctance to fully accept this effect 
due to the unknown mechanism of K448 and to heterogeneous past findings that are likely linked with the use 
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of different study protocols and inferior imaging modalities. The latter limitation is noteworthy, as scalp-EEG is 
much less sensitive for quantifying epilepsy-related outcomes, especially interictal events20,21.

Our previous work demonstrated that 40 Hz auditory stimulation could reduce IEDs in subjects with refrac-
tory epilepsy and high baseline IED rates22. Historically, the relevance of gamma sensory stimulation emerged 
from findings of reduced gamma oscillations in humans with Alzheimer’s disease (AD)23. This was followed by 
observations of improved disease states (e.g., AD24–26 and stroke27) after exposure to exogenous gamma stimula-
tion. Lin et al. (2010)10 even demonstrated that musical stimuli with more fundamental tones (i.e., higher gamma 
power) reduced the number of epileptiform discharges. A major pitfall to this noninvasive intervention is that 
while the 40 Hz tone could effectively reduce IEDs in refractory epilepsy, it was not especially pleasant to listen 
to for a prolonged time.

In this study, we evaluate the use of Mozart’s K448 to see (1) if we can validate previous scalp-EEG findings 
with intracranial Stereo-EEG in adults with refractory epilepsy, (2) if there is a temporal dependence for eliciting 
the “Mozart K448 effect”, and (3) if the “Mozart K448 effect” is associated with preferential brain networks. We 
also examined if preferred music and music with enhanced gamma frequencies (i.e., either gamma-matched to 
K448 or gamma-boosted) could elicit a therapeutic response; this was motivated by our past findings and the 
theory that increased fundamental frequencies may be beneficial for epilepsy10,22. We hypothesized that eliciting 
the “Mozart K448 effect” would be dependent on a longer stimulus duration and prolonged internal musical 
segments. This is based on the theory that emotional responses result from positive reward prediction errors28. 
Further, we expected this effect would extend to regions outside of the primary auditory pathways, owing to 
past observations of music and its involvement with higher order systems (e.g., emotion and mirror neurons)29. 
This research may guide future work in uncovering how Mozart’s K448 elicits therapeutic responses, which may 
facilitate the development of novel, noninvasive music therapies for refractory epilepsy.

Results
Detecting interictal activity in subjects with refractory epilepsy.  An automated template-match-
ing interictal epileptiform discharge detector was utilized to calculate subject-specific IED rates (Fig. 1). We 
recruited 16 neurosurgical subjects undergoing clinical monitoring for refractory epilepsy to participate in ses-
sions of a music task (Fig. 2a,b). To determine if the duration of exposure was an important factor for eliciting 
the “Mozart K448 effect”, stimuli were presented for either 15-s (“Group 15”) or 90-s (“Group 90”). Subjects in 
Group 15 had a mean age of 43.75 (SD 16.46), an average normalized baseline IED rate of 1.23 (SD 1.09), and 
50% were male. Group 15 subjects had 32.5 (SD 14.40) electrodes implanted in the left hemisphere and 35.86 
(SD 12.78) electrodes in the right hemisphere. Subjects in Group 90 had a mean age of 34.88 (SD 10.02), an aver-
age normalized baseline IED rate of 1.43 (SD 0.94), and 75% were male. Group 90 subjects had 38 (SD 22.67) 

Figure 1.   Automated spike detector pipeline. A template-matching IED detector first cross-correlated a 60-ms 
triangular template with preprocessed Stereo-EEG, then normalized the cross-correlation by the median 
standard deviation from 1-s sliding windows. The absolute value of the normalized cross-correlation was then 
used to mark local peaks above a specified threshold as IEDs.
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electrodes implanted in the left hemisphere and 33.38 (SD 22.77) electrodes in the right hemisphere. Subjects 
from both groups performed 1.81 (range 1–2, SD 0.40) 25-min sessions on average. Other subject demographic 
and clinical characteristics are provided in Table 1.

Validation of the control.  We first confirmed that Group 15 and Group 90 were comparable by verifying 
a nonsignificant difference in the global normalized IED rates between the average control periods from each 
group (p = 0.92) (Fig. 2c). Our GEE model indicated that ASM status was a significant confounder (p = 0.027); 
therefore, all future models controlled for ASM status and session time, as these factors were previously shown 
to influence IED rates30–32. Similar GEE models were used to show that there was no significant difference in the 
global IED rates between the pre-stimulus baseline period and the control period for Group 15 (p = 0.82) and 
Group 90 (p = 0.88). Our RM-ANOVA of z-scored IED rates showed no significant fluctuation in IEDs between 
the control periods of all trials for Group 15 (p = 0.16) (Fig. 2d) and Group 90 (p = 0.40) (Fig. 2e). Together, these 
findings supported our use of the nested control periods as a reference in subsequent models.

