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1  | INTRODUC TION

Stroke is a leading cause of morbidity and mortality worldwide 
and in China. In China, stroke was the leading cause of death and 
DALYs in 2017.1 Age-standardized DALYs per 100  000 population 
decreased by 33.1% for stroke. Of all strokes, up to 80% to 85% 
are ischemic,2 which can be subdivided based on the Trial of ORG 
10172 in Acute Stroke Treatment (TOAST) classification.3 Large 
vessel atherosclerosis of cervical or proximal intracranial vessels 
comprises a major cause of acute stroke, ranging from 30% to 43%, 
while 20%-31% is caused by cardioembolism. Approximately 10%-
23% of all strokes are lacunar in type, which are mainly caused by 
diabetes and hypertension. Some additional unusual causes, such 
as vasculopathy or extracranial artery dissection, account for 2%-
11%.4,5 Approximately 5%-21% of strokes are hemorrhagic, and 

their common causes are hypertension and vascular malformations.6 
Strokes are heterogeneous diseases, and in vivo models are essen-
tial tools to mimic these processes for investigating pathophysiology 
and therapeutic approaches. Each model has its unique strengths 
and weaknesses (Tables 1 and 2). Only when we realize their impor-
tance can we choose the best one for an investigation, with “best” 
referring to that which most closely approximates a certain aspect of 
the multiple facets of strokes.

2  | ISCHEMIC STROKE

Tissue plasminogen activator (tPA), adapted from a rabbit model,7 is 
the only therapeutic agent approved to treat acute ischemic stroke.8 
From the late 1970s, a variety of animal stroke models have been 
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Abstract
Stroke is a devastating disease with high morbidity and mortality. Animal models are 
indispensable tools that can mimic stroke processes and can be used for investigating 
mechanisms and developing novel therapeutic regimens. As a heterogeneous disease 
with complex pathophysiology, mimicking all aspects of human stroke in one animal 
model is impossible. Each model has unique strengths and weaknesses. Models such 
as transient or permanent intraluminal thread occlusion middle cerebral artery oc-
clusion (MCAo) models and thromboembolic models are the most commonly used 
in simulating human ischemic stroke. The endovascular filament occlusion model is 
characterized by easy manipulation and accurately controllable reperfusion and is 
suitable for studying the pathogenesis of focal ischemic stroke and reperfusion in-
jury. Although the reproducibility of the embolic model is poor, it is more conveni-
ent for investigating thrombolysis. Rats are the most frequently used animal model 
for stroke. This review mainly outlines the stroke models of rats and discusses their 
strengths and shortcomings in detail.
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developed with the aim of identifying the mechanisms of and devel-
oping new agents for ischemia therapy.9 However, no preclinically 
tested agents have been translated into effective stroke therapies,10 

which led to the establishment of the Stroke Therapy Academic 
Industry Roundtable (STAIR). It aims to draft recommendations 
for improving the quality of preclinical studies because we need 

TA B L E  1   The characteristics of stroke models

Models Advantages Disadvantage Animals

Ischemic stroke

Global ischemic stroke

4-VO model Easy to prepare; high 
reproducibility; low 
incidence of seizures

Two-stage surgical 
procedure; permanent 
occlusion vertebral 
arteries; high mortality

Rats, mice, rabbits, dogs, pigs

2-VO model One-stage surgical 
procedure; controllable 
recirculation; lower 
mortality

Poor reproducibility; 
strains-depended

Rats, mice, rabbits, cats, dogs, sheep, pigs

Complete global brain ischemia Close to human condition 
of cardiac arrest and 
resuscitation

Extracerebral complications; 
complicated procedure; 
poor survival rate and 
coma

Ventricular fibrillation cardiac 
arrest

Rats, rabbits, cats, dogs, pigs, sheep

Aorta/vena cava occlusion 
models

Dogs and pigs

Chemical and gas hypoxia Zebrafish

Focal ischemic stroke

Transcranial occlusion Smaller infarcts; lower 
mortality; high 
reproducibility

Destroy dura; intracranial 
infection; one-sided 
blindness

Rats, mice, cats, sheep, pigs, monkeys

Endovascular filament 
occlusion

Easy manipulation; 
controllable reperfusion; 
ischemic penumbra

Tremendous variations; 
spontaneous 
hyperthermia; not 
suitable for thrombolysis

Rats, mice

Embolic occlusion

Thromboembolic occlusion Investigate thrombolytic 
processes

Poor reproducibility; 
spontaneous 
recirculation

Rats, rabbits, dogs

Artificial spheres occlusion Microspheres induce graded 
infarcts; reproductivity 
of macrosphere 
embolization

Poor reproducibility of 
microspheres models; 
not suitable for 
transient occlusion and 
thrombolysis

Rats, rabbits, primates

Endothelin-1 occlusion Easy manipulation; flexible 
selection of infarct 
regions

Affected by anesthetics; 
neural transmission/
modulation

Rats

Photothrombosis model Reproducibility; easy 
manipulation; less trauma; 
long-term survival

Lack of penumbra; poor 
responses to rt-PA

Rats, mice

Intracerebral hemorrhage

Whole blood injection model Mimic the hematoma mass 
effect and blood toxicity

Uncontrollable hematoma 
size; not suitable for 
studying bleeding and 
hemostasis

Rats, mice, rabbits, pigs

Collagenase model Spontaneous bleeding; easy 
manipulation. The size of 
hematoma is controllable.

