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Abstract

Autologous chimeric antigen receptor (CAR) T-cell therapies targeting CD19 have high efficacy 

in large B-cell lymphomas (LBCL), but long-term remissions are observed in less than half 

the patients and treatment-associated adverse events such as immune effector cell-associated 

neurotoxicity syndrome (ICANS) are a clinical challenge. We performed single-cell RNA­

sequencing with capture-based cell identification on autologous axicabtagene ciloleucel (axi-cel) 

anti-CD19 CAR T-cell infusion products to identify transcriptomic features associated with 

efficacy and toxicity in 24 patients with LBCL. Patients that achieved a complete response by 

PET/CT at their 3-month follow-up had 3-fold higher frequencies of CD8 T-cells expressing 

memory signatures compared to patients with partial response or progressive disease. Molecular 

response measured by cell-free DNA (cfDNA) sequencing at day 7 post-infusion was significantly 

associated with clinical response (p=0.008), and a signature of CD8 T-cell exhaustion was 

associated (q=2.8×10−149) with a poor molecular response. Furthermore, a rare cell population 
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with monocyte-like transcriptional features was associated (p=0.0002) with high-grade ICANS. 

Our results suggest that heterogeneity in the cellular and molecular features of CAR T-cell 

infusion products contribute to variation in efficacy and toxicity after axi-cel therapy in LBCL, and 

that day 7 molecular response may serve as an early predictor of CAR T-cell efficacy.

INTRODUCTION

LBCL patients who remain in complete (CR) or partial response (PR) by imaging at 

3-months following autologous anti-CD19 CAR T-cell therapy have a significantly better 

outcome than those with stable (SD) or progressive disease (PD) prior to this point1,2. This 

is likely due to a combination of factors, such as the in vivo expansion and activity of CAR 

T-cells following infusion and the development of tumor-intrinsic mechanisms of escape or 

resistance3–6. Cellular features associated with response have been explored in the context 

of B-cell leukemia and identified phenotypes within the apheresis product7,8 and CAR T-cell 

infusion product9,10 as being important determinants. However, this has not been thoroughly 

investigated in the context of LBCL11 and is yet to be systematically examined using single 

cell transcriptomics.

Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity 

syndrome (ICANS) are common adverse events associated with CAR T-cell therapy12,13. 

In adults with lymphoma treated with axi-cel, CRS is mostly low-grade, but ICANS is 

more commonly high-grade, with grade 3 or 4 (ICANSgr3–4) occurring in 30–45% of 

patients12,13. Although reversible in most cases, ICANS prolongs hospitalization, requires 

intensive care in a subset of patients, delays recovery, and increases the cost of care. Less 

commonly, seizures and cerebral edema have been noted with ICANS and have been fatal 

in some patients. While the pathophysiology of CRS has been studied extensively and 

appropriate management strategies with anti-IL-6 therapy have been developed12,14–16, the 

pathophysiology of ICANS and its optimal management are less clear. The development 

of ICANS is associated with a high level of inflammatory cytokines within circulation 

and in the cerebrospinal fluid17–19, with monocyte-derived IL-1 being recently highlighted 

as a key driver of neurotoxicity20. Increased permeability of the blood-brain-barrier may 

allow these cytokines and immune cells to enter the central nervous system and contribute 

to neurological inflammation18,19. However, the features of CAR T-cells that drive this 

hyper-inflammatory state in some patients and not others are currently unknown.

We hypothesized that the heterogeneity of autologous CAR T-cell infusion products may 

contribute to the inter-patient variability in efficacy and toxicity, and investigated this by 

performing single-cell RNA-sequencing (scRNA-seq) of standard-of-care axi-cel infusion 

products administered to LBCL patients. We thereby identified features associated with 

clinical response, molecular response, and the development of ICANS grade 3–4. These 

data provide new insights into the cellular and molecular basis for inter-patient variability in 

CAR T-cell efficacy and toxicity.
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RESULTS

Gene expression signatures of CAR T-cell infusion products determined by scRNA-seq 
and CapID+.

An overview of our approach is shown in Figure 1. We performed whole-transcriptome 

scRNA-seq of 137,326 residual cells obtained from washing the standard-of-care axi-cel 

product bags following infusion of the CAR T-cells into 24 LBCL patients (16 DLBCL, 6 

tFL, 2 PMBCL; Supplementary Table 1). Each sample was run fresh for library preparation, 

thus each sample is its own batch and ‘batch effect’ could not be formally assessed. 

However, clusters were defined by genes associated with cell states (Extended Data 1), 

cells from all samples were interspersed across multiple clusters and all clusters contained 

cells from multiple samples (Figure 2a–b, Supplementary Figure 1).

Cell types and functional states were defined according to previously described marker 

genes21. To improve this classification, we employed hybrid-capture sequencing of marker 

genes and the CAR construct sequence from scRNA-seq libraries, and refined CD4 and 

CD8 classification by shared nearest neighbor (SNN) clustering (CapID+; Supplementary 

Table 2, Methods). This approach does not rescue transcript dropout that results from failure 

of an mRNA molecule to be reverse transcribed in the GEMs (gel bead in emulsion). 

Rather, CapID increases the sequencing saturation of informative genes (Extended Data 2), 

thereby increasing the sensitivity of detection and signal-to-noise ratio for these transcripts 

within a given library (Figure 2c). This rescued cell identities (Figure 2d) and led to a 

more significant correlation with flow cytometry-based measurement of cell frequencies 

(Extended Data 3). Our CapID+ methodology therefore allows for the accurate assignment 

of CAR status and cellular gene expression. CAR expression was interspersed across the 

clusters (Figure 2d) and was associated with few significant differences in gene expression 

compared to non-transformed T-cells (Extended Data 4). We therefore did not separate 

CAR-positive and CAR-negative cells for subsequent analyses.

Cell signatures associated with clinical response

At the 3-month follow-up by PET/CT, a clinically-relevant surrogate time point to predict 

long-term durability of response after axi-cel therapy in LBCL1, 13 patients had progressive 

disease (PD, 50%), 1 was in partial response (PR, 4%), 9 were in complete response (CR, 

38%) and 1 was not evaluable (NE). We compared the representation of cell types and 

functional states between the infusion products from patients in CR and those in PR/PD. 

This revealed a significant enrichment of exhausted CD8 and CD4 T-cells within the 

infusion products of patients with PR/PD, and a significant enrichment of memory CD8 

T-cells within the infusion products of patients who achieved CR (Figure 3a).

We then identified differentially expressed genes (DEGs) between CD8 T-cells from CR 

patients compared to PR/PD patients (Supplementary Table 3) followed by unsupervised 

hierarchical clustering using the DEGs (Figure 3b). Four cell clusters were identified 

with cells that showed differential expression of the genes associated with CR or PR/PD, 

respectively. Each cluster contains cells from all patients, but the relative proportions of cells 

from patients with CR significantly differ across the clusters (P<2.2×10−16). Cells within the 

Deng et al. Page 3

Nat Med. Author manuscript; available in PMC 2021 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C1 cluster express the highest levels of genes associated with PR/PD, the lowest level of 

genes associated with CR, had the lowest proportion of cells from CR patients (19%), and 

are characterized by high expression of genes encoding lymphocyte activating 3 (LAG3)22, 

the exhaustion-associated transcription factors basic leucine zipper ATF-like transcription 

factor (BATF)23,24 and inhibitor of DNA binding 2 (ID2)25,26, interferon gamma (IFNG), 

effector molecules (GZMA, GZMB, GNLY), and major histocompatibility class II (MHCII) 

molecules. These genes are associated with activation and exhaustion of CD8 T-cells, in 

line with our observed enrichment of exhausted CD8 T-cells in PR/PD patients (Figure 