Global IED reductions are dependent on the duration of K448.  After confirming that the control 
periods were similar between groups, we could more confidently compare interictal epileptiform responses to 
auditory stimuli. Our GEE models demonstrated a significant reduction in global IED rates during 90-s of expo-
sure to the original version of K448 both inside and outside of the seizure onset zone (SOZ) (SOZ RR = 0.33, 
p < 0.001; Non-SOZ RR = 0.34, p = 0.0013) (Fig. 3a). This effect was only present for the original K448, as we 
observed a nonsignificant change for the filtered version of K448 with 90-s of exposure (SOZ RR = 0.95, p = 0.48; 
Non-SOZ RR = 0.82, p = 0.23) (Fig. 3b). Nonsignificant IED rate reductions were also shown with 15-s of expo-
sure to the original K448 (SOZ RR = 1.05, p = 0.65; Non-SOZ RR = 1.04, p = 0.76) (Fig. 3a) and the amplitude 
modulated version of K448 (SOZ RR = 1.03, p = 0.93; Non-SOZ RR = 0.96, p = 0.55) (Fig. 3b).

In evaluating the data from Group 90, where the 90-s window was divided into six 15-s windows, we revealed 
that IED rate reductions were only present after at least 30-s of exposure (30–45 s RR = 0.31, p < 0.001; 45–60 s 
RR = 0.34, p < 0.001; 60–75 s RR = 0.33, p < 0.001; 75–90 s RR = 0.31, p < 0.001) (Fig. 3c). Nonsignificant IED 
reductions were observed for all times less than 30-s (0–15 s RR = 1.09, p = 0.99; 15–30 s RR = 0.83, p = 0.21) 
(Fig. 3c). Our paired-sample comparison of the 0–15 window and the 30–45 window corroborated this finding 
in showing a significant reduction in IEDs (p = 0.004) (Fig. 3c).

Applying the same procedure to Wagner’s Lohengrin (Prelude to Act I) demonstrated nonsignificant IED 
reductions for all time windows (0–15 s RR = 1.98, p = 0.41; 15–30 s RR = 2.27, p = 0.13; 30–45 s RR 2.07, p = 0.28; 

Figure 2.   Task structure and validation method. (a) Trials consisted of auditory stimuli selected randomly 
without replacement, each presented for 15-s, followed by a 15-s rest period (“Group 15”). (b) Trials consisted 
of musical stimuli selected randomly without replacement, where a simultaneous attention task was performed 
during the final 30-s of each auditory stimulus. This was followed by a 60-s control period and a True/False 
question assessing whether the subject attended to the auditory stimulus (“Group 90”). (c) A marginal model 
(GEE) revealed a nonsignificant difference in global normalized IED rates between the control periods of each 
study group (p = 0.92). RM-ANOVA on z-scored IED rates demonstrated no significant fluctuation in IEDs 
between control periods for Group 15 (p = 0.16) (d) and Group 90 (p = 0.40) (e); means and standard deviations 
are depicted.
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45–60 s RR = 2.08, p = 0.28; 60–75 s RR = 1.84, p = 0.73; 75–90 s RR = 1.98, p = 0.40) (Fig. 3c). Similarly, violet noise 
demonstrated nonsignificant IED reductions for all time windows (0–15 s RR = 0.95, p = 0.30; 15–30 s RR = 1.18, 
p = 0.98; 30–45 s RR 0.80, p = 0.07; 45–60 s RR = 0.82, p = 0.08; 60–75 s RR = 0.97, p = 0.35; 75–90 s RR = 0.85, 
p = 0.11) (Fig. 3c). Our evaluation of all other musical stimuli presented to Group 90 revealed nonsignificant 
IED reductions for music from the preferred genre (Preferred T RR = 2.83, p = 0.20; Preferred N RR = 1.42, 
p = 0.78; Preferred N Altered RR = 1.51, p = 0.15) and the classical genre (Classical T RR = 1.16, p = 0.83; Classical 
N RR = 1.45, p = 0.79) (Fig. 3d).

K448 preferentially reduced IEDs in bilateral frontal regions.  We next examined region-specific 
IED rate alterations for regions outside of a subject’s specified SOZ. This was done to see if we could local-
ize the “Mozart K448 effect” in less pathologic brain tissue, identified with implanted intracranial electrodes 
(Fig. 4a), while also minimizing the impact that subject-specific SOZs had on IED rates. Linear mixed effects 
models demonstrated significant IED reductions in the bilateral frontal cortices (right frontal cortex (FC) % 
reduction = 59.55, p = 0.049; left FC % reduction = 63.25, p = 0.017) (Fig. 4b). Nonsignificant IED reductions were 
observed for all other brain regions (right superior temporal cortex [STC] % reduction = 12.69, p = 0.22; right 
middle temporal cortex [MTC] % reduction = 10.60, p = 0.25; right mesial temporal cortex [Mesial] % reduc-
tion = 18.01, p = 0.99; left STC % reduction = 31.02, p = 0.06; left MTC % reduction = 32.96, p = 0.07; left Mesial % 
reduction = 8.39, p = 0.29) (Fig. 4b).