Bleeding is slow and 
diffuse. exacerbates the 
inflammatory response

Rats, mice, dogs, pigs
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ischemic stroke models that are more representative of the human 
condition.11 Several recent animal models are known to exhibit cer-
ebral ischemia and have been designed to address specific risk fac-
tors. These models can be generally divided into two types, global 
ischemia model and local ischemia model. Reliable stroke models 
for ischemia are available in a variety of species, including primates, 
domestic animals, and rodents.

2.1 | Global ischemic stroke

Compared to global ischemia models, the focal ischemic stroke 
models are more relevant to the human ischemia.12 Although 
global cerebral ischemia is not a common feature, it is also rel-
evant in global brain damage due to cardiac arrest and resusci-
tation. In addition, a global model of reversible ischemia may be 
important in identifying the mechanism of potential neuroprotec-
tive agents.13 The global ischemia model, both incomplete and 
complete, characterized by the critical reduction of cerebral blood 
flow in the whole brain, tends to be easier to perform. It can be 
induced by different approaches. The most commonly used ones 
are the incomplete global ischemic models of the four-vessel oc-
clusion model (4-VO model) and two-vessel occlusion model (2-
VO model).

2.1.1 | 4-VO model

In 1979, a 4-VO model was first introduced by Pulsi-Purkinjenelli 
and Brierley in unanesthetized rats to result in bilateral hemi-
spheric ischemia with highly predictable brain damage.14 This 
model consists of a two-stage procedure with permanent oc-
clusion of the vertebral arteries by electrocoagulation on day 1 
followed by reversible occlusion of the common carotid arteries 
(CCA) on day 2.15 Based on the anatomical basis of vertebral artery 
proposed by Sugio et al, Toda et al improved the 4-VO model for 
highly reproducible forebrain ischemia. The vertebral artery at the 
second vertebra was electrocauterized under microscope to en-
sure complete occlusion of circulation of both vertebral artery.16,17 
This model shows biphasic changes in brain edema and scavenging 
activity of superoxide following cerebral ischemia reperfusion.17 
Brain water contents increases at 1-48 hours after recirculation, 
but are almost equal to the normal brain at 24 hours.17 The lowest 
and highest superoxide scavenging activities are found at 45 min-
utes and 12  hours after recirculation, respectively.17 The model 
has various advantages, such as ease of preparation, a high rate of 
predictable ischemic neuronal damage, and a low incidence of sei-
zures. The major weaknesses are the need for a long time to finish 
a two-stage surgical procedure and vertebral arteries being per-
manently occluded. Furthermore, because of the high mortality 
and common complications, animals require better postoperative 
care. In addition to rats, other mammals such as pigs,18 dogs,19,20 
rabbits,21 and mice22have been used.

2.1.2 | 2-VO model

In 1972, the 2-VO model was first proposed by Eklof and Siesjo in 
lightly anesthetized rats and has been modified on many occasions 
since.23 Ligation of the carotid arteries alone decreases cerebral 
blood flow to approximately half of normal, but it has no significant 
changes in the energy state of the tissue,23 which is mainly due to 
the well-developed circle of Willis in rats.24 Thus, permanent occlu-
sion of bilateral carotid arteries could produce a model for chronic 
cerebral hypoperfusion-related neurodegenerative diseases.25 The 
changes in CBF can be divided into three phases including acute 
phase (start of occlusion lasting for a maximum of 2-3 days), chronic 
hypoperfusion phase (lasting for 8  weeks to 3  months), and resti-
tution phase.25 However, the second phase is closest to the condi-
tion of CBF reduction in human aging and dementia.25 Although the 
permanent 2-VO model does not show BBB destruction, there are 
other changes in pathophysiological processes, such as alteration of 
electrophysiological activity, neuropathologic changes, and continu-
ous oxidative stress.25 Transient bilateral carotid artery occlusion 
(BCAO) should be combined with a reduction in mean arterial blood 
pressure, which could successfully establish a forebrain ischemic 
model.26,27 The insult in size and location produced by this model is 
similar to that of the 4-VO models, with the exception of the brain 
stem. By the mid to late 1980s, the 2-VO model gradually replaced 
the 4-VO model because of its advantages, such as a one-stage sur-
gical procedure, controllable recirculation, and lower mortality.13 
However, the success of the model requires appropriate strains and 
a precise grasp of the ischemic time. Mortality after BCAO varies 
from 0% to 100% depending on the strain. Modifying the time inter-
val between the ligations of the bilateral carotid artery could ame-
liorate lethal effects.28 The approach is commonly used not only in 
rats but also in other experimental animals, such as pigs,29,30 ovine 
fetuses,31 neonatal dogs,32 cats,33 rabbits,34 and mice.22 It is worth 
mentioning that gerbils and spontaneously hypertensive rats (SHRs) 
have unique advantages itself.