3a). We therefore evaluated the expression of a previously defined CD8 T-cell dysfunction 

signature27 by single cell gene set variation analysis (scGSVA). This signature was highest 

in the C1 cluster, with progressively less expression in the C2 and C3 clusters and the 

lowest expression in the C4 cluster (Figure 3b–c). The features associated with activation 

and exhaustion in cells predominantly originating from PR/PD patients are therefore linked 

with a profile of CD8 T-cell dysfunction. Cells within the C2 and C3 clusters have variable 

expression of genes that were associated with CR or PR/PD, respectively, and a mixed 

representation of cells from CR and PR/PD patients. Cells within the C4 cluster had 

the lowest expression of genes associated with PR/PD, the highest expression of genes 

associated with CR, and had the highest proportion of cells originating from patients 

who achieved a CR (65%). These cells were characterized by high expression of genes 

associated with a central memory phenotype, such as CCR7, CD27 and SELL (Figure 3b 

and Supplementary Figure 2a), but not markers associated with a CD8 stem cell memory 

phenotype (Supplementary Figure 2b). This too was in line with the enrichment of CD8 

memory T-cells in products from CR patients when comparing the frequencies of functional 

states (Figure 3a). Specifically, CD8 T-cells from the infusion products of patients who 

achieved CR had a ~3-fold higher fraction of CCR7+CD27+ double-positive CD8 T-cells 

compared to cells from patients with PR/PD (Figure 3d). The frequency of these cells 

were also low in patients with high stage disease (III/IV) and high international prognostic 

index (IPI 3–4), suggesting that clinical factors may influence the transcriptional state of 

CAR T-cells (Supplementary Figure 3a). As CCR7 and CD27 can be expressed on naïve 

T cells, we used scGSVA to measure the expression of a previously defined CD8 memory 

signature21. Cells within the C4 cluster had the highest expression of the CD8 memory 

signature, with progressively lower levels of expression in the C3 and C2 clusters and the 

lowest expression in the C1 cluster (Figure 3c). Our observations from comparing functional 

states and DEGs were further corroborated by scGSVA analysis of the association between 

unselected gene sets and patient outcome, which confirmed the high expression of activation 

and exhaustion signatures such as PD-1 and IFN-γ signaling in CD8 T-cells from patients 

with PR/PD, and the high expression of immune memory signatures28 in CD8 T-cells from 

patients who achieved a CR (Figure 3e, Supplementary Figure 4, Supplementary Table 4).

DEG analysis and unsupervised clustering of CD4 T-cells revealed some similarities with 

the profiles of CD8 T-cells, such as higher expression of CCL5, GNLY and MHCII 

genes in clusters with high frequencies of cells from PR/PD patients (C1 and C2) and 

low frequencies of cells from CR patients (C3–5) (Figure 3f). Cluster C2 consisted 

only of cells that originated from the infusion products of patients with PR/PD and was 

characterized by a high expression of TIGIT29 (Supplementary Figure 5). However, in CD4 
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T-cells there was was higher expression of proliferation-associated genes and cycling cells 

within clusters with high frequencies of cells from patients who achieved CR (Figure 3f; 

Supplementary Table 5). This was confirmed by scGSVA analysis, showing an enrichment 

of proliferation-associated gene sets in CD4 T-cells from patients who achieved CR (Figure 

3e, Supplementary Figure 4, Supplementary Table 6).

These data highlight important transcriptional signatures of cells within CAR T-cell infusion 

products that are associated with clinical efficacy. The mixture of cells from CR and PR/PD 

patients across multiple clusters is consistent with each infusion product containing cells of 

both desirable (signatures associated with CR) and undesirable (signatures associated with 

PR/PD) states, and the relative proportion of these states within each CAR T-cell infusion 

product being linked with efficacy.

A CD8 T-cell exhaustion signature associated with failure to achieve an early molecular 
response.

Antigen-driven CAR T-cell expansion reaches its peak approximately 1 week after axi-cel 

infusion4. We therefore hypothesized that assessment of response dynamics within the first 

week of treatment may provide insights into CAR T-cell clinical activity. We investigated 

this by interrogating patterns of early molecular response determined by plasma-derived 

cell-free DNA (cfDNA) sequencing with a previously-described hybrid-capture panel30 

(Methods). Somatic mutations identified at infusion (day 0–1) were used to measure the 

relative changes in variant allele fractions (VAF) at 1 week (n=22), 2 weeks (n=18) and 

1 month (n=16) post infusion. Of 22 patients with available samples, 17 had ≥3 somatic 

mutations detected at day 0–1 for disease monitoring (Supplementary Table 7). Neither the 

number of calibrated mutations, nor the VAF at day 0 were associated with subsequent 

response (Extended Data 5). VAF declined within the first week of treatment for 16/17 

patients, and the magnitude of decline was significantly associated with ongoing CR by 

PET/CT at 3 months (Two-sided Wilcoxon rank-sum P=0.008; Figure 4a–b). We applied 

a threshold of 5-fold reduction in VAF to dichotomize patients evaluable for response. Of 

the 8 patients with >5-fold molecular response (>5FMR), 6 (75%) had ongoing CR at 3 

months. Two patients (ac17 and ac21) with >5FMR at day 7 progressed by the time of 

their 3 month PET/CT, consistent with the ~16% of patients in the ZUMA-1 pivotal study 

of axi-cel that had a CR at their 1 month evaluation but progressed prior to their 3 month 

follow-up4. Notably, these patients had an observable increase in their VAFs at day 14 or 

day 30 (Extended Data 5). Of the 8 evaluable patients with <5-fold molecular response 

(<5FMR), none were in CR at their 3-month follow-up (0%). Patients with <5FMR also 

showed a trend towards reduced CAR T-cell expansion, as measured by qPCR analysis of 

the CAR transcript from cfDNA (Supplementary Figure 6). The association between early 

molecular response (EMR) and long-term outcome following CAR T-cell therapy requires 

prospective validation in a large independent cohort, but supported its use as a relevant 

metric to evaluate using scRNA-seq.

Comparison of the cellular functional states within products from patients with >5FMR 

versus <5FMR revealed a striking association between transcriptional profiles of T-cell 

exhaustion and a poor EMR (Figure 5a). This was particularly significant within the CD8 
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T-cell compartment. All of the co-inhibitory receptor genes used to classify exhausted CD8 

T-cells were expressed in a higher fraction of CD8 T-cells from patients with <5FMR 

compared to >5FMR (Figure 5b; q-value<0.01). Of these, LAG3 and TIM3 were the 

most abundantly expressed, and cells co-expressing both LAG3 and TIM3 were highly 

discriminatory between the <5FMR and >5FMR groups (Figure 5b; q-value<2.38×10−170). 

Specifically, 36.8% of CD8 T-cells from patients with <5FMR were LAG3+TIM3+, 

compared to 22.7% from patients with >5FMR (Figure 5c). Frequencies of LAG3+TIM3+ 

cells were only moderately higher in infusion products of patients with PR/PD compared 

to patients with CR determined by their 3 month PET/CT (Supplementary Figure 7), and 

not significantly different between memory CD8 T-cells compared to other CD8 T-cells 

(Supplementary Figure 7). The frequency of LAG3+TIM3+ CD8 T-cells were also higher in 

patients with high IPI (3–4) and lower in patients that had received an autologous stem cell 

transplantation prior to their CAR T-cell therapy (Supplementary Figure 3). Patients with 

poor responses had moderately reduced TCR clonotypic diversity (Extended Data 6) but 

higher rates of the CD8 T-cell exhaustion signature were not due to the presence of highly 

expanded and exhausted clonotypes. Rather, each clonotype from patients with <5FMR had 

a significantly higher fraction of LAG3+TIM3+ cells compared to patients with >5FMR 

(Figure 5d, P=4.8×10−9), indicating that T-cells with the exhaustion signature are polyclonal. 

Further studies to examine the cytotoxicity and proliferative capacity of LAG3+TIM3+ CD8 

T-cells are required to validate that this profile is associated with a loss of effector function 

and/or in vivo expansion of CD8 CAR T-cells, respectively.

