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Abstract

Purpose: Micron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost

effective, and non-invasive three-dimensional imaging modality. We review recent developments 

and applications of micro-CT for preclinical research.

Methods: Based on a comprehensive review of recent micro-CT literature, we summarize 

features of state-of-the-art hardware and ongoing challenges and promising research directions 

in the field.

Results: Representative features of commercially available micro-CT scanners and some new 

applications for both in vivo and ex vivo imaging are described. New advancements include 

spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new 

generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, 

PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast 

agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. 

liposomes), novel micro-CT imaging applications are possible such as combined therapy and 

diagnostic imaging in the field of cancer theranostics. Another major area of research in micro

CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging 

applications because phase changes are more sensitive to density variations in soft tissues than 

standard absorption imaging. We further review the impact of deep learning on micro-CT. We 

feature several recent works which have successfully applied deep learning to micro-CT data, and 

we outline several challenges specific to micro-CT.

Conclusions: All of these advancements establish micro-CT imaging at the forefront of 

preclinical research, able to provide anatomical, functional, and even molecular information while 

serving as a testbench for translational research.
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Introduction

Micro-computed tomography, also known as micro-CT, is the preclinical analogue of 

clinical CT, providing higher spatial resolution (voxel size <= 100 microns) for imaging 

small animal models of disease. Several review papers have presented the physical principles 

and applications of micro-CT imaging [1, 2]. The growing interest in small animal models 

and the development of new x-ray detectors stimulated considerable development of 

dedicated small animal scanners in the 1990s. Now, micro-CT systems have become highly 

sophisticated and are an essential part of preclinical imaging centers in both academia and 

industry.

There are several major differences between micro-CT and clinical CT scanners. To 

accommodate higher spatial resolution requirements, micro-CT scanners use micro-focus 

x-ray sources. Most commonly, these sources utilize a fixed tungsten anode and operate at 

lower voltages (20–100 kVp) and much lower anode currents (50–1000 μA) than clinical 

scanners. Furthermore, unlike clinical CT scanners with curved detector arrays, micro-CT 

systems generally utilize flat-panel detectors with small pixel sizes (≤150 μm2) and a 

cone-beam scanning geometry. This configuration is shared with some C-arm CT systems 

used in interventional radiology. Depending on the application, tolerances on radiation 

dose and acquisition time may be more relaxed for micro-CT scanners to manage noise in 

high-resolution scans.

In this review paper, we start with state-of-the-art, commercially available micro-CT 

scanners and present a few new applications for both in vivo and ex vivo imaging. Next, we 

summarize new developments associated with dual energy and photon counting micro-CT 

which enable quantitative differentiation of tissues and nanoparticle contrast agents. These 

nanoparticles have numerous applications in the burgeoning field of cancer theranostics. We 

also describe micro-CT research in phase contrast imaging, which promises to make the 

modality more sensitive to density changes in soft tissues. Finally, we review the impact 

deep learning has had on CT imaging and predict its future applications. Deep learning 

is of significant interest within the CT community, and has the potential to solve several 

challenging problems in preclinical micro-CT; therefore, we dedicate roughly one-third of 

this review paper to deep learning topics.

State-of-the-art, commercial micro-CT scanners

In Table 1 we summarize system specifications for commercial micro-CT scanners from 

different manufacturers. All of these micro-CT systems use high precision movements 

during acquisitions and have sensitive electronics. They are self-shielded cabinet systems 

and have multiple layers of safety interlocks and emergency stops to prevent accidental 

radiation exposure. The user interface of such scanners can be controlled from the computer 

screen and from an embedded touchscreen. Commercial micro-CT scanners generally 

include software needed to collect, reconstruct, and analyze data and utilize GPU-based 

reconstruction code for fast performance. They can also include software for good laboratory 

practice which, when activated, provides necessary data protection [3]. Furthermore, the 
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imaging data can be saved in various formats (BMP, JPG, TIFF) or exported as DICOM 

files.

We group commercial micro-CT scanners into four categories (Table 1): 1) ex vivo systems, 

2) in vivo systems, 3) in vivo hybrid systems (multi-modality), and 4) photon counting 

systems. While ex vivo micro-CT is not a primary focus of this review paper, the Bruker 

SkyScan 1272 and the Scanco μCT 40 are examples of high-resolution, 3D, ex vivo scanners 

which operate in a rotating specimen geometry. Exemplary features of the SkyScan 1272 
include its “Genius-Mode” which automates the process of selecting scan parameters such 

as the magnification, energy, filters, exposure time, and background corrections. The spatial 

resolution delivered in scanning biological specimens can be as high as 0.4 μm; however, 

high-resolution scans may take several hours. Radiation dose is generally not a concern 

for ex vivo scanning. The scanner can optionally be equipped with an external 16-position 

sample changer to queue multiple scans for increased throughput.

By contrast, commercial in vivo micro-CT systems have a movable animal bed surrounded 

by a rotating gantry. For acquisition, the anesthetized animal is placed on the bed and is 

inserted into the bore of the gantry. Some of the in vivo micro-CT scanners are sold as 

standalone systems (e.g. PerkinElmer Quantum GX2) and can be quite versatile, having 

several available physical magnifications and allowing high-resolution (<10 μm) ex vivo 
scanning. Such scanners can image mice with a single scan or larger animals such as rats 

and guinea pigs by extending the scan field of view. Scanning times vary depending on 

imaging requirements and can be on the order of seconds for lower-resolution acquisitions or 

longer when high spatial resolution is required. Some in vivo scanners use integrated cradles 

or exchangeable animal cassettes that allow co-registration with data acquired with other 

modalities (e.g. fluorescence molecular tomography, FMT; micro-PET; micro-SPECT). 

These systems from Bruker, PerkinElmer, MiLabs, or Inviscan come equipped with 

physiological monitoring and also provide prospective or retrospective gating for cardiac and 

respiratory imaging. Gating enables cardiopulmonary studies to analyze functional metrics 

such as cardiac output and ejection fraction through 4D post-processing software. These 

scanners are also designed and optimized for lower-resolution longitudinal imaging at low 

radiation dose (as low as 5–6 mGy), allowing researchers to follow and characterize disease 

progression at multiple imaging time points. This is extremely important in cancer studies 

where the radiation associated with imaging may otherwise apply a therapeutic dose to 

tumors.

The third category of micro-CT systems combine CT scanning with PET (or SPECT), where 

CT provides anatomical context and enables attenuation correction during reconstruction. In 

comparison to standalone micro-CT systems, hybrid scanners may provide lower resolution 

(e.g. PerkinElmer G8 PET / CT has 200 μm resolution) or lack gating capabilities. However, 

there are also exceptions. For example, the Bruker Si78 PET/CT has a 50 μm resolution and 

also includes gated micro-CT capabilities.

Notably, most micro-CT systems employ flat-surface, 2D x-ray detectors (i.e. flat-panel 

detectors) leading to a cone-beam scanning geometry. Advances in complementary metal 

oxide semiconductor (CMOS) technology led to the production of these large area detectors. 
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CMOS detectors also feature high frame rates and relatively low cost, making them ideal 

for in vivo, small animal micro-CT imaging. As an alternative, some commercial systems 

use cooled, charge-coupled device (CCD) detectors, for example, the Bruker SkyScan 2214 
nano-CT scanner. Cooled CCD detectors are preferred in applications involving low x-ray 

fluences because they have lower levels of dark noise than CMOS detectors.