Most likely, the simplest model is that of BCAO in Mongolian 
gerbils (Meriones unguiculatus). Unilateral or bilateral carotid artery 
occlusions of gerbils were first described by Levine and Payan in 
1966.35 They are widely used in forebrain ischemia because of the 
incomplete cerebral circle of Willis. For 5 minutes BCAO of gerbils, 
the CA1 region of the dorsal hippocampus will undergo an unusual 
series of changes.36 According to the severity of transient ischemia, 
neuronal loss in the hippocampus significantly differs.37 Due to the 
low blood volume, the major disadvantage of this model is the diffi-
culty in taking blood samples and monitoring blood gas parameters. 
In addition, the variability of cerebral vascular anatomy determines 
the severity of ischemic insults in gerbils.38 Compared to high oak 
gerbils, Charles River gerbils have an increased incidence of the com-
plete or partial circle of Willis (38.6% with unilateral anastomoses 
and 22.7% with bilateral anastomoses).39

SHRs were constructed by Okamoto and Aoki in 1963.40 The 
resting blood flow values between SHRs and normotensive rats 
(NTR) were not different. However, after BCAO, the cerebral blood 
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TA B L E  2   The pathophysiological characteristics of stroke models

Stroke models Common processes Special characteristics
Ischemic stroke

Global ischemic stroke
4-VO model Energy failure, elevated intracellular Ca2+ 

level, excitotoxicity, spreading depressions, 
generation of free radicals, destruction of 
the blood-brain barrier, inflammation, glial 
cell contribution, apoptosis, and necrosis

Biphasic changes in the brain edema and scavenging 
activity of superoxide

2-VO model Permanent 2-VO model shows three phases of CBF 
changes

Permanent 2-VO model does not show BBB destruction
Complete global brain 

ischemia
Aorta/vena cava occlusion 

models
Purkinje cells and the CA1 pyramidal cells induced by 

CGBI consists of two phases, and the reversible 
change in the early phase is related to the decrease 
of the synaptic vesicles

Ventricular fibrillation cardiac 
arrest

A VF of 5-7 min could be easily recovered with 
resuscitation, while VF for 10 and 12 min often 
cannot be recovered

Significant ischemic cell changes (eosinophilic 
cytoplasm, dark-staining triangular shaped nuclei, 
and eosinophilic-staining nucleolus) in CA1 
hippocampus can be observed at seven days of 
resuscitation

Chemical and gas hypoxia
Focal ischemic stroke

Transcranial occlusion Energy failure, elevated intracellular 
Ca2+ level, excitotoxicity, spreading 
depressions, generation of free radicals, 
destruction of the blood-brain barrier 
(BBB), inflammation, glial cell contribution, 
apoptosis, necrosis

Leakage of cerebrospinal fluid; one-sided blindness
Endovascular filament 

occlusion
Spontaneous hyperthermia; unavoidable harm to the 

endothelial lining could alter vascular reactivity and 
BBB permeability

Embolic occlusion
Thromboembolic occlusion Unreliable infarctions and variable neurologic deficits; 

mainly to investigate thrombolytic processes
Autologous blood clots of experimental animals are 

resistant to human rt-PA
Artificial spheres occlusion Microsphere embolization produces relatively variable 

infarcts
Macrosphere embolization model provides focal 

cerebral infarcts similar to intraluminal suture 
occlusion but avoids hypothalamic injury and 
hyperthermia

Endothelin-1 (ET-1) occlusion Vasoconstriction; ET-1 plays a role not only in local 
control of cerebral vascular tone but also in neural 
transmission/modulation. endothelin-converting 
enzymes and endothelin receptor B are expressed 
in neurons and astrocytes, and regulated by nerve 
injury

Photothrombosis model Photooxygenation leads to endothelial damage and 
platelet adhesion, and aggregation to form thrombi 
to block cerebral vessels

Classic photothrombotic stroke has poor responses to 
rt-PA-mediated thrombolysis

Intracerebral hemorrhage
Whole blood injection model Hematoma enlargement, coagulation cascade 

activation and clot retraction, red blood 
cells lysis and infusion of hemoglobin, 
brain edema, necrosis and apoptosis, CBF 
reduction, inflammation

Mimics the hematoma mass effect and blood toxicity; 
involves no rupturing of cerebral vessels; no 
activation of bleeding and coagulation cascade

Collagenase model Mimics bleeding; degrades collagen IV in the basal 
lamina of the blood-brain barrier; rupture of small 
vessels and capillary beds around the injection site. 
Bacterial collagenase exacerbates the inflammatory 
response
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flow in the cortex or thalamus was reduced more in SHRs than in 
NTRs.41 Furthermore, BCAO alone could cause severe ischemic in-
sults of the brain in SHRs.42 Seizures develop within 1 hour in BCAO 
of awake SHRs.43 However, high mortality and feeding requirements 
are the main causes that limit the development of this model. All 
stroke-prone spontaneously hypertensive rats (SHRSP) died within 
6  hours after BCAO. Stroke-resistant SHRs (SHRSRs) and Wistar-
Kyoto rats (WKYs) died within 8 hours after BCAO.44

2.1.3 | Complete global brain ischemia (CGBI)

