Skip to main content
. 2021 Sep 17;14(4):3609–3620. doi: 10.1007/s12652-021-03488-z

Table 2.

Quantitative comparison among deep learning, various handcrafted and ensemble feature extraction methods (Classifier wise recognition accuracy (in %))

Features Gaussian Naïve Bayes Decision tree Random forest XGB Classifier
F1 55.37 54.49 57.47 63.13
F1 + F2 67.65 68.51 70.31 73.02
F1 + F3 64.69 63.52 66.79 71.59
F1 + F4 71.84 72.62 75.08 78.29
F1 + F5 70.37 70.93 72.88 76.64
F1 + F2 + F3 75.04 77.29 76.63 80.38
F1 + F2 + F4 80.71 80.93 82.24 83.74
F1 + F2 + F5 78.01 78.07 79.48 82.76
F1 + F3 + F4 78.46 80.58 81.01 84.16
F1 + F3 + F5 75.03 77.05 77.31 83.00
F1 + F4 + F5 81.77 83.68 84.88 84.55
F1 + F2 + F3 + F4 86.32 88.47 89.65 88.86
F1 + F2 + F3 + F5 82.69 83.90 84.00 87.87
F1 + F2 + F4 + F5 89.16 89.29 90.23 90.35
F1 + F3 + F4 + F5 85.63 88.33 89.42 88.84
F1 + F2 + F3 + F4 + F5 92.05 92.67 93.73 93.02

Bold face of text depicting the maximum accuracy achieved in each table