Table 2.
Quantitative comparison among deep learning, various handcrafted and ensemble feature extraction methods (Classifier wise recognition accuracy (in %))
Features | Gaussian Naïve Bayes | Decision tree | Random forest | XGB Classifier |
---|---|---|---|---|
F1 | 55.37 | 54.49 | 57.47 | 63.13 |
F1 + F2 | 67.65 | 68.51 | 70.31 | 73.02 |
F1 + F3 | 64.69 | 63.52 | 66.79 | 71.59 |
F1 + F4 | 71.84 | 72.62 | 75.08 | 78.29 |
F1 + F5 | 70.37 | 70.93 | 72.88 | 76.64 |
F1 + F2 + F3 | 75.04 | 77.29 | 76.63 | 80.38 |
F1 + F2 + F4 | 80.71 | 80.93 | 82.24 | 83.74 |
F1 + F2 + F5 | 78.01 | 78.07 | 79.48 | 82.76 |
F1 + F3 + F4 | 78.46 | 80.58 | 81.01 | 84.16 |
F1 + F3 + F5 | 75.03 | 77.05 | 77.31 | 83.00 |
F1 + F4 + F5 | 81.77 | 83.68 | 84.88 | 84.55 |
F1 + F2 + F3 + F4 | 86.32 | 88.47 | 89.65 | 88.86 |
F1 + F2 + F3 + F5 | 82.69 | 83.90 | 84.00 | 87.87 |
F1 + F2 + F4 + F5 | 89.16 | 89.29 | 90.23 | 90.35 |
F1 + F3 + F4 + F5 | 85.63 | 88.33 | 89.42 | 88.84 |
F1 + F2 + F3 + F4 + F5 | 92.05 | 92.67 | 93.73 | 93.02 |
Bold face of text depicting the maximum accuracy achieved in each table