The 4-VO models and 2-VO models are incomplete global ischemic 
stroke models. Other models mainly mimic complete global brain 
ischemia (CGBI), such as aorta/vena cava occlusion and cardiac ar-
rest. They are very good models for the human condition of cardiac 
arrest and for resuscitation. CGBI of dogs by ascending aorta occlu-
sion combined with bypass formation between the aorta and right 
atrium for 18 minutes could result in severe brain damage.45-47 The 
damage to the Purkinje cells and the CA1 pyramidal cells induced by 
CGBI consists of two phases, and the reversible change in the early 
phase is related to the decrease of the synaptic vesicles.46 Jackson 
and Dore modified this model by using aortic and inferior vena cava 
occlusion balloons, which avoids surgical invasion of the thorax.48 
Because of the great loading of lung circulation, aorta occlusion 
without vena cava occlusion is more suitable for short-term study 
on CGBI.49 Dogs and pigs, as large animals, are the common choices 
in this model.

Another common scheme to induce CGBI is ventricular fibrilla-
tion (VF) cardiac arrest. Briefly, this model is established by VF and 
follows resuscitation. VF is mainly induced by shocking the heart 
with electric stimulation. Urgent cardiopulmonary resuscitation 
may include chest compression, adrenaline injection, transthoracic 
countershock, and mechanical ventilation.50 A VF of 5-7  minutes 
in dogs is easily reversed with resuscitation. Usually, VF of 10 or 
12 minutes cannot be reversed. Therefore, a permanent brain dam-
age is inevitable.51 Significant ischemic cell changes (eosinophilic 
cytoplasm, dark-staining triangular shaped nuclei, and eosinophilic-
staining nucleolus) in the CA1 hippocampus can be observed at 7 
days of resuscitation.50 In addition to rats and dogs, other mammals 
such as pigs,52,53 sheep,54 cats,55 and rabbits56 can be chosen.

Aorta/vena cava occlusion models and cardiac arrest models, as 
common approaches to build CGBIs, can be used to investigate neu-
roprotective drugs. However, there are several disadvantages that 
limit the development of such models. The interruption of systemic 
blood supply leads not only to brain damage but also to a series of 
extracerebral complications. In addition, complicated procedures, 
low survival rates and high rates of coma can occur in these models. 
This means that intensive care should be taken postischemia during 
the first couple of days.

Blockage of cerebral blood vessels means deprivation of oxygen 
and nutrients. The brain is extremely sensitive to hypoxia and dies 
5 minutes after interruption of the oxygen supply. A special model 

of GCBI is chemical and gas hypoxia in zebrafish.57-59 Infarcts can be 
seen in the optic tectum after 10 minutes of gas hypoxia. With the 
prolongation of hypoxic treatment, the insult extends to the depth 
of the optic lobe.57 This method is easy to use and has advantages in 
high-throughput screening of stroke drugs, but it can only simulate 
the hypoxic mechanism of cerebral ischemia.

2.2 | Focal ischemic stroke

Focal ischemia, wherein blood flow is reduced in a very distinct and 
specific region of the brain, is more relevant to human stroke than 
global ischemia. Multifocal ischemia reduces brain blood flow in a 
patchy pattern.60 Focal ischemic stroke models usually show several 
common pathophysiological characteristics including energy failure, 
elevated intracellular Ca2+ level, excitotoxicity, spreading depres-
sions, generation of free radicals, destruction of the BBB, inflamma-
tion, glial cell contribution, apoptosis, and necrosis which occur after 
CBF reduction without a certain order.61 Focal cerebral ischemia 
models are established by mechanical occlusion vessels or various 
embolization approaches.9 At present, this model is mainly divided 
into five types: transcranial occlusion, endovascular filament middle 
cerebral artery occlusion (MCAo), embolic occlusion, endothelin-1 
occlusion, and photothrombosis model. Because the middle cer-
ebral artery (MCA) is the most frequently involved territory (almost 
50%),4 most models of focal ischemia involve occlusion. MCA occlu-
sion might mainly cause cortex and striatum insults, but the extent 
of infarction depends on the location and duration of occlusion and 
the amount of collateral blood of the MCA. Because of their easy 
manipulation and high survival rate, they have become the most 
commonly used models in the investigation of etiopathogenesis and 
novel treatment of ischemic strokes, especially the endovascular 
filament model.62

2.2.1 | Transcranial occlusion

Many animals, such as dogs, pigs and other large domestic animals, 
have rich collateral circulation (rete mirabile). An effective way to 
solve this problem is to block the more terminal blood vessels sup-
plying the brain, and transcranial occlusion is a reliable choice.63 
Craniectomy requires the opening of the skull and sectioning of the 
dura mater to directly block the proximal cerebral artery. There are 
two main methods to build the model, including occlusion of the 
proximal MCA alone by direct electrocoagulation, ligation, transec-
tion, and photothrombosis,64-69 and combined occlusion of the MCA 
and bilateral common carotid artery (three-vessel occlusion model, 
3-VO model) or ipsilateral common carotid artery.70-72 The tech-
niques permit permanent and transient occlusion, which depend on 
the blocking time. In the first method of modeling, the frontal cortex 
and lateral part of the neostriatum are commonly involved,64 but the 
size of lesions is strain dependent.73 Occlusion MCA and common 
carotid artery mainly result in infarction of the ipsilateral neocortex 
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in the MCA territory,74 and infarct size also varies by strain.75,76 
The first method is widely used in rodents,64-66,68 large domestic 
animals,77-80 and primates.81 In addition, the second models are 
commonly used in rats. Compared to suture-based MCA occlusion 
models, transcranial occlusion models induce smaller infarcts, lower 
mortality, and higher reproducibility.63 However, craniectomy de-
stroys the integrity of the brain environment, which not only causes 
leakage of cerebrospinal fluid but also increases the possibility of 
intracranial infection. If the transorbital approach is used, an inevi-
table side effect, one-sided blindness, will occur. This would affect 
the detection of postoperative neurological deficits. Furthermore, it 
requires a certain degree of surgical technique.