With the exception of the last scanner, all systems in Table 1 use energy integrating detectors 

which are affected by limited contrast capabilities. Our last selected commercial scanner 

is based on an energy resolving detector. The MARS preclinical CT scanner (MARS 

Bioimaging, Ltd.; Christchurch, New Zealand) uses a photon counting detector (PCD) based 

on the Medipix3 chip developed at CERN (Geneva, Switzerland) [4]. This PCD has 8 

energy thresholds and a charge summing mode which can improve spectral performance. 

The scanner has physiological support and monitoring capabilities for in vivo studies but 

does not provide gating. Nevertheless, as detailed in the Spectral micro-CT section of this 

review, PCD-based scanners provide improved material discrimination [5] [6] and allow the 

use of nanoparticle contrast agents that can be functionalized for molecular x-ray imaging 

[7].

Commercially available contrast agents for micro-CT

Due to a lack of inherent contrast for soft-tissue imaging, the majority of micro-CT scans 

make use of high atomic weight contrast agents. In Table 2 we present examples of 

commercially available contrast agents for micro-CT. These include low molecular weight 

iodinated contrast agents in clinical use, such as Isovue-370, and nanoparticle-based contrast 

agents. For in vivo small-animal imaging, the use of clinical contrast agents is particularly 

difficult. Small animals have much higher renal clearance rates than humans, so injected 

contrast agents are rapidly excreted. To overcome the rapid clearance of traditional contrast 

agents, blood pool contrast agents have been developed, which exhibit prolonged blood 

residence time and stable enhancement for minutes to hours. Typically, these contrast 

agents are based on iodine, gold, or barium because of their high x-ray attenuation, 

biocompatibility, relevant biochemistry, cost, and/or clinical relevance. Nanoparticle contrast 

agents for micro-CT have also been developed using other metals, including silver, 

gadolinium, bismuth, ytterbium, tantalum, and thorium [8].

Applications of modern micro-CT imaging

Next, we present some recent applications of micro-CT for in vivo and ex vivo imaging in 

small animals. Supplemental data acquisition and reconstruction parameters for the figures 

presented in this and future sections are included in Table 3.

CT is one of the principal modalities used for diagnosing lung pathology and has become 

increasingly important for diagnosing virus-induced lung infections during the COVID-19 

pandemic. In translational efforts, micro-CT has been used for preclinical research toward 

finding an efficient vaccine and antiviral drugs against COVID-19. In particular, we give 

the example of a study in Syrian hamsters as a small animal model for SARS-CoV-2 

infection and treatment development [17]. The authors examined the progression of lung 
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inflammation caused by SARS-CoV-2 infection and the recovery processes. The micro

CT images showed severe lung abnormalities in all infected animals (Fig. 1). The lung 

abnormalities were first detected at day 2 post infection and then progressed to more severe 

lung consolidation at 8 days post-infection. High-dose infected animals had more severe 

lung abnormalities compared to low dose infections.

Micro-CT can deliver valuable anatomical and functional information in cardiac studies 

in small animals. High temporal and spatial resolution and relatively short scanning 

times allow for high-throughput studies. An increasing number of research groups have 

demonstrated the use of micro-CT for cardiac morphology and global ventricular systolic 

indices, such as stroke volume, ejection fraction, and cardiac output [18–22]. Cardiac micro

CT has also been used to assess functional parameters of systolic emptying or diastolic 

filling in an experimental model of pulmonary arterial hypertension in rats [23]. Recently, 

using a custom-built system integrated into a clinical CT gantry, even murine coronary 

arteries have been imaged using phase correlated reconstructions (Fig. 2) [24]. The authors 

show that with a radiation dose of 1 Gy the left coronary artery can be visualized and all 

major branches can be identified. This is an important achievement given the small size of 

the coronaries (<100 microns) and their continuous motion due to both the heart beating (up 

to 600 beats/min) and respiration (up to 230 breaths/min). However, the high radiation dose 

level is an issue which prevents longitudinal studies. We expect that future improvements in 

low-dose reconstruction will allow longitudinal imaging of the coronary arteries in mouse 

models.

High resolution images provided by ex vivo micro-CT using staining or vascular casting 

promise to bridge the gap between in vivo small animal imaging and conventional histology 

or pathology. Staining methods for ex vivo micro-CT mostly use iodine or phosphotungstic 

acid [25], but other high atomic number compounds based on barium or lead can be used. 

In Fig. 3, we show examples of ex vivo micro-CT imaging using a commercial compound 

based on barium (BriteVu®; Scarlet Imaging, Murray, UT) to visualize mouse vasculature in 

the kidneys, the head, and the thorax.

Spectral micro-CT

While clearly remarkable, the applications of micro-CT previously described do not require 

novel x-ray technologies. We believe that the future of CT imaging is related to spectral 

imaging. Spectral CT takes advantage of the energy dependence of x-ray attenuation to 

quantitatively separate materials within the subject—e.g. separating extrinsic iodine or gold 

based contrast agents from bone and soft tissues. The most common form of spectral CT 

imaging, dual-energy (DE) CT, performs two separate scans of the same subject, each with 

a different accelerating voltage of the x-ray tube (a different source “kVp”). Most current 

CT systems perform DE CT with energy-integrating x-ray detectors (EIDs) which record an 

output signal that is proportional to the detected x-ray photon flux, weighted by the x-ray 

energy and integrated across the entire x-ray energy spectrum.

Using spectral CT data, material decomposition into basis material maps is possible 

both in the projection domain or post-reconstruction, in the image domain. For example, 
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post-reconstruction decomposition [26] can be performed to create volumetric maps 

of photoelectric effect (PE) and Compton scattering (CS) basis functions [27] and 

other contrast materials (e.g. based on iodine, gadolinium, gold, barium). Under certain 

assumptions, such decompositions can be performed with DE micro-CT data acquired 

with EIDs [28–30]. However, DE-EID CT faces significant limitations: with only two EID 

measurements, gold-based nanoparticles in the spleen are not differentiable from calcium in 

bones (Fig. 4).

A newly emerging CT detector technology, energy-discriminating or photon-counting x-ray 

detector (PCD) technology, can address this limitation. PCDs have several advantages 

over current EID technology. Unlike EIDs, PCDs count incoming x-ray photons and bin 

them based on their recorded energy, providing dual- and even multi-energy information 

with a single CT scan. Further benefits associated with PCD technology include reduced 

electronic noise, higher contrast-to-noise ratios, improved spatial resolution, and improved 

dose efficiencies [31]. Current PCDs have two to eight hardware energy thresholds (bins) 

per detector pixel, facilitating the separation of multiple extrinsic contrast agents based on 

different elements [32]. These elements have unique x-ray attenuation signatures (K-edges) 

which allow their separation from intrinsic tissues with an optimal degree of specificity and 

sensitivity.

The large-scale use of PCDs in both clinical and preclinical CT systems is limited by 

spectral distortions inherent in the photon detection process (charge sharing, pulse pile-up, 

and related physical effects) [33]. Even with proper spectral calibration of the detector, these 

sources of distortion degrade the fidelity of spectral measurements. Particularly, there are 

significant trade-offs between the size of PCD pixels and the energy resolution of PCD scans 

due to charge sharing between neighboring detector pixels. Charge sharing occurs when 

incoming photons are recorded as two or more lower energy photon due to the division 

of signal between neighboring pixels. Since high spatial resolution is required for micro

CT imaging, using PCDs for preclinical imaging presents challenges. There are, however, 

hardware solutions to compensate for charge sharing which include anti-coincidence charge

summing circuitry [4]. Alternative software solutions for spectral correction are described in 

the Deep learning for micro-CT section of this review.