Transitions from longer K448 segments increased frontal theta activity.  An acoustic analysis of 
the nested structural components of Mozart’s K448 revealed several segment boundaries for repeated sequences 
(Fig. 5a). These segment boundaries coincided with a professional musician’s annotations of the musical score 
(Fig. 5b). We investigated the association between segment boundaries and frontal activity, as this was the only 
region with significant IED effects. There was a significant association between increased frontal theta activity 
and transitions from longer musical boundaries (ß = 0.17, % increase = 19.10, p = 0.002) (Fig. 5c). All other pow-
erbands and musical segment categories showed nonsignificant associations (Fig. 5c). Repeating this procedure 
with the filtered version of K448 revealed a nonsignificant relationship between all powerbands and musical 

Table 1.   Subject information. a Seizure Onset Zone (SOZ) corresponds to areas that initiated clinical seizures 
during intracranial monitoring. FC Frontal Cortex, TC Lateral Temporal Cortex, MESIAL Mesial Temporal 
Cortex. b Time-adjusted baseline IED rates averaged over all contacts with at least one IED during the task 
window. c Denotes the number of contacts remaining after the exclusion of bad channels and channels outside 
of co-registered grey matter regions.

Subject SOZa MRI findings Handedness Age Gender Normalized rateb (IED/min) Left channelsc Right channelsc

Group 15

1 Right TC
Right sphenoidal encephalocele, 
Right temporal encephalocele, 
Right temporal encephalocele

Left 65 Female 1.81 46 46

2 Right MESIAL Right mesial temporal sclerosis Right 39 Male 0.67 32 29

3 Right MESIAL Right temporal encephalocele, 
Left mesial temporal sclerosis Right 38 Female 2.8 38 42

4 Right Inferior FC Bifrontal gliotic changes Right 68 Female 0.11 17 47

5 Left HIP Unremarkable Left 28 Female 2.65 57 18

6 Right TC Right Encephalomalacia (tempo-
ral, parietal, orbitofrontal) Right 35 Male 0.49 20 30

7 Right TC, Left Posterior TC Unremarkable Right 24 Male 1.26 17 56

8 Right TC, Left TC Right arachnoid cyst Right 53 Male 0.034 33 30

Group 90

1 Left TC Left temporal encephalomalacia, 
Left hippocampus volume loss Right 29 Female 2.09 57 0

2 Right TC Unremarkable Right 43 Female 0.97 0 61

3 Bilateral MESIAL Left otomastoid effusion Right 30 Male 0.48 32 32

4 Left MESIAL
Bilateral inferior frontal and 
inferior right temporal encepha-
lomalacia

Right 56 Male 1.79 44 44

5 Bilateral MESIAL Unremarkable Right 27 Male 3.23 55 53

6 Right MESIAL Unremarkable Right 27 Male 1.52 51 45

7 Right MESIAL
Right temporal focal acute paren-
chymal hemorrhage, Scattered 
subarachnoid and small volume 
intraventricular hemorrhages

Right 32 Male 0.88 8 32

8 Left TC
Left posterior hippocampal 
sclerosis, Left mamillary body 
atrophy, Left middle cranial fossa 
arachnoid cyst

Right 35 Male 0.50 57 0
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segment categories in the frontal cortex (Supplementary Fig. S1a); this suggests that the broad structural com-
ponents of K448 are preserved but altering the frequency structure of the original composition attenuated neural 
responses. Applying this procedure to Wagner’s composition also revealed nonsignificant associations between 
all powerbands and musical segment categories in the frontal cortex (Supplementary Fig. S1b).

Discussion
In this study, we observed an association between noninvasive musical stimulation and reductions in intracranial 
interictal activity in persons with refractory epilepsy. Our study is one of two extant in the literature that exam-
ined the “Mozart K448 effect” in an adult population with intracranial recordings33. We advance past findings 
by testing if there was a minimum length of exposure needed to elicit this therapeutic effect and if novel music 
alteration methods could enhance this phenomenon. To our knowledge, this is the first study to systematically 
evaluate the relationship between musical segment boundaries and spectral power changes as they relate to the 
“Mozart K448 effect” in persons with epilepsy.

Although previous studies have investigated the role of K448 on interictal and ictal activity9,11,12,15,16,18,19,34, 
our study further demonstrates this effect using intracranial Stereo-EEG implants in an adult population with 
refractory epilepsy. We showed that the original version of K448 could effectively reduce IED rates with exposures 