2.2.2 | Endovascular filament middle cerebral artery 
occlusion (MCAo)

The most common method of focal ischemic stroke is intraluminal 
thread occlusion of the MCA, which has been used in more than 
40% of stroke research.62 The model was first described by Koizumi 
et al in 1985 and modified by Longa et al in 1989.82 The basic tech-
nique involves introducing a filament with a round tip from the ex-
ternal carotid artery (ECA) into the internal carotid artery (ICA) and 
advancing it to block the origin of the MCA.83 On this basis, liga-
tion of the distal branch of the ICA around the intraluminal filament 
can produce a more reliable infarct model.84 The model can be used 
to establish permanent or transient focal cerebral ischemic stroke 
depending on variable reperfusion time points.75,85 As the time of 
occlusion elapses, it will lead to gradually serious brain insults. One 
hour after occlusion, the ischemic cell change is slightly scattered, 
whereas occlusion for more than 3 hours causes severe ischemic le-
sions in the anterior neocortex and the lateral part of the caudate 
putamen supplied by the MCA.86 After permanent MCA occlu-
sion, irreversible injury appears first in the caudoputamen and then 
spreads to the cortex.87 In addition to the abovementioned factors, 
transient and permanent MCA occlusion exhibits tremendous dis-
crepancies in various pathophysiological processes, such as neuronal 
apoptosis, neuroinflammation, and oxidative stress.88

Although this approach avoids the inconvenience of craniot-
omy, the size and distribution of ischemic infarcts vary considerably 
among laboratories. The selection of strains, the properties of fila-
ments, and the location of occlusion play key roles in the genera-
tion of these variations. Sprague-Dawley rats are commonly used 
for intraluminal filament occlusion, but they are not the most ap-
propriate strain. Compared to its effects on Sprague-Dawley and 
Wistar-Kyoto rats, intraluminal MCA occlusion in SHRs is associated 
with a more severe and reproducible volume of ischemic lesions.89-91 
Furthermore, not every strain is suitable for filament MCA occlu-
sion due to the discrepancy of cerebrovascular anatomy,92,93 and the 
Fischer-344 rats and SV129 mice show this very well.94,95 The types 
of sutures significantly influence the final infarct volume. Compared 
to uncoated filaments, filaments coated with silicone, poly-L-
lysine, or paraffin increase ischemic lesions and reduce interanimal 

variability.96-100 Other small changes in sutures also affect repro-
ductivity in this model, such as the diameter of the suture tip and 
the insertion distance of the suture.101,102 However, the application 
of electrocorticography (ECG), laser Doppler flowmetry (LDF), and 
magnetic resonance imaging (MRI) can effectively guide filament 
placement, reduce the variations caused by the insertion distance, 
and immediately identify subarachnoid hemorrhages and premature 
reperfusion.103-105

Except for the tremendous variations among laboratories, the 
model has other shortcomings. Almost half of all rats experienced 
ECA ischemia detected by MRI. The adverse effects of ECA isch-
emia potentially impacted the outcome of this model.106,107 Proximal 
MCA occlusion results in a massive infarct. Involvement of the hypo-
thalamus leads to spontaneous hyperthermia,108 which may worsen 
the outcomes and obscure neuroprotective effects.109 Furthermore, 
it is impossible to simulate thromboembolism under human condi-
tions by intraluminal filament occlusion. Thus, it cannot be used in 
thrombolysis research. The main weakness is the unavoidable harm 
to the endothelial lining of the ICA, which will be exacerbated by 
reperfusion. This injury could alter vascular reactivity and BBB per-
meability. However, its lack of craniotomy, ease of manipulation, 
accurate control of the ischemic duration, and the presence of a 
significant ischemic penumbra may be the main factors leading re-
searchers to choose this model. With the development of transgenic 
and knockout mice, this model has been widely used not only in rats 
but also in mice.110

2.2.3 | Embolic occlusion

Most focal ischemic strokes are caused by thromboembolism. 
Embolic occlusion models can match this specific condition better, 
which permits us to investigate the mechanism of vascular occlu-
sion. Embolic occlusion falls into two main categories: thrombo-
embolus and artificial spheres. Thromboemboli can be further 
divided into spontaneous blood clots (autogenous or allogeneic 
blood clots)111,112 and induced thrombi (thrombin-induced clots and 
photothrombosis).113-117