We next investigated whether the LAG3+TIM3+ CD8 T-cell signature is important in the 

setting of CAR T-cell failure. Using CapID+ analysis of fresh core needle biopsies of 9 

LBCL tumors, we compared the frequencies of tumor-infiltrating LAG3+TIM3+ CD8 T-cells 

between 5 tumors from patients that had never received CAR T-cell therapy (CAR T naïve) 

and 4 patients progressing following axi-cel with PR/PD as best response (Post-CAR T; 

Figure 5e; Supplementary Table 8). There was no significant difference in the number of 

preceding lines of therapy between these cohorts. This showed that 34% (1,402/4,114) 

of CD8 T-cells within tumors progressing from CAR T-cell therapy were LAG3+TIM3+, 

as compared to 19% (587/3,168) from CAR T naïve tumors progressing from chemo­

immunotherapy. CAR+ T-cells were detectable in all tumors from patients progressing 

following axi-cel, and are the only cells that can be definitively traced to the CAR T-cell 

infusion product. 51% (295/589) of CAR+ CD8 T-cells within tumors progressing from 

axi-cel were LAG3+TIM3+ (Figure 5e). Patients failing to achieve a robust EMR therefore 

have a significantly higher frequency of CD8 T-cell exhaustion signatures characterized by 

increased proportion of LAG3+TIM3+ cells, which is a signature that is proportionately 

over-represented among intratumoral CD8 T-cells from patients progressing from axi-cel 

CAR T-cell therapy.

Cells with a monocyte-like transcriptional signature are associated with high-grade ICANS.

We aimed to identify features of the CAR T-cell infusion products that were significantly 

associated with related toxicities. We first evaluated differences between patients who 

developed high-grade CRS (n=4) compared to those who did not (n=20). Although the 

number of patients with high-grade CRS was small, we observed a negative association with 

Deng et al. Page 6

Nat Med. Author manuscript; available in PMC 2021 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exhausted CD8 T-cells and a positive association with exhausted CD4 T-cells (Extended 

Data 7; Supplementary Tables 9 and 10). However, CRS is effectively managed with the use 

of corticosteroids and IL-6/IL-6R antagonists13, which may have confounded these results.

We next evaluated differences between patients that developed grade 3–4 ICANS 

(ICANSgr3–4, n=12) compared to patients with grade 0–2 ICANS (ICANSgr0–2, n=12). 

We did not observe significant differences in gene expression within the major CD4 or CD8 

T-cell compartments, but patients with ICANSgr3–4 had a significantly lower frequency of 

CAR+ cells within their infusion products (Extended Data 8). As axi-cel dosing is calculated 

based upon transduction efficiency to achieve 2×106 CAR-positive cells per kilogram, 

this association may suggest that higher total cell doses per kilogram contributes to 

neurological toxicity, but this requires validation. We further evaluated whether ICANSgr3–

4 is associated with any unique cluster of cells with distinct transcriptomic features, which 

identified a small cluster (n=254) that was significantly over-represented in the infusion 

products of patients who developed ICANSgr3–4 (Figure 6a). These cells were unlikely to 

be cellular debris or doublets (Supplementary Figure 8), and are henceforth referred to as 

ICANS-associated cells (IACs). A significantly lower fraction of IACs had detectable CAR 

expression (10.6% IACs vs 36.2% other cells; two-tailed Wilcoxon rank-sum P<0.001), 

TCR rearrangements (14.6% IACs vs 92% other cells; two-tailed Wilcoxon rank-sum 

P<0.001), CD3D expression (22.4% IACs vs 93.3% other cells; two-tailed Wilcoxon rank­

sum P<0.001) and CD8B expression (4.3% IACs vs 49.3% other cells; two-tailed Wilcoxon 

rank-sum P<0.001; Figure 6b–c) compared to cells from other clusters. Expression of CD4 

was detected in 49.6% of IACs, compared to 32.9% of other cells, but this can be expressed 

on both the myeloid and T-lymphoid lineages in response to IL-231,32. We identified 257 

genes with significantly higher expression in IACs compared to other cells (Two-sided 

Wilcoxon rank-sum q-value<0.01, FC>2; Supplementary Table 11), including multiple 

genes that are typically expressed within the myeloid lineage such as CD68, LYZ, SPI1, 

LILRB4 and SIRPA (Figure 6b–d). Multiple cytokines and chemokines were among the 

genes with significantly higher expression in IACs compared to other cells, including IL1B 
and CXCL8 (IL8) which have been previously implicated in ICANS pathophysiology17,20. 

These cytokines were higher in the serum of patients with IACs, but this was part of a 

broad pattern of inflammation17 (Extended Data 9). Using ssGSEA of the IACs signature 

genes within profiles from purified hematopoietic cell subsets33 we observed that the IACs 

signature is significantly higher in cells of myeloid lineages compared to lymphoid lineages 

(p<2.2×10−16), and highest in classical monocytes (Figure 6e). However, IACs do not 

express genes encoding canonical monocyte markers such as CD14 or CD16 (FCGR3A/B) 

(Figure 6c). Therefore, despite the similarities of the IACs transcriptional signature to 

monocytes, the expression of CD3D on 22.4% of IACs and the lack of expression of 

canonical monocyte cell markers means that we cannot confidently assign these cells to the 

monocyte lineage.

We validated the IACs population within the original cohort plus an additional 16 patients 

(total n=40; Supplementary Table 1) using an approach that is statistically independent of 

clustering. Specifically, the IACs signature genes (Supplementary Table 2) were measured 

by CapID and the signature quantified by scGSVA (Extended Data 10). Of the 254 

IACs identified by clustering of transcriptome data, 231 were classified as IACs with 
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high confidence using CapID and scGSVA. An additional 184 IACs were identified 

among 131,924 cells from the 16-patient validation cohort. IACs were both qualitatively 

and quantitatively associated with the development of ICANSgr3–4 (Figure 6f). 61.1% 

(11/18) of patients that developed ICANSg3–4 had detectable IACs within their infusion 

products, compared with 9.1% (2/22) of patients with ICANSgr0–2 (Two-sided Fisher-exact 

P=0.0007). IACs consisted of a mean of 0.39% of cells (range 0 – 2.27%) from patients 

with ICANSgr3–4, compared to 0.003% of cells from patients with ICANSgr0–2 (range 0 

– 0.4%; 130-fold higher in ICANSgr3–4; Wilcoxon rank-sum P=0.0002). All patients with 

grade 4 ICANS (3/3) had detectable IACs, but the difference between patients with grade 3 

vs grade 4 was not significant (Supplementary Figure 9). It will be important to investigate 

the origin and function of IACs in future studies and to validate its potential predictive 

capacity for ICANSgr3–4 in a large prospective series.

DISCUSSION

Our results suggest that cellular and molecular diversity of infused CAR T-cell products are 

a major factor contributing to the variability in efficacy and toxicity among LBCL patients 

treated with CD19 CAR T-cell therapy. Quantifiable phenotypes associated with the infusion 

product are potentially actionable by enriching desirable, or depleting undesirable, cellular 

populations or functional states during manufacturing. Furthermore, our understanding of 

the mechanisms by which discrete cellular populations lead to poor response or high-grade 

toxicity may identify avenues for therapeutic intervention to improve efficacy and decrease 

toxicity after CAR T-cell infusion.

We did not observe significant differences in gene expression profiles between cells 

expressing the CAR transcript compared to those with no detectable CAR expression, 

presumably because the signaling induced by stimulation during the manufacturing 

process may overwhelm the effects of any tonic signaling originating from the CAR 

construct. Comparisons of CAR-transduced and untransduced T-cells will therefore need 

to be performed separately using cells isolated from patients after infusion, when the 

transcriptional consequences of tonic or antigen-driven signaling will be more evident. We 

showed that cells from the infusion products of patients with ongoing CR at 3 months had 

an enrichment of CD8 memory T-cell phenotypes compared patients with PR/PD. This is in 

line with a prior study that evaluated CAR T-cells with CD3ζ and 4–1BB signaling domains 

in the setting of chronic lymphocytic leukemia, in which a memory CD8 phenotype was 

associated with superior responses10. However, we observed a high expression of CCR7 that 

is consistent with a central memory phenotype. Manufacturing conditions or rapid expansion 

protocols can be adapted to favor the generation of central memory CD8 T-cells34,35, which 

we would expect to be associated with greater efficacy.