Figure 3.   Reduced global IED rates are dependent on the duration of music exposure. (a) GEE models 
showed that the original version of K448 was the only stimulus effective at reducing IEDs with at least 90-s of 
exposure. (b) Nonsignificant reductions were observed for the altered versions of K448 (top = modulatedK448, 
bottom = filteredK448). (c) Partitioning the 90-s window of Mozart’s original K448 revealed that IED reductions 
only began after 30-s of exposure. There was a significant IED reduction between the 0–15 and 30–45 windows 
(p = 0.004). Control stimuli (musical control = Wagner’s Lohengrin [Prelude to Act I], nonmusical control = violet 
noise) demonstrated nonsignificant IED reductions for each time window. (d) All other musical stimuli 
presented to Group 90 showed nonsignificant IED reductions. “T” or “N” following each song label indicates 
if the gamma-range auditory modulation spectrum of that song matched (“T”) or did not match (“N”) that 
of K448. “Altered” indicates signals with secondary gamma modulations. Significance at *p < 0.05, **p < 0.01, 
***p < 0.001.
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as short as 30-s. The 66.5% average global IED reduction observed in our study is consistent with the upper limit 
of IED responses to K448 reported in the past. For instance, Lin et al.’s most recent work showed a 79.4 ± 20.0% 
average reduction in IEDs detected with scalp-EEG after one month of K448 exposure9. A meta-analysis of 
other scalp-EEG studies also reported an average IED reduction of approximately 35% during Mozart’s K44813. 
Recently, Štillová et al. (2021) used intracranial recordings to report a median IED reduction of 32%33. The 
enhanced effect observed in our study could be explained by our use of Stereo-EEG instead of scalp-EEG9–12,18, 
as Stereo-EEG is more reliable for detecting “true” intracranial interictal activity20,21, or by differences attributable 
to heterogeneous sample populations immanent with intracranial studies (i.e., high variability between subjects 
with refractory epilepsy).

Our observation of no carry-over of the “Mozart K448 effect”, evident by no effect persisting into the post-
stimulus periods, showed that 90-s of exposure was likely too short for a lasting impact on neural activity. This 
contrasts with previous work, which reported significant effects on seizure frequency in the post-treatment 
follow-up34,35. For instance, Bodner et al.34 showed a significant 33% reduction in seizures that persisted into the 
follow-up phase after K448 exposure, indicating that brief exposures of 90-s or less may invoke a less pronounced 

Figure 4.   Bilateral frontal regions responded to K448. (a) Stereo-EEG electrodes aggregated across subjects. (b) 
Linear mixed models revealed nonsignificant reductions in all regions other than the bilateral frontal cortices 
(right frontal cortex (FC) % reduction = 59.55, p = 0.049; left FC % reduction = 63.25, p = 0.017). “n” represents 
the number of subjects with electrode coverage in the corresponding brain region and “s” represents the number 
of unique experiment sessions. Significance at *p < 0.05, **p < 0.01, ***p < 0.001.
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neural response than those witnessed with longer stimulus durations9–11,19. Nonsignificant observations for Group 
15 also suggest a weaker neural response with transient exposures. Nonetheless, our null IED findings for the 
altered music, music matched to K448, and music from subject-preferred genres reinforce the claim that there 
might be something special about Mozart’s original composition, especially for interacting with the pathology 
of epilepsy. These findings reveal the importance of stimulus duration and encourage future work to determine 
the optimal duration of music for generating enduring therapeutic responses.

Models investigating less pathologic brain regions (Non-SOZ) highlighted the bilateral frontal cortices as 
regions important for the “Mozart K448 effect”. This agrees with past observations that listening to music was 
associated with increased activation of prefrontal cortices36–39. Such as Mansouri et al.’s (2017)39 observation that 
high-tempo music activated prefrontal cortical areas, while transcranial direct current stimulation (tDCS) over 
prefrontal regions negated the influence that music had on executive functions. These current findings also agree 
with Rauscher et al.’s (1993)14 original observation that K448 enhanced spatial–temporal working memory, a 
process directly linked with dorsal frontal activation.

We applied a structural decomposition technique to the original version of Mozart’s K448 to identify local 
and long-range nested structures based on the composition’s harmonic and timbral features. Our investigation 
revealed enhanced frontal theta power following shifts from longer musical segments (i.e., 10-s or more) that 
was not present during transitions from shorter musical segment boundaries and during all transitions within 

Figure 5.   Enhanced frontal theta activity during shifts from long musical segment boundaries. (a) Detected 
segments for Mozart’s K448 with dashed lines indicating 15-s window boundaries used for our IED-
related analyses. (b) Constant-Q spectrogram of K448 overlay with annotations from a theoretic analysis 
of the exposition of the first movement of Mozart’s K448 (i.e., K448’s musical score). (c) An assessment 
of the association between different Stereo-EEG powerbands and musical segment shifts (short = 3-s or 
less, medium = 3–10 s, long = 10-s or more, control = periods of no segment shift). There was a significant 
association between increased frontal theta activity and transitions from longer musical boundaries (ß = 0.17, 
% increase = 19.10, p = 0.002). All other powerbands and musical segment categories showed nonsignificant 
associations. ß values above zero reflect increased power, and ß values below zero reflect decreased power 
during a musical segment shift. Significance at *p < 0.05, **p < 0.01, ***p < 0.001.
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the filtered version of K448 and Wagner’s Lohengrin Prelude to Act I. These findings are concordant with past 
music research, which demonstrated that pleasant music was associated with increased frontal theta power40–43. 
Previous studies even proposed that frontal theta may represent a gating mechanism for the passage of informa-
tion to the limbic system41 and showed that the limbic system’s activity directly correlates with theta oscillations 
in the frontal cortex, particularly in response to emotionally arousing musical stimuli40,42,43.