In 1982, Kudo et al first described thromboembolic occlusion 
in rats created by intracarotid injection of homologous blood 
clots.111 The surgical approach was essentially the same as the 
intraluminal filament occlusion model. The infarct predominantly 
involved the blood supply territories of the middle cerebral ar-
tery and anterior choroidal artery. The distribution of infarcts was 
wide and uncontrollable, including the parietotemporal cortex, 
hippocampus, thalamic striatum, and even a small proportion of 
the contralateral hemisphere.111 In particular, in line with human 
ischemic stroke, except for the time of occlusion, the time of 
spontaneous recirculation of the thromboembolic model is also 
uncertain.118 Late recanalization occurs in most patients with 
ischemic stroke, and early reperfusion may lead to limited infarcts 
in the transient ischemic attack. In the experimental situation, 
premature recirculation diminished the difference in lesion extent 
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between thrombolytic-treated animals and controls. Unreliable 
infarctions and variable neurologic deficits can be modified by 
precise occlusion MCA utilizing microcatheter and LDF.119,120 The 
main application of the thromboembolic model is to investigate 
thrombolytic processes. However, the response of the throm-
boembolic model to rt-PA is different and highly depends on the 
composition and volume of emboli. The efficiency of thrombo-
lytic therapy is related to the number of red cells and inversely 
related to the volume, fibrin content, and density of embolic blood 
clots.121 Thrombin-induced clots are classified as elastic and 
fibrin-rich, and spontaneously forming clots are classified as plas-
tic. Compared with thrombin-induced clots, spontaneously form-
ing clots have a faster response to rt-PA.114 In addition, autologous 
blood clots of experimental animals are resistant to human rt-PA. 
Under comparison conditions, human rt-PA can dissolve over 95% 
of human plasma clots in vitro, but 80% of primate plasma clots, 
60% of cat and rabbit plasma clots, 30% of dog plasma clots, and 
only 10% of rat plasma clots.122 Therefore, most thrombolysis 
studies in rats use 10  mg/kg rt-PA instead of 0.9  mg/kg, which 
is the common clinical dose in ischemic stroke patients. The cu-
mulative reperfusion flow induced by 0.9  mg/kg rt-PA was only 
one-half that induced by 10 mg/kg rt-PA. In addition, 10 mg/kg 
rt-PA was more effective than 0.9 kg/ml rt-PA in reducing the de-
gree of brain edema. In addition, rats treated with 0.9 and 10 mg/
kg rt-PA exhibited differences in mean reperfusion times of 40 
and 25 minutes but showed similar reperfusion slopes. These data 
show that the differences of 0.9 and 10 mg/kg rt-PA result from 
a slower effect of 0.9 mg/kg rt-PA at starting reperfusion due to 
the relatively low sensitivity of the rat's fibrinolytic system to rt-
PA.123 Thromboembolic models are widely applied not only in rats 
but also in domestic animals such as rabbits and dogs.124-126

In addition to thromboembolus, an embolic occlusion model can 
be induced by directly injecting artificial microspheres (15-50 µm) or 
artificial macrospheres (300-400 µm diameter) into the CCA, ICA, or 
MCA, most commonly not only in rats,127,128 but also in large animals 
and primates.129-131 Artificial microsphere embolization is character-
ized by widespread infarcts in the parietotemporal cortex, corpus 
callosum, hippocampus, thalamus, and lenticular nucleus of the em-
bolized hemisphere.127 The development of infarct lesions can last 
for 24-48 hours, which is significantly slower than that of the intralu-
minal filament model.132 Primarily developed to mimic transient isch-
emic attacks and cerebral microcirculatory disorders,133,134 it can 
also be used to induce graded infarcts depending on the number of 
emboli.130 Microsphere embolization produces relatively variable in-
farcts, which requires more animals to be used to test neuroprotec-
tive agents for a statistically significant result. Unlike microsphere 
embolization, macrosphere embolization is more reproducible and 
reliable. The macrosphere embolization model provides focal cere-
bral infarcts similar to intraluminal suture occlusion but avoids hy-
pothalamic injury and hyperthermia.128 However, the model is only 
suitable for producing a permanent model but temporary occlusion 
and cannot be used for thrombolysis research as can the intraluminal 
thread model.

2.2.4 | Endothelin-1 occlusion

Endothelin-1 (ET-1), a 21-amino acid peptide with potent vasocon-
strictor properties, was first described in 1987.135 Local application 
of ET-1 to vessels can cause a significant reduction in cerebral blood 
flow, which is severe enough to induce ischemic injury.136 Directly 
administrating ET-1 to the surgically exposed MCA markedly re-
duces CBF of the caudate nucleus, the genu of the corpus callosum, 
and the cortex lying wholly within the territory of the MCA.137,138 
Similar infarct volumes can be achieved by injecting ET-1 into the 
superficial cortex of conscious rats via a stereotaxic guide cannula 
adjacent to the MCA.139,140 In addition to the above applications, 
stereotactic injection of ET-1 into the cortex can be used to induce 
infarction in other specific brain regions, such as internal capsule is-
chemia and frontoparietal cortex infarction.141-143 The application of 
ET-1 can produce a permanent or transient cerebral infarction, which 
depends on the dosage of ET-1 to a large extent. The reduction of 
CBF can be completely reversed within 4 hours for the lower doses 
of ET-1 but only partly reversed at 25 μL of 10−5 mol/L. Reversible 
occlusion with ET-1 incorporates initial profound ischemia and the 
second stage of increasing reperfusion lesion, which provides evi-
dence of the reperfusion injury.140 It should be emphasized that 
the effect of ET-1 on vasoconstriction can also be affected by an-
esthetics. Compared with conscious rats, anaesthetized rats need 
approximately four times the dose of ET-1 to produce a similar in-
farct volume.144 This model is widely used in rats due to its advan-
tages of easy manipulation and flexible selection of infarct regions. 
However, it seems that mice are not suitable for this method.145 The 
most limited application of this model is that ET-1 not only plays a 
role in local control of cerebral vascular tone but also plays a part 
in neural transmission/modulation.146,147 Furthermore, endothelin-
converting enzymes and endothelin receptor B are expressed in 
neurons and astrocytes and regulated by nerve injury.148,149 Thus, 
exogenous ET-1 may make the pathogenesis of ischemic stroke more 
complicated and affect the evaluation of neuroprotective drugs.

