Skip to main content
. 2021 Sep 17;14(4):3609–3620. doi: 10.1007/s12652-021-03488-z

Table 8.

Performance evaluation on Caltech-101 dataset

Author Year Features Technique used Number of classes Accuracy (%) Time (min)
Mahmood et al 2017 ResNet-152 ResNet features with PCA-SVM classifier 101 94.7
Rashid et al 2018 VGG16, AlexNet and SIFT Hybrid of Deep CNN and SIFT Features along with entropy-controlled selection method and ensemble boosted tree 101 89.7 5.04
Singh et al 2019 Color Histogram (CH), Zernike Moments (ZMs), Gradient ZMs (GZMs), Multi-channel ZMs. (MZMs), Rotation Quaternion ZMs (RQZMs), Fusion of these features with multi kernel learning (MKL) approach 10 84.60 0.08
Our system 2020 SIFT, SURF, ORB, Shi Tomasi Fusion of these features with eXtreme Gradient Boosting Classifier 101 89.7 6.26
Proposed system 2020 VGG19, SIFT, SURF, ORB and Shi Tomasi corner detector Fusion of these features with Random Forest Classifier 101 93.73 0.39