Skip to main content
. 2021 Sep 17;14(4):3609–3620. doi: 10.1007/s12652-021-03488-z

Table 3.

Quantitative comparison among deep learning, various handcrafted and ensemble feature extraction methods (Classifier wise precision (in %))

Features Gaussian Naïve Bayes Decision Tree Random Forest XGB Classifier
F1 53.47 53.67 57.51 61.62
F1 + F2 66.13 67.86 68.96 71.40
F1 + F3 63.15 62.91 64.85 69.63
F1 + F4 70.68 72.04 73.35 77.09
F1 + F5 68.75 70.69 72.28 75.59
F1 + F2 + F3 74.46 76.64 76.63 79.70
F1 + F2 + F4 80.37 80.97 81.78 83.58
F1 + F2 + F5 77.05 77.56 78.18 82.22
F1 + F3 + F4 77.56 79.70 79.93 83.63
F1 + F3 + F5 73.85 76.54 76.80 82.57
F1 + F4 + F5 80.92 83.58 84.17 83.61
F1 + F2 + F3 + F4 86.16 88.63 90.13 88.99
F1 + F2 + F3 + F5 81.89 83.36 83.24 87.96
F1 + F2 + F4 + F5 89.42 89.50 90.38 90.47
F1 + F3 + F4 + F5 85.17 87.86 89.16 88.77
F1 + F2 + F3 + F4 + F5 91.90 92.66 93.70 93.10

Bold face of text depicting the maximum accuracy achieved in each table