2.2.5 | Photothrombosis model

In 1985, the photothrombotic model was introduced by Waston 
et al to produce a more reproducible cortical infarct without crani-
otomy in rats.150 The process of carrying out this model is to inject 
photosensitive dye (rose bengal, erythrosin B) into circulation and 
then to irradiate the intact cranium of a specific area with a certain 
range of wavelength laser beams to induce focal cerebral ischemia. 
The main mechanism is that dye-sensitized photooxygenation leads 
to endothelial damage and then platelet adhesion and aggregation 
to form thrombi to block cerebral vessels. In addition, the rat skull 
is sufficiently translucent to transmit the effective photochemi-
cal intensity to the internal brain regions, which makes craniotomy 
unnecessary.150

In recent decades, the application of this model has been con-
stantly developed and modified to achieve greater specificity. In 
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addition to photochemical embolization of cortical microvascula-
ture to cause local cortex infarction, the laser beam can directly 
irradiate a certain vessel to produce cerebral ischemia in its supply 
regions. Photochemically induced nonocclusive common carotid 
artery thrombosis is a special thromboembolic model of forming a 
unilateral carotid thrombus with subsequent platelet embolization 
in the downstream circulation, which produces consistent and re-
versible neurobehavioral deficits.115 Brain injury varies between 
rats, but the majority of infarcts are observed in the ipsilateral cor-
tex.116,117 Except for CCA, photothrombosis is commonly used in 
MCA occlusion with or without craniotomy.151,152 The infarct vol-
ume of MCA photothrombosis varies and is strain dependent.153 
It is not possible to determine the exact time of recanalization. 
However, based on the mechanism of vasorelaxation induced by 
a pulsed UV laser,154 photochemical MCA occlusion and reperfu-
sion can be controlled by utilizing a 2-laser system.155,156 Classic 
photothrombotic stroke has poor responses to rt-PA-mediated 
thrombolysis, which may be due to the platelet-rich and fibrin-
poor composition of blood clots. The modified photothrombosis 
is rose bengal plus thrombin, which can produce mixed platelet:-
fibrin clots and enhance the sensitivity to rt-PA treatment.157 In 
addition, it has been proven that some details of the procedure 
can be refined, such as the application route of the photosensitive 
dye, illumination, and stereotactic parameters.158 Using noncoher-
ent visible light instead of a laser beam also leads to ischemic brain 
damage, but at the same time, it reduces laser-mediated thermal 
tissue damage and the cost of the procedure.159

Based on its advantages of reproducibility, easy manipulation, 
minimal trauma, and flexible control of infarct size and location, the 
model is widely used in rats and mice.160 Furthermore, there is still 
a lack of a suitable model for poststroke complications, and photo-
thrombotic stroke in rats is supposed to be suitable for investigating 
the mechanisms of poststroke epileptogenesis.161 Most importantly, 
it does not affect long-term survival. However, the biggest drawback 
of this model is the lack of a penumbra when cortical infarction is 
induced by direct irradiation of the skull, which is not consistent with 
clinical ischemic stroke.

3  | INTR ACEREBR AL HEMORRHAGE

Compared with ischemic strokes, hemorrhagic strokes are less com-
monly occurred, but are more likely to be fatal. The mortality rate 
of hemorrhagic strokes (67.9%) was higher than that of ischemic 
strokes (57.4%). Hemorrhagic strokes include intracerebral hemor-
rhage (ICH) and subarachnoid hemorrhage (SAH). Accounting for 
approximately 10% of all strokes, ICH strokes are the most com-
mon hemorrhagic strokes.162 Nontraumatic ICH strokes occur as 
a result of the spontaneous rupture of small vessels, leading to 
bleeding within the brain. Injury mechanisms in acute ICH include 
two processes, primary brain injury and second brain injury.163 
Mass effect and mechanical disruption of hematoma causes im-
mediate primary brain injury due to increased intracranial pressure 