Patients with PR/PD had a significant enrichment of cells with a CD8 T-cell exhaustion 

signature within their infusion products, and this association was most significant in patients 

failing to achieve a robust EMR at day 7. This is consistent with the kinetics of CAR 

T-cell expansion, which peaks ~1 week after axi-cel infusion and declines thereafter. Tumor­

derived somatic alterations can be readily detected in the cfDNA of DLBCL patients30,36–38 

and has been shown to correlate with tumor burden measured by functional imaging36. 
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The kinetics of tumor-derived cfDNA following chemo-immunotherapy may be predictive 

of patient outcome37,38, but to our knowledge this has not been previously examined in 

patients treated with CD19 CAR T-cells. Furthermore, no other metrics are available to 

predict the outcome of LBCL patients treated with CD19 CAR T-cells prior to their first 

clinical assessment at 1 month post-infusion. In our cohort, the magnitude of EMR was 

correlated with efficacy assessed at the 3-month follow-up by PET/CT. This association 

requires prospective validation in a large independent series, but raised the possibility 

that failure to achieve EMR within the first week may be a biomarker for poor CAR 

T-cell function. In line with this notion, we observed a significant association between 

poor EMR and gene expression signatures associated with T-cell exhaustion. Other studies 

aimed at addressing exhaustion of CAR T-cells have primarily focused on targeting PD-1 

signaling39–41. However, PD-1 (PDCD1) was expressed in a very small subset of cells 

and the most informative exhaustion markers in our cohort were co-expression of LAG3 
and TIM3. These co-inhibitory molecules limit T-cell activation and expansion42, and are 

potentially targetable using blocking antibodies43. Therefore, these results suggest that 

the use of LAG3 and/or TIM3 blockade following infusion might improve efficacy in 

patients with poor EMR. The association between T-cell exhaustion signatures in autologous 

infusion products and adverse patient characteristics also suggests that allogeneic CAR 

T-cells, which are currently under clinical development, might be more beneficial in some 

patients. However, this requires further validation as prior studies have not identified any 

association between patient characteristics and response4.

Finally, we identified a rare monocyte-like cell population within axi-cel infusion 

products that was significantly associated with the development of high-grade ICANS. 

The mechanism by which IACs might act in vivo to promote neurotoxicity is unclear, 

though IL-1 signaling has been recently implicated in the pathogenesis of ICANS20 

and the expression of IL1B and other inflammatory cytokines was significantly higher 

in IACs compared to other cells within the infusion products. The association between 

this cell population and the development of high-grade ICANS requires validation and 

characterization by orthogonal approaches to scRNA-seq in a large prospective series, 

including the evaluation of whether they are present in products from other manufacturers.

Future studies should be conducted to validate the potential predictive capacity of day 7 

molecular response, and whether rational therapeutic interventions can be made in high-risk 

patients to improve their outcomes. Furthermore, future studies should determine whether 

the detection of ICANS-associated cells within infusion products may identify a subset of 

patients that are at high risk of neurotoxicity and would benefit from prophylactic therapy 

with agents that target myeloid cell function, such as interleukin 1 receptor antagonists44.

DATA AVAILABILITY

All requests for raw and analyzed data and materials are promptly reviewed by the 

University of Texas MD Anderson Cancer Center to verify if the request is subject to 

any intellectual property or confidentiality obligations. Patient-related data not included 

in the paper may be subject to patient confidentiality. Any data and materials that 

can be shared will be released via a Material Transfer Agreement. Transcriptome and 
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CapID scRNA-seq datasets are available through the gene expression omnibus (https://

www.ncbi.nlm.nih.gov/geo/) under accessions GSE150992 and GSE151511, respectively. 

Raw data used in the generation of Figures 1, 2, 3, 4, 5, and 6, and Extended Data 1 to 10 

are available through the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/

home), accessions EGAD00001006327 and EGAD00001006325.

METHODS

Patient samples

Patients with diffuse large B-cell lymphoma (DLBCL), transformed follicular lymphoma 

(TFL), primary mediastinal large B-cell lymphoma or high-grade B-cell lymphoma being 

treated with axicabtagene ciloleucel (axi-cel) anti-CD19 CAR T-cell as standard of care 

were eligible for this study. Those on active therapy at the time of their apheresis were 

excluded due to potential confounding effects on the phenotype of CAR T-cell infusion 

products. Patients provided informed consent for use of their cells, blood samples and the 

use and disclosure of deidentified health information in research as part of a protocol that 

was approved by the Institutional Review Board of University of Texas MD Anderson 

Cancer Center. Following completion of CAR T-cell infusion, the infusion bag was 

washed with PBS to obtain residual cells, Samples were deidentified and transferred to 

the laboratory for single-cell RNA sequencing (scRNA-seq). At the 3-month follow-up, 

13 patients had progressive disease (PD, 50%), 1 was in partial response (PR, 4%) and 9 

were in complete response (CR, 38%) and 1 was not evaluable (NE) due to death from 

sepsis. Peripheral blood samples from patients were drawn in EDTA vacutainers at the 

time of a clinically indicated procedure, and processed by centrifugation to obtain plasma. 

De-identified plasma from 24 healthy controls was obtained from the Gulf Coast Blood 

Center. Samples were available from patients at the infusion (day 0–1, n=22), and 1 week 

(6–8 days, n=22), 2 weeks (12–18 days, n=18) and 1 month (25–35 days, n=16) post 

infusion. Analysis of cfDNA from patient samples and healthy controls was approved by the 

Institutional Review Board of University of Texas MD Anderson Cancer Center.

Flow cytometry

When sufficient residual cells were available from CAR T-cell infusion products, flow 

cytometry was performed using Horizon Fixable Viability Stain (BD Biosciences) and 

the following antibodies; CD134 FITC (ACT35, BD Biosciences), anti-CAR T PE 

(KIP-1, Kite), ICOS PE-TR (C398.4A, BD Biosciences), CD127 PerCP Cy5.5 (HIL-7R­

M21, BD Biosciences), CD69 APC (FN50, BD Biosciences), CD28 APC-H7 (CD28.2, 

BD Biosciences), CD4 AF700 (RPA-T4, BD Biosciences), 4–1BB BV421 (4B4–1, 

BD Biosciences), CD14 BV605 (M5E2, BD Biosciences), CD8 BV650 (RPA-T8, BD 

Biosciences), CD3 BV711 (UCHT1, BD Biosciences), and PD-1 BV786 (EH12.1, BD 

Biosciences). All antibodies were used at the manufacturer’s recommended concentration. 

Flow cytometry flow cytometry was performed on a BD Fortessa instrument and the data 

were analyzed using Cytobank.
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Single cell RNA-sequencing

Fresh cells were interrogated using the 10X Chromium platform for simultaneous 

transcriptome and T-cell receptor (TCR) profiling, with 133,405 cells (range 1,732–8,573 

cells per patient) passing our quality control thresholds and taken into subsequent analysis. 

These cells were sequenced to an average depth of 73,521 reads per cell, yielding an average 

of 2,472 genes per cell (Supplementary Figure 1). All major TCR clonotypes had both 

CAR-positive and CAR-negative cells detected, suggesting no integration-site-driven jackpot 

effects45 in this cohort.