Further evidence for the relationship between music and frontal emotion networks is provided by Tillmann 
et al.’s (2003)44 fMRI study, which showed enhanced activation of the bilateral inferior frontal regions for unex-
pected targets. More specifically, the structural syntactic relations between musical events led to increased bilat-
eral frontal activation, where greater activation was correlated with processing incoherent, unexpected events44. 
In 2017, Arjmand et al.45 augmented these findings by showing that unexpected changes in musical features, such 
as intensity and tempo, activated frontal brain regions linked with positive emotional responses. In conjunction 
with our current findings, this suggests that the generation of neural predictions about musical features may 
depend on both the duration of exposure and transitions from prolonged segments within the musical stimu-
lus—as this may be driving enhanced activation of internal emotion networks regulated by frontal cortices.

Our theory for the “Mozart K448 effect” raises a critical distinction between subjective emotional responses 
to music and internal, evoked emotional brain responses. This is supported by our findings of nonsignificant 
IED changes for musical pieces from the subject preferred genre. Additional support for this theory is provided 
by Hughes et al.’s (1998) landmark study15, which showed that K448 reduced IED activity even in subjects in a 
comatose state. In this study, Hughes et al. (1998) also showed that theta activity decreased in the central areas, 
while delta activity increased in frontal areas during K44815. Our increase in frontal theta is comparable to their 
increase in frontal delta, whereby the slight difference in frequency may be associated with their use of scalp-
EEG, which is inferior at detecting higher frequency components. Era-related differences in EEG hardware, 
study protocols, subject populations, and analytical control (i.e., our control for the influence of the SOZ and 
ASM status) could further explain these discrepancies.

In revealing that the musical structure of K448 may be contributing to its therapeutic effect, we shed light 
on a new theory for the “Mozart K448 effect” in epilepsy: the musical structure defined by the sonata form may 
elicit positive emotional responses that may be important for anti-epileptic effects. This is further supported by 
past observations that the only other composition with anti-epileptic properties was Mozart’s Piano Sonata in C 
Major (K545)18. We also confirmed the importance of other musical features, such as the stimulus’s frequency 
components, by showing that the filtered version of K448 failed to elicit a therapeutic response10,33. Thus, despite 
similar broad structural components, the filtered version of K448 may have decreased emotional salience (i.e., 
frequency distortions made it less acoustically pleasurable), resulting in a reduced likelihood of developing 
internal musical predictions and engaging emotionally with the piece.

A theoretical evaluation of the first 90 s of Mozart’s K448 shows that it is structurally organized by contrasting 
melodic themes, each with its own underlying harmony. This is contrasted by the first 90 s of Wagner’s Prelude 
to Act I of Lohengrin, which has no recognizable melodies. Called “the first piece of hypnosis by music”46, and 
one of Wagner’s most popular musical works, the selection consists solely of static chords that are held for long 
durations before small shifts in instrumentation and harmony occur. Thus, the structure of Wagner’s selection is 
organized by subtle and gradual changes instead of contrasting melodic themes, as seen in Mozart’s K448. This 
work was selected to control for the effect of melody-with-harmony versus harmony alone. It also underscores 
the importance of selecting proper negative musical controls to systematically uncover components essential 
for the “Mozart K448 effect” and enhance the validity of experimental findings. Future work will focus on using 
additional musical controls to further identify components of K448 that are essential for its therapeutic effect. 
That is, we will focus on analyzing carefully curated musical controls that are specifically matched to certain 
features of K448 (e.g., frequency, musical structure, musical segment durations) to isolate components essential 
for beneficial responses. This may enable us to replicate the “Mozart K448 effect” with other musical stimuli 
through (1) algorithmically searching for stimuli with matching essential components or (2) adding essential 
components with secondary signal alterations.

Several factors limit the implications of this current study. Our automated IED detection could introduce bias; 
however, it provided a means for objectively marking IEDs in light of the discordance between human reviewers2. 
We are also missing surgical outcome data and ASM blood levels, which may further bias IED-related findings. 
The relatively small number of Stereo-EEG subjects presents another limitation, which could be responsible for 
some of the non-significant results presented. However, our sample size was typical for most intracranial studies, 
which require fewer subjects due to significantly larger effects detectable with intracranial recordings. Our study 
also provides the foundation and methodology for future multicenter studies that can recruit a larger number 
of subjects with refractory epilepsy. We did not run the same experiment in all subjects, as we did not consider 
the importance of stimulus duration in our initial study, which would have been ideal. Thus, Group 15 offers 
complementary evidence for Group 90’s findings in different persons with refractory epilepsy. Another general 
limitation is that our study did not specifically measure if positive, subjective emotions were evoked while subjects 
listened to Mozart’s K448. Nonetheless, we provide evidence for internal representations of emotions through 
previously reported neural patterns. That is, our findings were concordant with the literature in showing frontal 
activation following shifts in musical expectations. We also demonstrated that while persons with epilepsy do 
not generally listen to classical music, it does not preclude them from enjoying and benefitting from Mozart’s 
K448 at an internal, neural level.