and mechanical compression of local structures.163 Edema, inflam-
mation, and clot toxicity are the major causes of secondary brain 
injury.163 ICH triggers a series of pathophysiological processes, 
such as early hematoma enlargement, coagulation cascade ac-
tivation and clot retraction, red blood cells lysis and infusion of 
hemoglobin, brain edema, necrosis and apoptosis, CBF reduction, 
and inflammation.164 These complicated pathophysiological events 
lead to poor outcome and high mortality. The median case fatality 
of ICH is 40.4% in the first month and 54% in the first year—figures 
that have not declined over time.165 Little progress has been made 
in the clinical treatment of ICH.166 Thus, developing a preclinical 
model of ICH is quite important, which extends our understanding 
of the pathophysiology of ICH-induced brain injury and effectively 
promotes the speed of screening new therapeutic approaches. 
Two models are commonly used to mimic clinical ICH in rodents 
and large animals. One is the donor/autologous whole blood injec-
tion model. Another is a collagenase-induced hemorrhage model. 
Both models’ strengths and weaknesses allow them to mimic only 
specific aspects within ICH pathophysiology.

3.1 | Whole blood injection model

In 1982, the blood injection model was first described by Ropper 
and Zervas, who promptly injected donor arterial blood into the cau-
date nucleus of rats to establish experimental ICH.167 To produce 
ICH induced at arterial pressure in rats, the model was modified 
by connecting the cannula that was stereotactically inserted in the 
caudate nucleus or lateral ventricle to the femoral artery.168,169 The 
main drawback of this approach is the uncontrollable hematoma size 
due to the fluctuation of blood pressure. Later, the model was fur-
ther developed by Masuda et al, who stereotaxically injected 0.2 mL 
of autologous blood (drawn from a femoral vein) into the caudate 
nucleus.170 To improve the reproducibility of the model, Yang et al, 
using a micropump connected to a stereotactic syringe, injected au-
tologous femoral artery blood into the caudate nucleus constantly 
and slowly.171 However, the above models inevitably reflux the 
blood along the needle track and uncontrollably extend the hema-
toma. A double blood injection method invented by Deinsberger 
et al in 1996 could solve this problem well.172 First, a small volume 
of autologous blood is slowly injected into the caudate nucleus and 
then waiting for a few minutes to form a clot. Subsequently, the re-
maining blood is injected into the caudate nucleus again to produce 
a real hematoma.172 Although double blood injection leads to the 
difficulty of second blood injection, it could minimize the possibility 
of blood reflux and significantly improve the reproducibility of the 
model. To date, the double blood injection model is widely used not 
only in rats but also in other animals, such as mice,173,174 rabbits,175 
and pigs.176 The whole blood injection model best mimics the hema-
toma mass effect and blood toxicity, but the model does not involve 
the rupturing of cerebral vessels. Thus, the blood injection model is 
not suitable for studying the bleeding mechanism and hemostasis 
treatment.
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3.2 | Collagenase model

Collagenase is a metalloproteinase that degrades collagen IV in 
the basal lamina of the blood-brain barrier and eventually causes 
microvascular rupture and leakage surrounding the needle-
puncture site. In 1990, the collagenase-induced ICH model was 
first described by Rosenberg et al.177 The basic step of this model 
is stereotactic injection of bacterial collagenase into brain regions, 
leading to specific cerebral parenchyma or intraventricular hem-
orrhage.177 The model best mimics bleeding, and the manipulation 
is easy. Furthermore, it is easy to control the size of the hema-
toma by adjusting the amount of collagenase. Thus, the model is 
commonly used in rodents and large animals.178-181 However, this 
model is still unable to totally simulate the clinical incidence of 
ICH, especially in the following respects. Bleeding in the model 
is slow and diffuse due to rupture of small vessels and capillary 
beds around the injection site. In reality, ICH is mainly the result 
of the rupture of major brain vessels, and the bleeding caused by 
it is also very urgent, which is not consistent with the situation 
shown in this model. More importantly, bacterial collagenase ex-
acerbates the inflammatory response, so it is not suitable for in-
vestigating the immune reaction of ICH.182,183

4  | CONCLUSION

At present, there are limited treatment strategies for both is-
chemic stroke and hemorrhagic stroke to improve the survival 
rate and prognosis of patients. These are undoubtedly due to the 
low translational rate of preclinical studies. To speed up the de-
velopment of effective agents, the best research scheme should 
be determined according to the advantages and disadvantages of 
various animal models. Moreover, although the technologies of 
the models have been continuously generated in recent decades 
(Table  3), the current stroke models still need to be further im-
proved. An excellent stroke model should have the following ad-
vantages: (1) simple to ensure that the repeatability of the model 
will not be affected by the technical difficulty; (2) suitable for a 
variety of small and large animals; (3) controllable harmful degree 
of stroke; (4) can simultaneously simulate common clinical com-
plications, such as hypertension, diabetes, and hyperlipidemia; 
and (5) sensitive to the existing clinical treatment, for example, 
ischemic stroke models should be sensitive to rt-PA. In addition to 
constantly improving animal models to better mimic clinical onset, 
the research results based on different models need to be repeat-
edly verified by series of experiments. For example, after initial 
evaluations in young, healthy animals, further studies should be 
carried on aged animals with comorbidities such as hyperten-
sion. Furthermore, considering that the physiological functions of 
non-human primates and other large animals are more similar to 
those of human beings, we should gradually verify the therapeutic 
effect on these animals after verifying the treatment efficacy in 
various models of small animals.11St
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