There are also hybrid micro-CT systems that include a PCD and EID within the same system 

[12, 34]. The Duke hybrid micro-CT configuration enabled a direct comparison between PC 

and DE EID micro-CT in experiments using both phantoms and mice for anatomical and 

functional imaging of tumors [35]. Fig. 5 illustrates this comparison. Mice with p53/MCA 

sarcoma tumors [36] were intravenously administered a liposomal gadolinium (Lip-Gd) 

contrast agent (0.4 mg Gd kg−1 body weight) and imaged 3 hours later with both DE-EID 

and PC micro-CT (Day 0). 3 days later, the same animals were injected with liposomal 

iodine (Lip-I) (1.32 mg I kg−1 body weight) and re-imaged. The PCD binned x-ray photons 

using 4 energy thresholds set to 25, 34, 50 and 60 keV. PC micro-CT decreased the overlap 

between spectral measurements allowing distinct separation of the two contrast materials 

from soft tissue (gray) and bone (white). According to the Rose criterion applied to the 

experimental results, the detectability limits for I and Gd were approximately 2.5 mg/mL for 

both DE-EID and PC micro-CT, even though for PC micro-CT the radiation dose was 3.8 
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times lower and two additional basis materials were decomposed (PE, CS). Additionally, PC 

micro-CT provided lower background signal and better simultaneous visualization of tumor 

vasculature and intratumoral Gd compared to DE EID micro-CT decompositions.

Successful PCD-based in vivo cardiac micro-CT imaging has been demonstrated in a study 

of APOE knockout mice [37]. Technically, this study is significant because it demonstrates 

successful navigation of the trade-offs between spatial, temporal, and spectral resolution 

required for micro-CT imaging of the mouse heart within reasonable radiation dose 

constraints (~190 mGy dose to image 10 cardiac phases with four PCD energy bins). 

Scientifically, this study is significant because APOE knockout mice represent a model 

of atherosclerosis, showing a marked increase in total plasma cholesterol and reliably 

developing atherosclerotic lesions when fed on a high-fat diet [38]. Fig. 6A illustrates the 

results of image-domain material decomposition of one of these cardiac data sets. Effective 

separation is seen between calcium in the bones and calcified plaques (green, PE map) and 

iodine in the vasculature of the lungs and heart (red). The 10-phase cardiac sequence also 

allows for cardiac function analysis (Fig. 6B).

Developments in CT theranostics

Many applications of preclinical micro-CT use nanoparticle (NP) contrast agents which 

are based on materials like iodine, barium, gadolinium, or gold. Low molecular weight 

contrast agents used for clinical imaging rapidly clear from the blood pool in mice, while 

NPs may remain in circulation for hours or days depending on their size and biochemistry. 

Liposomes (Lip), one of the most extensively studied NP platforms, encapsulating I or 

Gd have been used as contrast agents for blood-pool, cancer, and cardiovascular imaging 

applications [39–42]. Such NPs are also ideal for CT-based theranostics: they can serve 

both diagnostic imaging and therapy. Notably, Lip-I and Lip-Gd have similar size and 

biodistribution patterns to liposomal drugs such as Doxil (Janssen), and thus can serve well 

as imaging surrogates in drug delivery studies [43].

Alternatively, gold nanoparticles (AuNPs) are also used for both spectral micro-CT imaging 

and therapies. In addition to providing high contrast for x-ray imaging, AuNps can amplify 

the local effectiveness of radiation therapy (RT): they absorb therapeutic x-rays efficiently 

and then release that energy to immediately surrounding tissues, increasing the locally 

delivered dose in regions of high NP concentration. This radiation augmentation has been 

studied by several groups to effectively treat cancer in multiple animal models [44–51]. 

Local enhancement of RT was also described with tumor vascular-targeted RGD-AuNPs 

[43]. In addition to targeting RGD receptors for micro-CT based molecular imaging, 

RGD-AuNPs induced tumor vascular disruption during RT, prompting extensive tumor 

cell death and facilitating increased delivery of liposomal chemotherapeutics. The study 

showed the value of DE EID micro-CT in providing non-invasive visualization of the NP 

probe distribution within treated sarcoma tumors. The authors studied the combination of 

RGD-AuNP based RT augmentation (Fig. 7) with the delivery of a liposomal drugs (Doxil) 
[43]. The combination of RGD-AuNP augmented RT and Doxil proved to be the most 

effective combination in delaying the tumor doubling time.
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CT theranostics extends to more than RT or chemotherapy. AuNPs also exhibit high 

absorbance of light at their surface plasmon resonance wavelength. For many AuNP 

shapes (e.g. nanorods, nanoshells, nanostars), this plasmon resonance occurs in the near 

infrared region, which is optimal for use with photothermal heating. In photothermal 

heating, nanoparticles convert laser light into heat, which leads to local hyperthermia. 

This effect can be used for tumor ablation. The use of NPs for combined micro-CT 

imaging and photothermal therapy has been reviewed [52]. Au nanorods [53] and hollow 

Au nanoshells [50] have both been used for combined micro-CT imaging, radiation therapy, 

and photothermal therapy. Au nanostar theranostic probes were used for micro-CT imaging 

and photothermal therapy in a mouse model of primary soft tissue sarcoma [54].

Reconstruction of CT data

Reconstruction of CT data involves mathematically inverting the data acquisition process 

to digitally reproduce the distribution of x-ray attenuation within component tissues or 

materials. Scanning dynamic objects, such as a beating heart, requires projection gating 

strategies to ensure data consistency; otherwise, reconstructions will represent the average 

attenuation over the data acquisition interval. Interested readers will find more information 

on common CT scanning geometries and on data requirements and gating techniques for 

accurate reconstruction in prior works [55].

Most commonly, CT data acquisition and reconstruction workflows are engineered for 

compatibility with analytical reconstruction (AR) algorithms. AR algorithms reconstruct 

an image by inverting an integral transform of the distribution of the linear attenuation 

coefficients, i.e., the Radon transform or the x-ray transform [56]. Such integral transforms 

are ideal representations of the (forward) x-ray projection process underlying the data 

acquisition step. When acquiring data in a circular, cone-beam geometry, the solution to 

this inverse problem is not exact [57] and hence approximated solutions are employed. 

Approximate AR algorithms are attractive for their computational speed, and they are 

commonly used to initialize more advanced algorithms. The most used analytical algorithms 

are variations on filtered backprojection (FBP), where a frequency-domain filter is applied 

to rows of CT projection data prior to inversion of the data acquisition process. Common 

examples of FBP include the FDK algorithm [58], for reconstruction of circular, cone-beam 

data, and the WFBP algorithm [59], for data acquired with a helical geometry. Notably, more 

computationally expensive, theoretically exact reconstruction algorithms are also available 

for helical, cone-beam CT [60].

To maintain constant image noise, imaging dose must be increased inversely to image voxel 

size with a fourth-power relationship [61]. In other words, at constant object size moving 

from 500-μm voxels in a clinical scan to 100-μm voxels in a preclinical scan would require a 

~625-fold increase in imaging dose to maintain image noise. For in vivo micro-CT in mice, 

these dose constraints compound with additional challenges of imaging mice with high heart 

rates (up to 600 beats/min) and respiratory rates (up to 230 breaths/min). Therefore, dose 

and noise reduction strategies are equally important for reducing exposure to human patients 

and for fundamentally enabling advanced preclinical imaging applications. In line with the 

computational efficiency of FBP algorithms, computationally efficient approaches to image 
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noise reduction include windowed frequency filters used for FBP (e.g. Cosine, Hamming 

window), which trade spatial resolution for reduced image noise, and post-reconstruction 

image denoising with neighborhood-based filters (e.g. bilateral filtration [62]).