In conclusion, the current findings demonstrate that musical stimulation with Mozart’s K448 may reduce IED 
rates inside and outside the seizure onset zone in persons with refractory epilepsy. We show that the “Mozart 
K448 effect” has a lower limit of approximately 30-s for evoking therapeutic neural responses and provide evi-
dence for the preferential reduction of IEDs in bilateral frontal regions, with implications for the activation of 
emotion networks regulated by the frontal cortex. Our data suggest a strategy for the noninvasive modulation 
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of intracranial interictal activity, which may alleviate IED-related comorbidities. They support the future inves-
tigation of other sonatas with similar structural characteristics to Mozart’s K448, as they may hold therapeutic 
potential for epilepsy. Ultimately, our study provides insight into intracranial mechanisms that may be important 
for the anti-epileptic properties of Mozart’s K448.

Material and methods
Participants.  Sixteen subjects undergoing intracranial electroencephalographic monitoring for the clinical 
treatment of refractory focal epilepsy participated in this study (Table 1). All subjects reported little to no previ-
ous musical training and limited exposure to classical music. The research protocol for this study was approved 
by the Committee for the Protection of Human Subjects (CPHS#: 12495) at Dartmouth College, and informed 
consent was obtained from each subject. All methods were carried out in accordance with the relevant guide-
lines and regulations of this ethics committee. Electrophysiological data were collected from depth electrodes 
implanted within the brain parenchyma to best localize epileptogenic regions.

Stereo‑EEG data.  Stereo-EEG macroelectrodes recorded electrophysiological data at sampling rates rang-
ing from 500 to 1500 Hz (Natus Medical Inc.). Recording channels were excluded if the raw signal was greater 
than two standard deviations from the median value across channels to remove non-physiological artifacts or if 
channels were outside of co-registered brain regions. Stereo-EEG data were band-pass filtered from 1 to 50 Hz, 
re-referenced to an average referential montage, excluding the channels with artifacts, then resampled at 256 Hz.

Anatomical localization.  For all subjects, pre-implant T1-weighted and T2-weighted MRI images were 
co-registered with postoperative computed tomography (CT) to obtain the position of small-spacing Stereo-EEG 
depth electrodes. Freesurfer and the Desikan–Killany atlas were used for hippocampal subfield localization and 
cortical parcellation, and then final electrode positions were manually reviewed by two neuroradiologists47–50. 
Electrodes were finally reclassified into the following broader regions: left superior temporal cortex (STC), right 
STC, left middle temporal cortex (MTC), right MTC, left mesial temporal cortex (Mesial), right Mesial, left 
frontal cortex (FC), and right FC.

Automated spike detection.  An automated template-matching detector was used for the detection of 
all IEDs in this study. This detector was previously validated and performed comparably to clinicians at Dart-
mouth–Hitchcock (DH) and other published detectors4,51,52. The detector used the following pipeline to mark 
IEDs: (1) cross-correlate a 60-ms triangular template with preprocessed Stereo-EEG, (2) normalize the cross-
correlation by the median standard deviation from 1-s sliding windows, (3) calculate the absolute value of the 
normalized cross-correlation, and (4) mark local peaks above a specified detection threshold as IEDs (Fig. 1). 
We then collapsed temporally overlapping detections into a single marked event and excluded IEDs occurring 
within 2-s of another IED to account for bursts of spikes. An illustration of this pipeline and sample IED detec-
tions are provided in Fig. 1.

Spectral power.  Due to spectral perturbations associated with IEDs, we first divided task epochs into 1-s 
segments, then rejected all task epochs within 3-s of an IED. Our goal was to assess spectral power between brief 
pre- and post-segment boundaries (i.e., musical transitions), so we used the multitaper spectral analysis method, 
which convolved orthogonal Slepian sequences with the Stereo-EEG signal to provide new periodograms. A 
final spectrum, obtained by averaging over all the periodograms, was used to calculate the average spectral 
power within the following canonical frequency bands: delta (2–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta 
(12–30 Hz), gamma (25–40 Hz), and high gamma (40–100 Hz)53. We log-transformed and z-scored the power 
within each experiment session for each electrode for each subject, then averaged power values into non-over-
lapping 1-s time bins for each trial54.