5’ gene expression profiling using 10X.—Single cell RNA-seq was performed 

using GemCodeTM Single Cell Platform and Chromium Single Cell 5’ Reagent kit (10X 

Genomics Inc.) according to the manufacturer’s instructions. Briefly, CAR-T cells were 

resuspended in PBS with 0.04% BSA and gently pipette mix 10–15 times using a wide-bore 

pipette tip. Cell concentration was determined by cell counting with a hemocytometer 

and an approximate concentration (between 700–1200 cells/μl) was adjusted to maximize 

the likelihood of achieving the desired cell recovery target. Samples were at least 85% 

viable cells confirmed by trypan blue stain prior to capture and always handled on ice 

when possible. Subsequently, single-cell suspension was mixed with RT master mix and 

loaded together with barcoded single cell 5’ gel beads and partitioning oil onto Single 

Cell A Chip to generate GEM (Gel bead-in-Emulsion) using Chromium Controller. Cell 

lysis and barcoded reverse transcription of RNAs from single cells are finished inside 

each GEM. Barcoded cDNA product was recovered through post GEM-RT cleanup and 

PCR amplification. cDNA QC & quantification were determined by High Sensitivity 

D5000 DNA Screen Tape analysis (Agilent Technologies) and Qubit dsDNA HS Assay 

Kit (Thermo Fisher Scientific). 50ng of cDNA was used for 5ʹ Gene Expression (GEX) 

library construction and each sample was indexed by Chromium i7 Sample Index Kit, which 

was run on Illumina HiSeq4000 sequencer with 2×100 bp paired reads to achieve a depth of 

at least 50,000 read pairs per cell.

Single-cell T Cell Receptor (TCR) repertoire sequencing—TCR α/β sequencing 

was performed with 10× Genomics Single Cell V(D)J Immune Profiling Solution 

(10×Genomics Inc.). Briefly, full-length V, D, and J-gene segments were amplified from 

barcoded cDNA using Chromium Single Cell V(D)J Enrichment Kit (Human T Cell) to 

generate enrichment products. Enriched product was measured by D5000 DNA Screen Tape 

analysis and Qubit dsDNA HS Assay Kit, and then 50 ng of enrichment TCR product 

was used for library construction. Single Cell V(D)J enriched libraries were pooled for 

sequencing on HiSeq4000 to produce paired 2×150 bp reads, taking into account depth 

requirement (5,000 read pairs per cell) between the pooled libraries.

Hybrid capture sequencing of marker genes of CapID—xGen Lockdown probes 

for 207 gene (Supplementary Table 2) were designed and synthesized by Integrated DNA 

Technologies, Inc. (IDT). Hybridization capture of DNA libraries was performed using 

xGen hybridization and wash kit (IDT Inc.). First, pool 500 ng of each library to multiplex 

8–12 libraries in a low-bind tube and add the blocker components, including Human Cot 

DNA and xGen blocking oligos. Dry down the mixture in a SpeedVac system. Second, thaw 
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all contents of the xGen Hybridization and Wash Kit to room temperature, and prepare the 

Hybridization Master Mix according to the manufacturer’s protocol. Perform hybridization 

capture reaction in a thermal cycler with 100 ºC lid at a HYB program (95ºC, 30 sec; 

65 ºC, overnight). Third, prepare wash buffers and equilibrate Streptavidin beads at room 

temperature for a minimum of 30 min before performing the washes. In the thermal cycler 

with 70 ºC lid, perform bead capture at 65 ºC for 45 min. Every 10–12 min, gently pipette 

to ensure the sample is fully resuspended. At the end of the 45 min, take the sample off 

the thermal cycler. Proceed immediately to heated washes and room temperature washes. 

Finally, Perform post-capture PCR and purify post-capture PCR fragment. We employed 

10% of post-capture elute as template to run real-time quantitative PCR to determine the 

optimal number of PCR cycles for the custom probes panel. The captured library was 

measured using TapeStation System and Qubit dsDNA HS Assay Kit, and run on Illumina 

Miseq.

Single cell RNA-sequencing bioinformatics

Raw sequencing data processing, QC, data filtering, and normalization.—The 

raw single cell RNA sequencing (scRNA-seq) data were pre-processed (demultiplex cellular 

barcodes, read alignment, and generation of feature-barcode matrix) using Cell Ranger (10x 

Genomics, v2.1.1). Detailed QC metrics were generated and evaluated. Genes detected in 

<3 cells and cells where < 200 genes had nonzero counts were filtered out and excluded 

from subsequent analysis. Low quality cells where >15% of the read counts derived from 

the mitochondrial genome were also discarded. In addition, cells with number of detected 

genes >7,000 were discarded to remove likely doublet or multiplet captures. In this study, 

all sequencing libraries were constructed using the same version of reagent kits, by the same 

individual, following the same protocols, on the same 10X Chromium controller, and the 

libraries were sequenced on the same Illumina HiSeq 4000 platform. The results of principal 

component analysis (PCA), t-SNE plots and sample-by-cluster (Supplementary Figure 1), 

flow-cell-by-cluster (Supplementary Figure 10), and bead-lot-by-cluster (Supplementary 

Figure 10) distribution were carefully reviewed and integrated information revealed minimal 

batch effects. Seurat46 was applied to the filtered gene-cell matrix to generate the normalized 

UMI counts as previously described47.

Unsupervised cell clustering and dimensionality reduction.—Seurat46 v3.0.2 was 

applied to the normalized gene-cell matrix to identify highly variable genes. The elbow plot 

was generated with the ElbowPlot function of Seurat46 and based on which, the number 

of significant principal components (PCs) were determined. Different resolution parameters 

for unsupervised clustering were then examined in order to determine the optimal number 

of clusters. For this study, the first 20 PCs and 1,437 highly variable genes identified 

by Seurat46 were used for unsupervised clustering analysis with the resolution set to 0.6, 

yielding a total of 17 cell clusters. The t-distributed stochastic neighbor embedding (t-SNE) 

method was used for dimensionality reduction and 2-D visualization of the single cell 

clusters.

Determination of major cell types and cell states.—The major cell type (CD4 

and CD8) was defined by marker gene expression (CD4, CD40LG, TNFRSF4, CD8A, 
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CD8B) by 10X transcriptome and CapID sequencing data with an SNN boosting procedure. 

The functional state of each single cell (activated, memory, exhausted, regulatory) was 

determined using a hierarchical classification schema recently described by Sade-Feldman et 
al.21. All canonical marker genes in this schema were included on the CapID hybrid capture 

panel for sensitive detection (Supplementary Table 2) and cell type was automatically 

assigned to each individual cell based on expression status of these genes21. On average, this 

supervised classification approach led to the unambiguous classification of 72.5% of T cells. 

CAR-positive T cells were identified by the presence (normalized UMI >0) of CAR-specific 

sequence contigs48 (FMC63-CD19scFV, GenBank: HM852952.1) in the aligned reads and 

this approach identified an average of 24% of QC-passed T cells as CAR-positive (range 

7.1% - 42.6%). To describe the cell types and states that were defined by each tSNE cluster, 

we performed a manual review of the differentially expressed genes (DEGs) that were 

identified for each cell cluster by Seurat46 (Extended Data 1, Supplementary Table 12).

Capture-sequencing based identification plus SNN boosting (CapID+) for cell 
type classification.—Gene dropouts are common events in scRNA-seq data and represent 

a challenge for cell type identification. For the remaining unclassified cells (27.5%) in 

above steps, we evaluated the gene dropout events and applied two strategies to improve 

cell type identification. First, we employed CapID sequencing data to assign positive 

and negative expression. Second, we applied an SNN (shared nearest neighbor) boosting 

approach. Briefly, for each cell cluster, we first examined the diversity (the composition 

of cell types detected) and dominance (‘purity’, the proportion of cells in the cluster that 

are representative of a particular cell type) of classified cell types through supervised 

approach as described above. The cell type diversity of each cluster was evaluated by 

normalized Shannon entropy, the lower the Shannon entropy value, the lower the diversity 

and the higher the dominance of a classified cell type within each individual cell cluster. 

SNN boosting was performed on the high-dominance clusters (dominance score ≥ 0.8 

and normalized Shannon entropy ≤ 0.25, the clusters that are dominated by a single cell 

type) with the cluster size ≥ 50 cells. Cell type was assigned based on the hypothesis that 

phenotypically similar cells are grouped together, and cell type annotation was updated and 

used for SNN boosting in the next iteration. The boosting process was iterated on each 

cell cluster for 100 times (or when all unclassified cells were assessed). On average, this 

process rescued additional 19.3% of cells in total (70% of unclassified cells) and improved 

the identification of CAR-positive cell from 24% to 35%.