Iterative reconstruction (IR) techniques model both the forward (projection) and inverse 

(backprojection) of the data acquisition process, incrementally updating the reconstructed 

data such that its synthetic reprojections better agree with the physically acquired projection 

data [63]. IR is more computationally expensive than AR, but offers numerous potential 

benefits in handling non-ideal imaging geometries, missing data, redundant data, and image 

noise and artifacts [64, 65]. Continuing advancements in parallel computing hardware (e.g. 

GPUs) and software now enable simultaneous IR of temporal and spectral x-ray CT data sets 

spanning multiple volumes (multiple phases and/or energies). For instance, multi-channel 

regularization such as patch-based singular value thresholding [66], rank-sparse kernel 

regression [12], oriented filtering [11], and deformable image registration [10] exploit 

prior knowledge of data structure to dramatically improve the fidelity of reconstructed 

images. These data regularizers are often incorporated as “plug-and-play” regularizers 

within robust algebraic reconstruction frameworks such as the Alternating Direction Method 

of Multipliers (ADMM) and the split Bregman method [67, 68].

Advanced model-based IR techniques further incorporate accurate models of the x-ray 

source spectral properties, the detection process, and x-ray physics into the reconstruction 

problem to improve reconstruction quality. For instance, modeling the polychromatic nature 

of x-ray sources and more realistic photon statistics can improve the accuracy of spectral 

CT reconstruction [69, 70]. Modeling blur and noise correlations introduced by the finite 

size of the x-ray source focal spot can yield reconstructions with higher spatial resolution 

[71]. Finally, modeling complex physical phenomena and signal correlations inherent in 

PCD CT [33, 72] during reconstruction may be required to fully realize the potential of the 

technology.

Most recently, deep learning has emerged as a means to approximate or supplement IR 

techniques, improving data regularization and significantly reducing computation time. New 

deep learning approaches to CT image denoising and reconstruction are discussed in the 

Deep learning for micro-CT section of this review paper.

Phase contrast micro-CT

Addressing poor contrast resolution in soft tissues is an on-going challenge for CT imaging. 

For in vivo imaging, this challenge can be addressed through the use of exogenous contrast 

agents and spectral CT (Figs. 4–7), while for ex vivo imaging vascular casting in whole 

animals (Fig. 3) and direct staining of small biological samples [73] are possible. X-ray 

phase contrast (XPC) imaging provides a compelling alternative to these x-ray absorption 

imaging methods and does not require contrast agents. Rather than treating x-rays as 

particles, XPC signal is derived from the treatment of x-rays as electromagnetic waves. 

Specifically, the complex index of refraction for x-rays is expressed as n=1−δ+iβ, where β 
describes the absorption of x-rays and δ describes x-ray phase shifts. Both quantities depend 

on the x-ray wavelength (energy). For diagnostic x-rays (10–100 keV) and biological soft 

Clark and Badea Page 9

Phys Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tissues, δ is up to three orders of magnitude larger than β and falls off more slowly with 

increasing x-ray energy, providing a strong signal for imaging [74, 75].

In our previous micro-CT review paper from 2014 [2], we outlined and described several 

classes of XPC imaging systems with the potential for CT imaging. Broadly these systems 

can be classified into propagation-based systems, which rely on the propagation distance 

of x-rays after they have been refracted within the sample to resolve phase changes, 

analyzer-crystal based systems, which exploit Bragg diffraction within single crystals to 

measure phase changes, and grating interferometers, which use micron-scale gratings to 

create interference fringes in x-ray waves that are sensitive to phase changes caused by 

the sample. Requirements on x-ray beam coherence limited the use of these systems to 

large synchrotron facilities until Pfeiffer et al. demonstrated an effective adaptation of the 

Talbot-Lau grating interferometer for use with polychromatic laboratory sources. Their 

adaptation used an additional source grating which collimated the source beam into an array 

of individually coherent x-ray line sources suitable for differential phase recovery [76]. 

Despite their advancement, this and several other early laboratory XPC systems required 

significant scanning times (hours to tens of hours) to acquire tomographic data suitable 

for reconstruction. These systems were limited by the x-ray flux of collimated or filtered 

laboratory sources and the need to acquire projections in several steps to recover phase 

information. In addition to reconstructing phase information, these systems allowed the 

reconstruction of absorption images and small-angle scatter images (dark-field images, 

[77]).

In this review paper, we summarize two recent applications of XPC enhanced imaging 

to preclinical micro-CT and highlight the advancements they represent in the field. First, 

the work of Reichardt et al. [78] applies tomographic, propagation-based XPC imaging 

to study the orientation of muscle fibers in the mouse heart. Phase information provides 

contrast between muscle fibers in x-ray CT scans at spatial resolutions which are not 

generally attainable with MRI or ultrasound (<10 μm). Fiber tracking algorithms are applied 

to the reconstructed data to study heart microstructure. Rather than performing a stepping 

procedure to recover phase information at each projection angle, they reconstruct a mixed 

absorption and XPC image after post-processing their projection data to reduce artifacts. 

Key to the success of their imaging system is a newer technology known as a liquid metal jet 

(LMJ) x-ray source (Excillum, AB; Kista, Sweden). LMJ sources fill a gap between the high 

flux provided by a synchrotron and the availability of laboratory sources, providing higher 

flux at the small focal spot sizes required for XPC imaging [79]. Reported scan times ranged 

from ~1–2 hours to obtain low-noise data at high spatial resolution (5–10 μm).

Second, the work of Hagen et al. [80] demonstrates an alternative to the Talbot-Lau grating 

interferometer for XPC imaging with a standard laboratory x-ray source. Specifically, 

their edge illumination (EI) approach employs two gratings which are selectively opaque 

to x-rays: a source grating, which creates an array of narrow x-ray beamlets, and a 

complementary detector mask. The source grating satisfies the beam coherence requirements 

for phase retrieval. Stepwise translation of the source grating at each projection angle 

variably blocks the primary x-ray beamlets at the detector mask while recording signal 

from refracted x-rays. Stepwise translation data allows post-scan computation of phase 
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information in addition to absorption data. Alternatively, as in the work of Reichardt 

et al. [78], a mixed absorption-phase image can be reconstructed by imaging with the 

source grating at a single position and post-processing the projection data prior to 

reconstruction. Notably, imaging with small x-ray beamlets and a detector mask further 

allowed enhancement of spatial resolution via sub-pixel translation of their sample between 

scans (dithering).

Fig. 8 reproduces results from the work of Hagen et al. using dithering to improve spatial 

resolution (19 μm in the phase image) and stepwise translation of the source grating to allow 

separate reconstruction of the attenuation (Fig. 8a) and phase (Fig. 8b) data (ex vivo mouse 

data). The authors report that the contrast-to-noise ratio (CNR) measured between fat and 

muscle increased 3-fold from the attenuation image to the phase image, demonstrating the 

advantages of XPC imaging. The results in Fig. 8 represent an 18-hour scan, but the authors 

also performed a 13-minute scan at a single source grating position and without the use of 

dithering (50 μm spatial resolution). This second scan represents an important step toward 

high-throughput XPC enhanced imaging; however, the reported 300 mGy dose may be high 

for longitudinal in vivo imaging, and the authors note a loss of spatial resolution around 

bones caused by assumptions made when processing mixed absorption-phase data.