Musical boundary detection.  We defined musical boundaries using a technique developed and detailed 
by McFee and Ellis (2014)49. Specifically, we applied techniques that operate on the graph Laplacian to identify 
repeated patterns in the musical composition to create block structures in the spectrum based on expanded 
diagonal bands of a self-similarity matrix49. This music information retrieval technique identified a hierarchical 
structure using (1) harmonic features for long-range repetitions and (2) timbral features for short-range patterns 
to define structural boundaries in the music55,56. Spectral clustering was performed using k-means clustering 
(k = 10) with the normalized eigenvectors of the symmetric normalized Laplacian. The input signal was sampled 
at 22,050-Hz (mono) and analyzed with a 2048-sample FFT window and 512-sample hop. Music segments were 
reclassified into the following categories: short (3 s or less), medium (3–10 s), and long (10 s or more). These 
musical boundaries demarcated shifts in musical themes within the 90-s clips, allowing us to test the hypothesis 
that frontal activity (i.e., emotion networks) was associated with positive reward prediction errors, observable 
during transitions out of longer musical segments28. That is, we hypothesized that (1) longer segments with a 
similar musical structure were required for subjects to develop expectations, then (2) violations of those inter-
nally generated expectations would be correlated with the preferential activation of emotion networks.

Auditory task.  The first group of subjects (referred to as “Group 15”) was presented with blocks of 15-s clips 
of distinct auditory stimuli, presented in a random order for each subject session through sampling without 
replacement (Fig. 2a). Auditory stimuli were followed by a 15-s control period that consisted of normal ambi-
ent room noise (i.e., silence in the acoustic speaker). Although four different auditory stimuli were presented to 
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this group, we only examined Mozart’s Sonata for Two Pianos in D Major (K448) and Mozart’s Sonata for Two 
Pianos in D Major that was amplitude modulated with a 40 Hz sinusoid (modulatedK448), using the control 
period as a reference.

The second group of subjects (referred to as “Group 90”) was presented with blocks of 120-s clips of musical 
stimuli, presented in a random order for each subject session through sampling without replacement (Fig. 2b). 
During the last 30-s of each auditory stimulus, each subject was presented with a simultaneous attention task. 
Again, the control period following each auditory stimulus consisted of normal ambient room noise, followed 
by a Boolean question assessing whether the subject attended to the auditory stimulus. Nine different musical 
stimuli were presented to this group. However, our primary analysis focused on Mozart’s Sonata for Two Pianos 
in D Major (K448) and Mozart’s Sonata for Two Pianos in D Major that was band-pass filtered to boost gamma 
frequencies (filteredK448), using the control period as a reference. We also included an orchestral version of 
Wagner’s Lohengrin Prelude to Act I and violet noise as two control stimuli. We focused on Wagner’s Lohengrin 
Prelude to Act I because it had similar general popularity to Mozart’s K448 within the classical genre and included 
a comparable number of musical boundaries identified by our segmentation method with significantly fewer 
long musical segments (SFig. 1). It also paralleled Lin et al.’s (2010) use of a string version from the classical 
genre10, making it an ideal negative control. Violet noise was selected as a non-musical auditory control because 
it has a power density that increases per octave, weighting it towards the top of the spectrum. This makes it an 
ideal negative control for testing our hypothesis that lower frequencies (e.g., gamma boosted) are important for 
reducing IED rates.

Each experiment session had a typical duration of 25-min and was repeated twice per subject on average. 
The first 15- and 90-s from Mozart’s K448 (Allegro con spirito) were used for this study. We utilized a Roland 
C30 loudspeaker to deliver the auditory stimuli at a comfortable sound level determined by the subject, ranging 
from 60 to 70 dB. All experiment sessions were performed at least four hours after the most recent seizure and 
at least 24 h post-implantation.

Auditory stimuli.  A complete list of the auditory stimuli presented to Group 15 may be found in our previ-
ous publication22. Apart from the original version of K448, altered version of K448, Wagner, and violet noise, 
other auditory stimuli presented to Group 90 were Frederic Chopin’s Bolero in C—Op. 19 for piano, performed 
by Nikita Magaloff (“Classical T”); Franz Liszt’s Piano Sonata in B Minor, 1st movement: Lento assai—Allegro 
energico, performed by Leslie Howard (“Classical N”); and three songs from a preferred musical genre. That is, 
each subject was asked to select a preferred genre after sampling a preselected list of songs from the classical 
country (Tumbling Tumble Weeds by Sons of the Pioneers [“Preferred T”]; Barbara Allen by Bradley Kincaid 
[“Preferred N”]), heavy metal (Jugulator by Judas Priest [“Preferred T”]; Just For by Nickelback [“Preferred 
N”]), and rock and roll (Na Na Hey Hey Kiss Him Goodbye by Steam [“Preferred T”]; Peggy Sue by Buddy Holly 
[“Preferred N”]) genres. Within this subject-preferred genre, we also altered the “Preferred N” song by boost-
ing lower frequencies (“Preferred N Altered”). The “T” or “N” following each song label indicates whether the 
gamma-range auditory modulation spectrum of that song matched (“T”) or did not match (“N”) that of K448 
using the amplitude-modulation-analysis toolbox [https://​github.​com/​MuSAE​Lab/​ampli​tude-​modul​ation-​
analy​sis-​matlab]. The modulation-spectrum analysis was run on a large musical corpus to identify maximally 
matching (“T”) and divergent (“N”) musical pieces to be investigated in our study.  All selected songs, both 
matching and divergent, were additionally tempo-matched to the mean tempo of their respective genre using the 
librosa library to implement automatic tempo extraction57. “Altered” indicates signals with secondary gamma 
modulations. The first 90 s from each musical selection were used in our study. The order of stimuli presented 
for each subject session is provided in SFig. 2.