Inferring cell cycle stage, hierarchical clustering, differentially expressed 
genes (DEGs), and pathway enrichment analysis.—The cell cycle stage was 

computationally assigned to each individual cell using the R code implemented in Seurat46 

based on expression profiles of the cell cycle-related signature genes, as previously 

described49. Differentially expressed genes (DEGs) were identified for each cluster using the 

FindMarkers function of in Seurat R package46 and DEG list was filtered with the following 

criteria: the gene should expressed in 20% or more cells in the more abundant group; the 

absolute expression fold change >1.2; and FDR q-value <0.05. Hierarchical clustering was 

performed for each cell type using the Ward’s minimum variance method. Heat map was 

then generated using the heatmap function in pheatmap R package for filtered DEGs. For 
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pathway analysis, the curated gene sets were downloaded from the Molecular Signature 

Database (MSigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp), single-sample 

gene set enrichment analysis (ssGSEA) was applied and pathway scores were calculated 

for each cell using the GSVA software package50. The CD8 T-cell memory phenotype was 

defined by enrichment of a CD8 memory gene signature21 in CD8 subset and the T-cell 

dysfunction phenotype was defined by enrichment of T-cell dysfunction-related markers51. 

Pathway enrichment analysis was done with the limma R software package. Significant 

signaling pathways were identified with FDR q-value < 0.05. Differences in CD27, CCR7, 

LAG3, and TIM3 (HAVCR2) that were identified by 10X whole-transcriptome data were 

validated by CapID to increase their sequencing saturation and thereby mitigate transcript 

dropout. There was no significant difference in the number of reads per cell between 

clinical response (CR vs PR/PD) or molecular response (>5FMR vs <5FMR) groups, further 

supporting little or no contribution of transcript dropout to differences observed between 

these groups (Supplementary Figure 10).

Identification and characterization of the IAC cell cluster.—To identify ICANS 

associated cell cluster(s) (IAC cluster), we computed the proportion of cells assigned to a 

given cluster from each sample for the CRES-high and CRES-low/no groups, and applied 

a two-sided Wilcoxon rank-sum test to determine the significance. P-values were adjusted 

for multiple testing using the Benjamini-Hochberg method and false discovery rates (FDR 

q-value) were calculated. The IAC cluster was then identified and characterized. IAC feature 

genes were identified by performed DEG analysis between the IAC and the rest of other 

(non-IAC) cell clusters and the top 20 highly variable DEGs were selected as the signature 

genes of IAC, followed by a manual evaluation and annotation process. To further determine 

the cell phenotype of IAC, we performed GSEA and calculated GSEA scores for the 

IAC signature genes using the curated gene expression data matrix from a genome-wide 

transcriptomic analysis of protein coding genes in human blood cells33. The nonparametric 

two-sided Wilcoxon rank-sum test was used to determine the significance between the 

myeloid cell lineages (classical monocyte, intermediate monocyte, non-classical monocyte, 

myeloid DC, neutrophil, basophil, eosinophil, plasmacytoid DC) and non-myeloid cell types 

(naive CD4 T-cell, naïve CD8 T-cell, memory CD4 T-cell, memory CD8 T-cell, T-regulatory 

cell, MAIT T-cell, gdT-cell, NK cell, naïve B-cell, memory B-cell).

For each cell in the CapID data from the discovery (n=24) and validation (n=16) cohort, 

the IAC gene signature score was calculated as the average gene expression level of IAC 

signature genes identified in the discovery cohort. IAC scores were first examined across 

cell clusters, which confirmed the expected significantly higher score in cells originally 

assigned to the IAC cluster (p < 0.001), as determined by their unique cell barcodes. IACs 

were therefore classified as cells with IAC signature gene scores > 1.5, which identified a 

total 440 IACs across 40 patients from the discovery and validation cohorts. The qualitative 

difference (present vs absent) between patients with grade 0–2 ICANS vs patients with 

grade 3–4 ICANS was tested using a Fisher’s exact test. The quantitative difference in IAC 

frequency between patients with grade 0–2 ICANS vs patients with grade 3–4 ICANS was 

tested using a Wilcoxon rank-sum test.
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TCR V(D)J sequence assembly, paired clonotype calling, TCR diversity and 
clonality analysis and integration with scRNA-seq data.—Cell Ranger v3.0.2 for 

V(D)J sequence assembly was applied for TCR reconstruction and paired TCR clonotype 

calling. The CDR3 motif was located and the productivity was determined for each single 

cell. The clonotype landscape was then assessed and the clonal fraction of each identified 

clonotype was calculated. The TCR clonotype diversity matrix was calculated using the 

tcR R package 52. TCR clonality was defined as 1-Peilou’s evenness and was calculated 

on productive rearrangements as previously described 53. Clonality values approaching 

0 indicate a very even distribution of clone frequencies, whereas values approaching 1 

indicate an increasingly asymmetric distribution in which a few clones are present at high 

frequencies. The TCR clonotype data was then integrated with the T-cell phenotype data 

inferred from single cell gene expression analysis based on the shared cell barcodes.

Statistical analysis—In addition to the bioinformatics approaches described above for 

scRNA/TCR-seq data analysis, all other statistical analysis was performed using statistical 

software R v3.5.2. Analysis of differences in immunological features (continuous variables) 

between patient groups (R vs. NR; CRES-high vs. CRES-low/no) was determined by the 

nonparametric two-sided Wilcoxon rank-sum test. To control for multiple hypothesis testing, 

we applied the Benjamini-Hochberg method to correct p values and the false discovery 

rates (q-values) were calculated. All statistical significance testing was two-sided and results 

were considered statistically significant at p-value < 0.05. In R v3.5.2, 2.2e-16 is the 

smallest value that can be accurately calculated. Therefore some highly significant p-values 

or q-values are represented as p<2.2e-16 or q<2.2e-16, respectively.

Cell-free DNA sequencing

DNA extraction—Cell-free DNA was extracted from 2mL of plasma for each time 

point using Qiagen Circulating Nucleic Acid kits (Qiagen), and quality assessed using a 

TapeStation instrument and D1000 high sensitivity tapes (Agilent). Genomic DNA was 

extracted from peripheral blood mononuclear cells of each patient using Qiagen AllPrep 

Mini kits (Qiagen) and used as a germline control. DNA was quantified using Qubit high­

sensitivity reagents (ThermoFisher).

Library preparation, hybrid capture and sequencing—Libraries were prepared 

from up to 150ng of cfDNA using Kapa Hyper Prep Kits (Roche) and XGen CS Adapters 

(IDT). In brief, DNA was end-repaired and a-tailed, then ligated using a 1:10 molar ratio 

of stubby duplex unique molecular identifiers (UMIs). Index-ligated products were cleaned 

up with AmPure beads (Beckman Coulter), subjected to up to 8 cycles of PCR with oligos 

containing unique sequencing adapters, and cleaned up with AmPure beads. Libraries were 

12-plexed and captured using a 196kb Nimblegen SeqCap EZ custom reagent (Roche) 

targeting previously described recurrently mutated regions30. Enriched DNA was amplified 

with up to 8 cycles of PCR, cleaned up with AmpPure beads and sequenced on a single lane 

of a HiSeq 4000 instrument using 100bp paired-end reads at the MD Anderson Sequencing 

and Microarray Facility. Samples were sequenced to an average coverage of 12,427X (min 

5,921X, max 21,856X).
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Mutation detection and enumeration—The read data was demultiplexed into two read 

files and one UMI file, all in .fastq format. The read files were first combined to form an 

unaligned BAM file (uBAM) with UMI information using the FastqToBam tool of fgbio 

version 0.6.1. An interleaved paired fastq file was generated using fgbio’s SamToFastq 

tool and was used align to the hg19 genome using BWA-MEM. UMI information 

was mapped from the uBAM file to the aligned reads using Picard 2.18.9 / 2.9.0’s 

MergeBamAlignment tool. The alignments with UMI information then undergo several 

pre-processing steps using GATK version 3.7, including, in that order, indel realignment 

and two rounds of base quality recalibration. True PCR duplicates were then removed by 

using Picard’s UmiAwareMarkDuplicatesWithMateCigar tool. Variants were called from the 

calibration time point (day 0–1) using the intersection of VarScan254 and the GATK Unified 

Genotyper55. Variants detected within sequencing of PBMC samples from the same patient 

were treated as germline and filtered. Variants in repetitive elements, the dbSNP data (build 

151), the ExAC database of 60,706 healthy subjects56, or identified at variant allele fractions 

of >0.1% by deep sequencing of 24 healthy controls were filtered. An average of 11 variants 

were detected per patient (min=0, max=43; Table S1) and 18/23 patients with available 

calibration samples passed the required threshold of ≥3 variants for subsequent monitoring. 