In addition to polychromatic laboratory sources, LMJ sources, and synchrotron facilities, 

we note a fourth class of x-ray sources with potential for XPC imaging in small animals: 

compact light sources (CLS). Broadly, these CLS exploit physical interactions between 

lasers and free electrons (inverse Compton scattering; Thomson scattering) to produce x-rays 

in the keV range. Because the laser light is focused on the point of interaction, x-rays 

can be generated with a photon flux, beam divergence, and focal spot size suitable for 

XPC imaging. Furthermore, because of the electron beam energies involved, CLS can be 

constructed at a scale suitable for installation at research facilities or hospitals. Additional 

benefits of CLS include quasi-monochromatic x-rays at tunable energies, which can reduce 

spectral artifacts and improve image contrast, and extremely short x-ray pulses, which can 

benefit dynamic experiments. In 2015, XPC imaging was demonstrated using a prototype 

CLS from Lyncean Technologies, Inc. (Fremont, CA) [81]. The commercial product was 

later installed at the Munich Compact Light Source and has since been used for micro-CT 

imaging, propagation and grating-based XPC imaging, and K-edge subtraction imaging [82]. 

Alternative CLS designs have been presented by other groups [83], and it has been shown in 

simulations that CLSs may provide an ideal solution for in vivo dynamic imaging in small 

animals [84].

Deep learning for micro-CT

In the past decade, deep learning (DL) has touched nearly every aspect of medical imaging, 

transitioning the field from hand-crafted feature classifiers employed by a select few experts 

to data-driven learning of complex relationships employed ubiquitously in the field. In this 

review paper, we focus on the impact of recent developments on the broader field of x-ray 

CT because many of these developments apply equally to clinical and preclinical CT. We 

then feature several recent works which have successfully applied these techniques to micro

CT data, and we outline several challenges specific to micro-CT which may be addressed 
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with DL. In the interest of brevity, we assume familiarity with fundamental DL concepts 

such as convolution neural network (CNN) structures (e.g. ResNet [85], U-Net [86], GAN 

[87]) and supervised learning with batched, stochastic gradient descent. For those unfamiliar 

with DL, we recommend as background reading one of several high-quality review papers 

which provide an overview of fundamental concepts [88, 89].

Data

Regardless of the target application, successful DL projects share several common traits: 

the utilization of high-performance computing hardware and software, training on large, 

high-quality data sets, and open-source distribution of sample code and pre-trained models. 

Since computing hardware and software are largely application agnostic and numerous 

examples of open-source code distribution can be found on popular code-sharing sites, it 

stands to reason that the bottleneck in many DL projects is the availability of application

specific training data. For CT imaging specifically, open-access datasets and databases such 

as the Mayo Clinic Low Dose CT Grand Challenge dataset [90], the NIH-funded Cancer 

Imaging Archive, and preclinical micro-CT scans with organ segmentations [91] represent 

cornerstones for reproducible research and the assessment of newer models. In the future, 

these data sources and their processing pipelines will be harmonized through shared cloud 

computing platforms like the FLI-IAM architecture [92] and by community standards like 

those proposed by the Global BioImaging network [93]. For now, however, these data 

sources are notable exceptions to the “siloed” nature of medical imaging data: data must 

be pooled between health organizations to provide sufficient data for model training, but 

privacy, legal, and financial concerns and inconsistent data processing restrict such pooling. 

The interested reader can find more information on federated learning, a partial solution to 

these problems, in relevant literature [94].

Preclinical micro-CT data provides a compelling alternative to clinical CT data for DL 

research. Preclinical systems can reproduce the system geometries, x-ray physics, and 

most imaging protocols associated with clinical CT while placing fewer constraints on 

the acquisition and distribution of CT data sets. In the subsequent sections of this review, 

we highlight several preclinical DL projects with strong potential for clinical translation. 

Furthermore, we highlight several challenges unique to DL micro-CT projects and outline 

several promising directions for ongoing research.

Denoising and iterative reconstruction

Image denoising with DL has advanced real-world performance in one of the most 

thoroughly studied areas of digital signal processing by augmenting traditional signal 

models and inversion techniques with data-driven learning. The denoising problem is 

inherent in most DL tasks as networks must learn to generalize their performance over 

training data in the presence of noise. For CT denoising, there is an inverse relationship 

between radiation dose, which can be harmful to patients, and the noise level in 

reconstructed images. To reduce imaging dose, the x-ray exposure per projection or the 

number of projections is reduced, resulting in photon starvation or view undersampling 

artifacts. Using traditional signal models, it is often difficult and computationally expensive 
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to robustly reconstruct this low-dose data. This difficulty has made computationally efficient 

DL methods attractive for processing low-dose CT data.

In literature, supervised learning methods for CT denoising and reconstruction are the 

most popular [95–101]: networks are trained to reproduce full-dose CT data from low

dose inputs. Ideally, the trained network can then be applied to newly acquired low-dose 

data, recovering the full-dose data at minimal risk to the patient. Because this approach 

often approximates traditional reconstruction methods and involves signal recovery from 

corrupted measurements, it is sometimes referred to as “reconstruction” even when 

the network performs image-domain denoising only [97, 102]. Supervised learning is 

particularly attractive when projection data sets are available because realistic photon noise 

can be added to the projections, simulating a large number of lower-dose acquisitions, or 

the number of projections can be artificially reduced. There are, however, several issues with 

this paradigm. The limited availability of clinical projection data and memory constraints 

associated with 3D processing have led many authors to reproject reconstructed data in a 

simpler 2D geometry, possibly separating the problem from reality. Furthermore, trained 

networks often perform poorly when applied to data under- or un-represented in the training 

set (e.g. data with higher levels of noise [103], different spatial resolution [104], different 

contrast [105]). This can lead to unpredictable or misleading behavior when the DL model is 

applied to new data.

Figure 9 illustrates an example of image-domain denoising applied to preclinical micro-CT 

data [102]. Extending the above supervised learning paradigm to time-resolved, volumetric 

image data, a CNN was trained to reproduce iterative reconstructions of full-dose, cardiac 

micro-CT data sets from quarter-dose reconstructions. Dose was reduced by using a subset 

of projections for reconstruction, allowing four independent results from the same data set 

to be compared. This study demonstrates that supervised learning, commonly applied to 

2D image data, readily extends to time-resolved, volumetric image data and can closely 

reproduce the spatial resolution and noise properties of computationally expensive, iterative 

reconstructions.

Supervised training requires labeled or paired datasets. Assembling sufficient data for 

training may be difficult (clinical projection data), impractical (manual labeling), or 

impossible (noise-free data) in certain applications. This has led to a number of alternative 

training strategies which relax or eliminate supervision requirements. For denoising, the 

“Noise2Noise” model uses pairs of noisy images which share the same underlying, noise

free image [106]. Because the network cannot learn to reproduce random noise in the 

training target, it instead converges to a denoised image close to the true, noise-free image 

(under mild statistical assumption). This model inspired a self-supervised learning model 

called “Noise2Void” which uses unpaired, noisy images [107]. Pixels removed from the 

noisy input image are used as labels, and the network is trained to infer the intensity value of 

the missing pixels by learning feature correlations. The Noise2Void model may be attractive 

for dynamic imaging applications (cardiac CT, perfusion imaging) where it is difficult to 

assemble redundant, noisy image pairs, but the Noise2Void authors demonstrate that the 

Noise2Noise model performs slightly better when image pairs are available.
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For both supervised and unsupervised training, variational models represent an important 

class of DL models for medical imaging. Decades of literature exist on analytical and 

iterative optimization (reconstruction) techniques and regularization penalty functions 

for medical image processing. Variational models borrow the structure of these proven 

techniques, guiding stochastic training with domain-specific priors, while maintaining the 

myriad benefits of data-driven generalization. Successful application of variational models 

has been demonstrated in both MRI [108] and CT [97, 98, 100, 101, 109] denoising 

and reconstruction tasks. As we will illustrate in the following sub-sections on other DL 

applications, the incorporation of domain-specific knowledge into DL projects is a clear 

trend and will be critical to the adoption of DL technology in routine practice.

