Table 3.
Quantitative comparison among deep learning, various handcrafted and ensemble feature extraction methods (Classifier wise precision (in %))
Features | Gaussian Naïve Bayes | Decision Tree | Random Forest | XGB Classifier |
---|---|---|---|---|
F1 | 53.47 | 53.67 | 57.51 | 61.62 |
F1 + F2 | 66.13 | 67.86 | 68.96 | 71.40 |
F1 + F3 | 63.15 | 62.91 | 64.85 | 69.63 |
F1 + F4 | 70.68 | 72.04 | 73.35 | 77.09 |
F1 + F5 | 68.75 | 70.69 | 72.28 | 75.59 |
F1 + F2 + F3 | 74.46 | 76.64 | 76.63 | 79.70 |
F1 + F2 + F4 | 80.37 | 80.97 | 81.78 | 83.58 |
F1 + F2 + F5 | 77.05 | 77.56 | 78.18 | 82.22 |
F1 + F3 + F4 | 77.56 | 79.70 | 79.93 | 83.63 |
F1 + F3 + F5 | 73.85 | 76.54 | 76.80 | 82.57 |
F1 + F4 + F5 | 80.92 | 83.58 | 84.17 | 83.61 |
F1 + F2 + F3 + F4 | 86.16 | 88.63 | 90.13 | 88.99 |
F1 + F2 + F3 + F5 | 81.89 | 83.36 | 83.24 | 87.96 |
F1 + F2 + F4 + F5 | 89.42 | 89.50 | 90.38 | 90.47 |
F1 + F3 + F4 + F5 | 85.17 | 87.86 | 89.16 | 88.77 |
F1 + F2 + F3 + F4 + F5 | 91.90 | 92.66 | 93.70 | 93.10 |
Bold face of text depicting the maximum accuracy achieved in each table