These variants were enumerated (supporting reads divided by total reads over the position) 

in data from each time point using Picard tools.

Definition of early molecular response—The fold change in variant allele fraction 

was calculated for each variant relative to the calibration time point. The mean of the 

fold changes for all variants was calculated for every patient at each time point. The 

day 6/7 fold change in variant allele fraction was tested for association with clinical 

response by dichotomizing patients into those that achieved complete response vs those 

with partial response or progressive disease at their 3 month follow-up. The association 

between quantitative fold change in variant allele fraction and clinical response group was 

tested using a log rank test. Patients were thereafter split into two groups of equal size 

with available follow-up data (n=8) using a 5-fold reduction in variant allele fraction as the 

threshold, referred to as 5-fold molecular response (5FMR).
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Extended Data

Extended Data 1: 
Heatmap showing the top 50 signature genes of each cluster and putative assignments to cell 

types according to canonical marker genes.
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Extended Data 2: Increased sequencing saturation and marker gene detection rate by CapID.
a) Sub-sampling of reads from a single CAR T infusion product with 600 million reads for 

whole transcriptome and 20 million reads for CapID, showing the saturation (flattening of 

curve) for CapID (orange) at ~10 million reads, for 10X whole transcriptome sequencing 

(blue) at ~400M reads, and the effect of supplementing whole transcriptome data with 

10 million reads of CapID data (green). b) Density plots from the entire dataset show 

the reduced number of cells with UMI counts of zero and increased signal-to-noise ratio 

for CapID sequencing compared to 10X whole transcriptome sequencing. The 10X whole 
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transcriptome sequencing in this study were performed to an average of 73,521 reads per 

cell, vastly exceeding the minimum of 20,000 reads per cell recommended by 10X.

Extended Data 3: Correlation of cell frequencies measured by scRNA-seq and flow cytometry.
Correlations are shown for 16 patients that had sufficient cells for flow cytometry (a), 

compared to the fractions measured using traditional 10X data (b) or CapID+ (c). All 

comparisons showed a significant correlation with Pearson’s correlation 2-tailed P-value < 

0.001.
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Extended Data 4: Volcano plots of differentially expressed genes between CAR-positive and 
CAR-negative CD8 and CD4 T-cells.
Q-values were calculated with a two-sided Wilcoxon rank sum test with Bonferonni 

correction.
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Extended Data 5: Variant allele fractions of somatic variants detected by cfDNA sequencing.
a-b) Comparison of the average VAF of mutations at day 0 (a) and the number of calibrated 

mutations (b) between clinical response groups. P values were calculated by a two-sided 

Student’s t-test. c) Raw variant allele frequencies for each patient are shown for >5FMR 

(above) and <5FMR (below) groups. Lines are colored by clinical response as in figure 4a. 

The grey dashed line represents the 5-fold reduction threshold for each patient.
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Extended Data 6: T-cell clonotypic diversity in patients grouped by clinical and molecular 
response.
a) The frequency of the top 10 clonotypes for each patient among all cells (above), CD4 

T-cells (middle) and CD8 T-cells (below). Box, median +/− interquartile range. Whiskers, 

minimum and maximum. P-values calculated by a two-sided Wilcoxon rank sum test 

with Benjamini-Hochberg correction. b) Shannon’s clonality score for patients grouped 

by clinical or molecular response, shown for all cells (above), CD4 T-cells (middle) and 

CD8 T-cells (below). CR, n=9. PR/PD, n=14. >5FMR, n=8. <5FMR, n=9. Box, median +/− 

interquartile range. Whiskers, minimum and maximum. P-values calculated by a two-sided 

Wilcoxon rank sum test with Benjamini-Hochberg correction.
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Extended Data 7: Analysis of association between molecular features of CAR T-cell infusion 
products and the development of high-grade cytokine release syndrome (CRS).
a) Comparison of functional states between patients with grade 0–2 and grade 3–4 identified 

reduced frequencies of exhausted CD8 T-cells and increased frequencies of exhausted CD4 

T-cells to be associated with the development of high-grade CRS. Q-values were calculated 

by a two-sided Fisher exact test with a Benjamini-Hochberg correction. b-c) Heatmaps 

show differentially expressed genes between CD4 T-cells (b) and CD8 T-cells. (c) from 

the infusion products of patients with grade 0–2 CRS versus those that developed grade 
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3–4 CRS. The CD69 gene shows higher expression and the CCL3 and CLL4 genes show 

lower expression on both CD4 and CD8 T-cells from the CAR T-cell infusion products of 

patients that developed high grade CRS. All differentially expressed genes are shown in 

Supplementary Tables 10 and 11.

Extended Data 8: Percentage of CAR-positive cells in patients with grade 0–2 vs grade 3–4 
ICANS.
Grade 0–2 ICANS, n=22. Grade 3–4 ICANS, n=18. Box, median +/− interquartile range. 

Whiskers, minimum and maximum. P-values calculated by a two-sided Wilcoxon rank-sum 

test.
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Extended Data 9: Cytokine levels in serum between patients with IACs and those without IACs.
Significance level was tested with Mann-Whitney U test. FDR q-value was calculated for 

multiple testing correction.
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Extended Data 10: Quantification of the ICANS-associated cells (IACs) signature by scGSVA in 
CAR T-cell infusion products.
a) A stringent threshold was set to ensure high confidence classification of IACs by scGSVA 

analysis of the 109 signature genes measured by CapID, as shown for the cells that were 

originally identified as IACs by unsupervised clustering of 10X whole-transcriptome data in 

figure 4a. b) The distribution of scGSVA scores shows a clear difference between infusion 

products from patients with grade 0–2 ICANS vs patients with grade 3–4 ICANS. The 

threshold for classification of cells as IACs (scGSVA score >1.5) is shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Single cell analysis of standard of care (SOC) CAR T-cell infusion products.
A schematic overview of the experimental design and bioinformatics flow for scRNA-seq 

analysis of 137,276 residual cells from CAR T-cell infusion products of 24 LBCL patients. 

Our approach incorporated single cell transcriptome profiling of CAR T-cell infusion 

products boosted by CapID+, correlation of single cell functional states and gene expression 

signatures with efficacy assessed by positron emission tomography/computed tomography 

(PET/CT) and by cfDNA sequencing, and with toxicity assessed by clinical grading.
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Figure 2: Single cell analysis of standard of care (SOC) CAR T-cell infusion products.
a) An overview of the 133,405 cells that passed quality control (QC) for subsequent analyses 

in this study. Cells are color coded by the corresponding patient origin (sample ID) in the 

tSNE plot and a bar graph showing the number of cells per patient that passed QC. b) 
Cells are color coded by tSNE cluster number and a bar graph showing the distribution 

of cells from each patient among clusters. c) Individually scaled density plots show the 

normalized expression for the CAR, CD4 and CD8B transcripts in 10X scRNA-seq data 

and CapID hybrid capture sequencing data derived from the same scRNAseq libraries. 