Spectral processing

In this review paper, we talk extensively about the future of quantitative imaging using 

dual-energy and multi-energy CT. DL methods have been proposed to overcome a number 

of challenges associated with spectral CT data, including high levels of noise, missing 

data, and physical degradation of the recorded signal. Noise amplification during material 

decomposition and spectral post-processing limits sensitivity to contrast materials and low

contrast features, particularly for low-dose acquisition protocols. Supervised training of 

CNNs represents an ideal solution to this problem because networks can learn to identify 

valid combinations of spatial features and spectral contrast, enforcing data-driven priors in a 

way that is difficult to reproduce with analytical approaches [105, 110, 111]. Similarly, 

supervised training has been applied to correct or compensate for sources of spectral 

distortion inherent in photon-counting CT [112, 113]. Complex and expensive modeling 

is required to accurately simulate the detection process in PCDs [33, 72]. We anticipate 

that DL will play a key role in efficiently incorporating these physical models into routine 

corrections applied to PC data. Finally, we note a trend in recent literature: estimating 

missing spectral information with DL priors. This has been demonstrated in the context of 

spectral extrapolation for dual-energy field-of-view extension [114], estimation of virtual 

monoenergetic images from single-energy data [115], and estimation of material maps 

form single-energy data [116]. Success in these applications speaks to the power of DL to 

model and enforce underlying relationships between image features and spectral contrast; 

however, significant work remains to understand the limitations and uncertainty inherent 

in these methods, with particular regard to unique or pathological data which may poorly 

represented.

Segmentation and registration

In addition to robust processing methods, image registration and segmentation are 

fundamental for extracting quantitative data from medical images. For instance, when 

performing a longitudinal cancer study, automatic segmentation of tumor volumes combined 

with registration between time points can be used to track tumor growth and to classify 

features indicative of treatment outcomes [117, 118]. DL has advanced the state-of-the-art 

for image segmentation both in terms of accuracy and speed [119–121]. Here, we feature the 

work of Schoppe et al. [119] who use a dataset of pre- and post-contrast micro-CT scans of 

the mouse, including multi-organ segmentations, [91] to train a DL model (Figure 10). Their 

work demonstrates whole-body, multi-organ segmentation within one second. Furthermore, 
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they tackle several important issues related to segmentation, including the modeling of 

uncertainty between human segmenters and transfer learning between imaging modalities.

Image registration is a similarly active area of DL and medical imaging research because 

of its role in quantitative image analysis. Following recent review papers on the subject 

[122, 123], DL approaches to registration began with supervised learning of image similarity 

metrics. Replacing common metrics like mean-squared-error or mutual information, these 

learned metrics can then be minimized iteratively and at progressively higher resolution 

levels to map a moving image to a fixed image. Several works have demonstrated superior 

registration performance with learned similarity metrics, particularly when registering data 

from different imaging modalities [124, 125]; however, the performance of these methods is 

limited by the computational cost of iterative optimization. This has led to a number of more 

recent works where networks are trained to estimate the final image transformation directly 

[126, 127]. Differentiable transformer modules [128] can be incorporated into these direct 

registration models to apply the transformation within the model and to return the registered 

moving image. Both supervised and unsupervised learning approaches to image registration 

have been used. Specifically, there is increasing focus on unsupervised, direct estimation of 

registration parameters, to make efficient use of unpaired training data [127], and adversarial 

penalty functions, to learn more realistic transformations [129]. GPU memory limitations 

continue to be a bottleneck in training models for 3D, deformable image registration.

Super-resolution

Physical and practical constraints associated with imaging often limit spatial resolution 

below what is optimal for a specific application. Conceptually, post-process enhancement of 

spatial resolution is an attractive solution; however, this “super-resolution” inverse problem 

is inherently ill-conditioned, even when an accurate forward model of the imaging system 

is available. Recent works have demonstrated that domain-specific DL can excel in this and 

related “image-to-image translation” problems under the assumption of a shared latent space 

[130]. Practically, this means that if low- and high-resolution image patches can be mapped 

to the same compressed representation, they can be interchanged to enhance resolution. With 

regard to x-ray CT, You et al. proposed GAN-CIRCLE to enhance the spatial resolution of 

both micro-CT scans of bone and clinical CT scans of human paitents [131]. To overcome 

instabilities often associated with adversarial training and inverse problems, they used 

cycle-consistency constraints: estimated high-resolution images must map back to their 

low-resolution inputs and vice versa. Zheng et al. similarly used the GAN-CIRCLE model 

to enhance clinical CT scans with high resolution textures learned from ex vivo micro-CT 

data of the same anatomic region (lungs) [132]. They added additional mean-squared-error 

constraints between the model inputs and outputs to ensure that intensity information 

remained consistent following resolution upsampling and downsampling. Finally, Holbrook 

et al. [133] demonstrated that PCD CT data acquired at low resolution could be fused with 

high-resolution EID CT data in a DL-based implementation of “pan-sharpening,” allowing 

high-resolution material decomposition. This hybrid approach to spectral CT has numerous 

potential advantages, including dose reduction and improved spectral fidelity associated with 

larger PCD pixels [33].
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Artifact and scatter corrections

CT data sets often suffer from ring artifacts (variations in detector gain), metal artifacts 

(view-dependent photon starvation), and scatter (low-frequency background signal). Given 

the pervasive nature of these problems, numerous calibration procedures and analytical and 

iterative methods have been proposed to deal with them [134]. DL provides an attractive 

solution to these problems because their physical origins are well understood and can be 

reproduced when generating synthetic training data for supervised learning. Furthermore, 

DL provides a computationally efficient means to address low spatial frequencies and to 

optimize corrections for specific imaging systems and protocols. Example ring artifact 

correction papers include the work of Nauwynck et al. [135], who trained a multi-resolution 

U-Net to remove synthetic rings from clinical data, and the work of Holbrook et al. [136] 

who trained a similar residual U-Net to remove synthetic rings from preclinical data. 

In both cases, application of the trained network to testing data with real ring artifacts 

showed significant high-frequency artifact reduction, but additional room for improvement 

addressing low-frequency artifacts. For metal artifact correction, Liao et al. [137] combined 

an adversarial penalty function with a multi-resolution metal mask to inpaint metal traces 

in sinogram data and achieved superior artifact suppression to several non-DL methods. 

Finally, Maier et al. [138] demonstrated effective application of DL to estimate scattered 

signal from x-ray projections. Their network reproduced gold-standard Monte Carlo scatter 

estimates at varying dose levels, source kVps, and anatomic regions and effectively removed 

CT number inaccuracies and streaking artifacts from reconstructed images.

Challenges and future directions

In this section, we have provided a broad overview of DL applications in x-ray CT, 

while highlighting several successful DL projects targeting preclinical micro-CT. Because 

the hardware, software, and computing resources utilized for DL projects are application 

agnostic, preclinical micro-CT will continue to serve as a crucial testing ground for future 

clinical applications. Notably, there are several general and unique challenges associated 

with preclinical micro-CT and DL. First, limited availability of training data at both the 

clinical and preclinical levels will continue to the slow the progress of application-specific 

DL projects. This limitation is compounded by the lack of standards in preclinical CT 

which would otherwise facilitate pooling data from different sources. Second, CT data is 

inherently three dimensional, yet most DL projects process data in two dimensions due to 

computational constraints. Overcoming these limitations through hardware and algorithm 

improvements will undoubtedly lead to many new and improved applications. Finally, while 

preclinical micro-CT allows greater flexibility in imaging protocol design and data sharing, 

it also faces strict trade-offs between image resolution, noise, and temporal and spectral 

resolution. These trade-offs complicate label generation for supervised learning. Clever 

solutions to these problems or alternative unsupervised learning methods will be crucial for 

advanced DL applications like PCD CT, XPC CT, and in vivo cardiac imaging.