Statistical analysis.  We used Generalized Estimating Equations (GEE) log-linear regression models with 
extra-Poisson variance assumptions to determine if there was a difference in the normalized IED rates across all 
control periods between Group 15 and Group 90 and to compare pre-experiment baseline IED rates with control 
IED rates. In these models, the within-subject association was specified in terms of an unstructured pairwise 
correlation pattern, and the variances of the counts were adjusted with sandwich estimators. To ensure that natu-
ral transient fluctuations in IEDs did not drive subsequent findings, we z-scored IED rates within each subject, 
then examined if there was a difference between any of the experiment trials using a repeated measures analysis 
of variance (RM-ANOVA). An a priori power analysis used the effect sizes reported by Lin et al.’s (2014) most 
recent work9, an alpha of 0.05, and power of 0.90 to determine that a minimum of eight subjects were required 
to evaluate the main objective of this study.

Similar GEE log-linear regression models, retaining the same previous assumptions about the variance and 
correlation, were used to determine if there was a significant global normalized IED rate reduction during the 
original K448 relative to the average control period both inside (SOZ) and outside (Non-SOZ) of the seizure 
onset zone. Analogous models were used to assess the altered versions of K448 relative to the control period. 
We subsequently partitioned Group 90’s data from the original K448 into six 15-s windows, then evaluated each 
window independently. Due to the reduced number of IEDs per 15-s time window, we used Generalized Linear 
Mixed Models (GLMM) that assumed a zero-inflated Poisson distribution with random slopes and intercepts 
for each subject and an offset term for exposure time. We repeated this procedure for Group 90’s data during the 
control stimuli, using similar models to evaluate each window independently. A post hoc paired-sample Wil-
coxon test was used for pairwise comparisons to determine if there was a significant difference between specific 
windows of interest. Another post hoc analysis used analogous GEE log-linear regression models to assess all 
other musical stimuli presented to Group 90.

https://github.com/MuSAELab/amplitude-modulation-analysis-matlab
https://github.com/MuSAELab/amplitude-modulation-analysis-matlab
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We evaluated subject-specific changes, between control and K448 conditions, in the rate of IEDs for specified 
brain regions outside of the SOZ. We fit the same mixed effects log-linear regression model separately for each 
region using region-specific IEDs with the following predictors: ASM status and session time, including random 
slopes and intercepts for the within-subject factor, and an offset term for exposure time. This model assumed 
IED rates had a zero-inflated Poisson distribution and controlled for natural heterogeneity between subject IED 
rates and expected changes in IED rates over time.

The presence of prolonged segment boundaries (i.e., transitions out of persistent structural patterns) in the 
time windows corresponding to significant IED reductions inspired our subsequent analyses, which focused on 
determining if powerband shifts in the frontal cortices were associated with musical segment boundaries. These 
analyses were also motivated by (1) our finding that bilateral frontal regions were preferential for the “Mozart 
K448 effect” and (2) the theory of music and emotion, whereby positive emotional responses are thought to be 
correlated with the neural processing of acoustic patterns in frontal brain regions44. GLMM were used to assess 
the statistical relationship between shifts in musical boundaries and power in the frontal cortex. These models 
compared the average frontal power from 1-s before a segment boundary to the average frontal power from 1-s 
after a segment boundary. We repeated this analysis for frontal brain regions during exposure to the filtered 
version of K448 and Wagner’s composition as a validation.

Of note, past studies relied primarily on paired t-tests9–11 or its nonparametric alternative, the paired samples 
Wilcoxon test12,33 to assess changes in interictal activity. For our group-level analyses, we used a semiparametric 
test, the GEE, which is similar to conventional paired tests but is generally more robust, as it is less affected by 
departures from parametric assumptions58. Differences in statistical power are especially notable when comparing 
the GEE with the Wilcoxon test, as the latter relies on ranks rather than actual count outcomes. In the setting of 
our experiment, the GEE and paired t-test are essentially equivalent, except that the GEE uses the asymptotic 
normal distribution for inference rather than the t distribution, making it the preferred method for a smaller 
sample size58.

Relative Risks (RRs) were computed from odds ratios (ORs) for better estimations and were reported with 
99.9% confidence intervals to reflect the significance of corrected p values59. All models included offset terms to 
account for different task window durations while also controlling for the influence of anti-seizure medication 
(ASM) status, unique session time, and subject heterogeneity. The family-wise error rate (FWER) was controlled 
at 0.05 using Bonferonni correction unless otherwise specified.

Data availability
Deidentified Stereo-EEG data are available upon reasonable request.
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