Histogram overlays with identical scaling showing the relative fraction of cells with zero 

counts are shown in Extended Data 2b. d) The tSNE overview and bar graph summary of the 

cells identified as being CAR-positive (left), CD4 T-cells (middle) and CD8 T-cells (right) 

using 10X scRNA-seq data and those rescued by CapID+.
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Figure 3: Molecular phenotypes of CAR T-cell infusion products associated with response 
determined by PET/CT.
a) Cell types and functional states that were significantly more frequent in CAR T-cell 

products from patients with continued CR at 3 months (blue) or those from patients with 

PR/PD (red). Q-values were calculated by a two-sided Fisher exact test with a Benjamini­

Hochberg correction. b) Heatmap of four CD8+ T cell clusters (C1-C4) generated from 

unsupervised clustering of genes that were differentially expressed in CD8 T-cells from the 

infusion products of patients with CR compared to those from patients with PR/PD. A color­
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coded track shows the cells that originated from infusion products of CR patients (blue: CR) 

and the percentage of these cells within each cluster labelled at the top. Additional tracks 

show the scGSVA scores of CD8 dysfunction and CD8 memory signatures, respectively, 

and the inferred cell cycle status. The percentage of cells that originated from infusion 

products of CR patients is significantly different between clusters (One-way ANOVA p < 

2.2×10−16). The corresponding sample origins are labeled at the bottom, colored as per 

Figure 2a. c) Violin plots show the scGSVA scores of cells from each the four clusters 

in 2b. C1, n=26,917 cells. C2, n=9,047 cells. C3, n=10,113 cells. C4, n=6,440 cells. Box, 

median +/− interquartile range. Whiskers, 1.5X interquartile range. Pairwise comparisons 

were performed using a two-sided Wilcoxon rank-sum test with a Benjamini-Hochberg 

correction. d) Scatter plots of CCR7+CD27+ CD8 T-cells measured by CapID in the infusion 

products of patients who achieved CR compared to those who had PR/PD (Two-sided Fisher 

exact test p<2.2× 10−16). e) Gene sets that are significantly positively (+) or negatively (−) 

associated with CR in CD8 (above) or CD4 (below) T-cells. For each pathway, a heatmap 

of the single cell GSVA scores are shown, with % of cells originated from infusion products 

of CR patients annotated on the top. The origin of the gene set is shown in brackets (B, 

biocarta; R, reactome; K, KEGG; P, PID). f) A heatmap of five CD4+ T cell clusters 

(C1-C5) determined by unsupervised clustering of genes that were differentially expressed 

in CD4 T-cells from infusion products of patients with CR compared to those from patients 

with PR/PD. The percentage of cells that originated from infusion products of CR patients is 

shown in a track at the top and is significantly different between clusters (One-way ANOVA 

p < 2.2×10−16). Cells are annotated by inferred cell cycle state and sample origin as in panel 

b.
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Figure 4: Association between early molecular response measured by cfDNA sequencing and 
clinical response measured by PET/CT.
a) Molecular response measured by deep targeted cfDNA sequencing over the first month 

following infusion. Variant allele fraction (VAF) for each patient (n = 17) are normalized 

to the infusion day time point (day 0) and lines are colored according to response assessed 

by PET/CT at their 3-month follow-up or prior disease progression. b) Fold change in 

molecular disease burden at the day 7 time point relative the day 0 time point is shown for 

each patient, with bars colored by clinical response determined by PET/CT at their 3 month 

follow-up. The fold reduction of molecular disease burden was significantly associated with 

clinical response at 3 months (two-sided Wilcoxon rank-sum P = 0.008). The 16 patients 

with evaluable response were split into two groups according to whether they achieved 

>5-fold molecular response (>5FMR) or had <5-fold molecular response (<5FMR).
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Figure 5: Association between CD8 T-cell exhaustion markers and early molecular response.
a) Cell types and functional states associated with >5-fold molecular response at day 7 

(>5FMR, blue) or failure to achieve 5-fold molecular response at day 7 (<5FMR, red). 

Q-values were calculated by a two-sided Fisher exact test with a Benjamini-Hochberg 

correction. b) The percentage of cells expressing co-inhibitory molecules utilized in the 

classification of exhausted CD8 T-cells, and the percentage of cells co-expressing LAG3 
and TIM3, is shown for cells from patients with >5FMR (turquoise) compared to those 

from patients with <5FMR (red). c) Scatter plots show the expression of LAG3 and TIM3 
in cells from patients who achieved >5FMR (left, blue) compared to those from patients 
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with <5FMR (right, red). Each point represents a single cell and the proportion of cells 

at each state is labelled on the plot. Expression levels are normalized UMI counts from 

CapID sequencing, with normalized UMI counts >2 defined as positive expression. d) The 

percentage of cells from each TCR clonotype (identified from single cell TCR sequencing) 

co-expressing LAG3 and TIM3 are shown and data are compared between clonotypes 

within infusion products of patients with >5FMR (above, blue) and those from patients 

with <5FMR (below, red). The size of each point indicates the clonal fraction of each 

clonotype within each infusion product. >5FMR; n=72 clonotypes from 8 patients. <5FMR; 

n=196 clonotypes from 9 patients. Boxes, median +/− the interquartile range; whiskers, 

1.5x interquartile range. P value was calculated by two-sided Wilcoxon rank-sum test. e) 
Transcripts were measured in 38,601 cells from fresh core needle biopsies of 9 rrLBCL 

tumors by CapID; 5 patients progressing following chemo-immunotherapy or targeted 

therapy (CAR T naïve) and 4 patients progressing following axi-cel CAR T-cell therapy 

(post-CAR T). The expression of TIM3 and LAG3 was quantified by CapID within CD8 

T-cells in CAR T naïve and post-CAR T tumors, and within CD8 T-cells expressing the 

CAR transcript in post-CAR T tumors. The fraction of single- and double-positive cells 

annotated.
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Figure 6: ICANS-associated cells in CD19 CAR T-cell infusion products.
a) Clusters are shown for 10X transcriptome data of 24 patients in a tSNE plot, colored 

by the significance of their association with ICANS. The significant cluster of ICANs­

associated cells (IACs) is circled. P-values were calculated using a two-sided Wilcoxon 

rank-sum test. b) Genes that are most highly expressed in cells from the IACs cluster 

compared to cells from other clusters are shown in a heatmap. Expression of additional 

T-cell markers, T-cell receptor (TCR) gene rearrangements and the CAR transcript are 

shown in tracks at the top. c) The expression of representative IACs markers, T-cell markers 
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and canonical monocyte markers are shown for each cluster. The size of bubbles is relative 

to the percentage of cells within a cluster that express a given gene, and the color is relative 

to the mean expression of a given gene within each cluster. d) Density plots show the 

cellular distribution of transcript abundance of IACs marker genes in cells from the IAC 

cluster compared to cells from other clusters, determined by 10X transcriptome data. e) 
Single sample gene set enrichment (ssGSEA) values are shown for the IACs signature genes 

within gene expression data from purified populations of normal hematopoietic cell subsets, 

with increasing scores representing higher expression of the gene set. Myeloid lineage 

subsets [left, peach] have a significantly higher expression of genes that are characteristic 

of the IACs cluster compared to lymphoid lineage cells (Two-sided Wilcoxon rank-sum test, 

p<2.2×10−16). The highest expression of the IACs signature genes observed in monocytes. 

N=6 for all cell types except for basophils (n=4), myeloid DCs (n=5), non-classical 

monocytes (n=5), and memory CD8 T-cells (n=5). Boxes, median +/− the interquartile 

range; whiskers, 1.5x interquartile range. f) The cellular proportion of IACs determined by 

measurement of signature genes by CapID the infusion products of 269,164 single cells 

from 40 patients’ CAR T-cell infusion products (24 patient discovery cohort, 16 patient 

validation cohort [bold sample ID]) is shown. The samples are grouped according to patients 

with grade 3–4 ICANS (n=18, orange) compared to grade 0–2 ICANS (n=22, blue). Box, 

median +/− interquartile range. Whiskers, 1.5x interquartile range. P value was calculated by 

a two-sided Wilcoxon rank-sum test.
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