Discussion and conclusions

This review paper provides a broad overview of current applications and research topics 

related to preclinical micro-CT technology. We began by highlighting several commercial 
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micro-CT scanners, which provide prepackaged imaging solutions for in vivo and ex vivo 
studies, and then transitioned to state-of-the-art applications like in vivo, PCD-based spectral 

imaging, hybrid diagnostic-therapeutic agents for molecular imaging and theranostics, and 

laboratory-based XPC imaging. The promise of these newly developing applications has 

established micro-CT as a translational testbench for future clinical applications. Finally, we 

surveyed numerous facets of DL applied to classic medical imaging problems (denoising, 

segmentation, registration) and to CT-specific imaging problems (spectral and artifact 

corrections, low-dose reconstruction). It is clear that data-driven DL in tandem with domain

specific knowledge and hardware and software developments will continue to push the 

bounds of what is possible in the field.

Looking forward, we are excited by future applications of preclinical and clinical CT 

technology. We believe that the future lies in multi-dimensional imaging applications 

which enhance the anatomical imaging CT is known for with functional and molecular 

information. For instance, future applications of coronary CT angiography using PCDs will 

inherently sample spectral information. This spectral information can then be used to reduce 

image artifacts and to improve the quantification of calcium deposits in atherosclerosis 

studies. Targeting nanoparticle contrast agents to the site of plaques may even allow 

non-invasive characterization of atherosclerotic plaque composition. Newer computational 

methods like DL will be required to handle the large volumes of data associated with these 

applications and to improve the robustness of such methods while controlling radiation dose 

to the patient. In sum, many of the advancements we have discussed in this review will be 

applied in coordination to enable fundamentally new CT imaging applications.
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• Commercially available micro-CT scanners and recent applications are 

described.

• Spectral micro-CT and phase contrast micro-CT promise improved contrast.

• Micro-CT and nanoparticle contrast agents can serve in theranostics studies.

• Deep learning will have a great impact on future micro-CT developments.
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Fig. 1. 
Micro-CT imaging of the lungs of infected Syrian hamsters. (A) Axial CT images of 

the thorax in moek-infected control, low dose-infected, and high dose- infected animals 

showing lung abnormalities over a 14-day period (white arrowheads). Lnng abnormalities 

were first detected 2 days postinfection, and the most severe changes were observed 8 days 

postinfection in virus-infected animals. The high dose-infected animals had, overall, more 

severe lnng abnormalities compared to the low dose-infected animals. Lnng abnormalities 

began to improve 10 days postinfection for both low dose- and high dose-infected animals. 

On day 14 postinfection, the high dose-infected animals had a higher degree of residual 

lung abnormalities compared to the low dose-infected animals, highlighted by the black 

arrowhead. Pneumomediastinum is labeled by the white asterisk (*). Note that the day 0 

control image was only obtained for the high dose-infected animal and is not available for 

the low dose-infected or mock-infected animals. (B-H) Dorsal/coronal plane reconstruction 

CT images of the thorax in low dose-infected and high dose- infected animals showing (B) 

a control image, (C and D) initial lung changes, (E and F) most severe lung changes, and (G 

and H) the beginning of the recoveiy phase over time. The high dose-infected animals had 

more severe lung abnormalities than the low dose-infected animals. Figure reproduced from 

[17] with cropping under the Creative Connnons CC BY license.
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Fig. 2. 
Phase-correlated reconstructions of a mouse showing different cardiac motion States 

(eolumns). The first row illustrates axial slices, the seeond row coronal slices, and the third 

row a sliding thin slab-maximum intensity projections (STS-M1P). The asterisk marks the 

first bifurcation of the left coronaiy artery. (C = 300HU, W = 1500HU). Figure reproduced 

from [24] without modification under the Creative Commous CC BY license.

Clark and Badea Page 27

Phys Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Examples of high-resolution, ex vivo vascular imaging using micro-CT and BriteVu as a 

vascular contrast agent. We illustrate mouse vasculature in the kidney (A), the head (B), and 

the thorax (C).
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Fig. 4. 
DE CT imaging enables quantitative, 3D mapping of extrinsic contrast agents (iodine, red; 

gold, green) and soft tissues (gray) present in the subject (coronal maximum intensity 

projections shown through a live mouse). However, because DE CT with EIDs provide 

only two independent measurements with limited sensitivity, it is difficult to separate 

certain intrinsic materials, such as bones (see ribs, yellow arrow), from gold nanoparticles 

accumulated in the spleen (blue arrow). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Application of in vivo DE EID CT (A) and PC CT (B) in delayed-phase imaging of a 

sarcoma tumor (yellow circles; maximum intensity projection images shown). At Day 0, 3 

h after injection, liposomal gadolinium (green, mg/mL) has already begun to accumulate 

within the sarcoma tumor (yellow circles), allowing visualization and quantification of 

tumor vascular permeability. On Day 3, immediately after liposomal iodine injection (red, 

mg/mL), material decomposition can be used to correlate tumor vascular permeability 

(gadolinium signal) and tumor vascular density (iodine signal). These signais are indicative 

of tumor response to potential therapies. Additional spectral information provided by PC CT 

reduces background signal and improves separation of contrast materials from bone and soft 

tissues (photoelectric effect, PE map, blue; Compton scattering, CS map, gray) compared 

with DE EID CT. (For interpretation of the referenees to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 6. 
Photon-counting cardiac CT in the mouse. (A) Matching 2D slices are shown at diastole 

and systole in axial and coronal orientations. Complementary 3D renderings show the four 

chambers of the heart and the aortic arch, including a segmentation of the left ventricle 

(LV) used to derive cardiac functional metrics. Decomposition was performed into three 

basis materials: iodine (red), photoelectric effect (PE, green), and Compton scattering (gray). 

Calibration vials containing gold (Au, 5 mg/mL), water (W), and iodine (I, 12 mg/mL) 

can be seen in the axial slices. Calcified atherosclerotic plaques (white arrow) appear 

prominently within the PE map, near the aortic val ve and within the aortic arch, and are 

denoted by dashed circles. (B) Left ventricular volume curves are plotted along with a ta ble 

of the heart rate (HR, beats/min), breathing rate (BR, breaths/min), stroke volume (SV, μL), 

ejection fraction (EF), and cardiac output (CO, mL/min) for 4 mice (M#). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 7. 
(A) AuNPs + RT causes vascular disruption and boosts deliveiy of liposomes. (B) DE 

EID CT shows Lip-I in a sarcoma (ellipse). Lip-I served as surrogate for Doxil. (C) The 

combined therapy with RGD-AuNPs + RT and Doxil showed a significant growth delay 

(increase in tumor doubling times) compared to all other treatment groups.
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Fig. 8. 
Sub-pixel resolution EI XPC micro-CT images of a mouse chest, acquired with the dithered, 

multi-franie scheme. (a) Reconstructed attenuation image. (b) Reconstructed phase image. 

Figure reprodueed from [79] without modifieation under the Creative Commous CC BY 

license. Note that the line profiles and CNR boxes shown in this figure were used to measure 

contrast-to-noise ratios and spatial resolution in the cited work.
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Fig. 9. 
Application of a trained, 4D CNN to in vivo testing data. (A) Fully sanipled reconstruction 

results shown for comparison. (B) Iterative reconstruction results (equivalent to training 

labels). (C) Undersampled reconstruction results (equivalent to training data). (D) 

Undersampled reconstruction results passed through the 4D CNN. (E) Voxel-wise Standard 

deviation measured in (D), over four independent subsets of 2250 projections. Note that the 

calibration bar at the bottom, right applies to (E) only.
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Fig. 10. 
Qualitative results of segmentation performance. Filled, semi-transparent areas show 

AIMOS (segmentation model) prediction for (a) native micro-CT and (b) contrast enhanced 

micro-CT (contrast agent: ExiTron nano 6000, nanoPET Pharma GmbH). Opaque lines 

indicate human expert annotations. Left column shows mean-intensity projections for the 

whole-bodv sean. Second column shows representative coronal slices. Remaining columns 

of figure show individual organs (coronal slice through center of oigan). Figure reproduced 

frorn [118] without modification under the Creative Commous CC BY lieense.
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Table 1

Specifications of current commercial micro-CT scanners. Notes: Only representative ex vivo scanners for 

biological samples are included in this cable. Additional ex vivo, industrial, and nano-CT scanners are 

available from manufacturers like Nikon, Zeiss, Werth, Yxlon, Rigaku, and Bruker. Discontinued product lines 

from GE and Siemens are excluded from this table.

Type Scanner 
Manufacturer/
Model

Diameter 
FOV 
(mm)

Length 
(mm)

Spatial 
Res.

kVp Scanning 
Time

Gating Other 
Characteristics

Ex Vivo 
Systems

Bruker 
SkyScan 1272

75 mm 70 mm Max. 0.4 
μm

20 – 100 
kVp

Mins to hrs 
depending 
on 
resolution

Not needed for 
ex vivo 
imaging

- 16-position sample 
changer to increase 
throughput
- Automatic selection 
of scan parameters

Scanco μCT 40 36.9 mm 80 mm 3–72 μm 
(pixel 
size)

30–70 kVp Mins to hrs 
depending 
on 
resolution

Not needed for 
ex vivo 
imaging

- Optional sample 
changer that 
accommodates up to 
10 sample holders

In Vivo 
Systems

Bruker 
SkyScan 1278

80 mm 200 
mm

50 μm 
nominal 
res.

20–65 kVp -Continuous 
rotation or 
step-and-
shoot mode
-Scanning 
time down 
to 7.2 sec

- Prospective 
and 
retrospective 
gating, image-
based intrinsic 
gating
- Complete 
software 
solution for 
cardiac 
function 
analysis in 4D

- GPU-accelerated 
reconstruction
- 2D/3D 
morphological 
analysis and 
visualization
- Exchangeable animal 
cassettes that can be 
used in all Bruker 
in-vivo imaging 
instruments.
- Low-dose 
acquisitions down to 6 
mGy
- 4-position automatic 
filter changer

Bruker 
SkyScan 1276

80 mm 300 
mm

Max. 2.8 
μm

20–100 kVp Scanning 
time down 
to 3.9 sec

Prospective 
and 
retrospective, 
time and image 
based intrinsic 
gating

- In vivo micro-CT 
scanner with ex vivo 
imaging capabilities
- Circular and helical 
(spiral) scanning 
trajectory
- s/w for cardiac 
image analysis

PerkinElmer 
Quantum GX2

FOVs: 
18, 36, 
72, and 
86 mm

240 
mm

Preset 
high res. 
mode: 
2.3 μm 
voxel 
size

Max: 90 kVp Preset high 
speed mode: 
3.9 sec

- Intrinsic 
retrospective 
gating
- Dual phase 
respiratory and 
cardiac gating

- Multi-modal co
registration (from 
IVIS Spectrum or 
FMT) with micro-CT 
imaging data.
- Multispecies 
imaging capabilities 
(zebrafish, mouse, rat, 
guinea pig, rabbit)

MiLabs U-CT Up to 130 
mm

Up to 
712 
mm

Max 2.4 
μm voxel 
size

65 kVp (80 
kVp 
optional)

Down to 5 
sec for total 
body mouse

- Sensor free 
respiratory and 
cardiac gating 
for up to four 
mice 
simultaneously
- Optional: 
sensor based 
respiratory and 
cardiac gating

- Radiation dose: < 2 
mGy
- Circular and helical 
scanning
- Dual energy CT
- X-ray fluoroscopy
- Imaging from small 
samples up to 5 kg 
rabbits
- Capability to image 
in an over- or under
pressure cell for 
immunocompromised 
or infected animals 
from mice up to 
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Type Scanner 
Manufacturer/
Model

Diameter 
FOV 
(mm)

Length 
(mm)

Spatial 
Res.

kVp Scanning 
Time

Gating Other 
Characteristics

rabbits
- Upgradable with 
PET, SPECT, and 
3D CT-guided optical 
imaging in any 
combination

Inviscan IRIS 
and IRIS-XL

> 90 mm 120 
mm

< 30 μm Scan time: 
< 7.3 s 
(ultra-fast 
mode), 20 s 
(speed 
mode), 1 
min (high 
resolution 
scan)

- Dynamic 4D 
acquisition
- Software 
based 
respiratory and 
cardiac gating

- Low dose: < 6.5 
mGy
- Either standalone of 
combined with micro- 
PET

Molecubes, X-
Cube

35 mm 63 mm 50 μm < 1 min 
fastest scan

Gating is 
available

- Iterative 
reconstruction 
techniques
- Multimodal small 
animal bed allows 
for easy and modular 
multimodal imaging 
with SPECT and PET

In Vivo 
Hybrid 
Systems 
(multi-
modality)

Medico 
nanoScan

100 mm 120 
mm

30 μm Up to 80 W Not available - Multiple animal 
imaging: up to 4×60 g 
mice 2×500 g rats
- Mainly combined 
with PET or SPECT
- Low dose down to 
1 mSv for whole body 
scan

Sofie Gnext 
PET-CT

104 mm 120 
mm

50 μm 25–80 kVp 1 min, 
fastest scan

Not available - Combined with PET
- Single and multi
mouse imaging, rat 
and small non-human 
primate imaging

PerkinElmer 
G8 PET / CT

100 mm 50 mm 200 μm 59 kVp sub-minute 
CT scan

Not available - Combined with PET
- Fully-integrated 
animal management 
system and 3-clicks
to-data workflow
- Average dose: 50.1 
mGy

Bruker Albira 
Si

70 mm 70 mm 90 μm 
with 
minimum 
5 μm 
voxel

10 – 50 kVp minutes Not available - Combined with PET 
and/or SPECT
- Dynamic 2D X-ray 
mode for fluoroscopic 
imaging

Bruker Si78 
PET/CT

70 mm 200 
mm

Max 50 
μm

20–65 kVp 
maintenance-
free X-ray 
source

fastest total 
body scan: 
7.2 sec

Gated PET and 
CT imaging 
for cardiac 
imaging or 
respiration 
triggering

- Low dose scanning < 
6 mGy
- Radiation shielding: 
< 1 μSv/h at 10 cm 
from surface

Sedecal 
SuperArgus 
Compact 
PET/CT

100 mm 50 mm 50–100 
μm

−15 sec Available for 
PET

- Combined with PET
- 3 models available 
r – 100 mm bore 
for mouse, rats or 
marmosets up to 3 kg; 
R – 160 mm bore for 
multi-animal imaging, 
as well as rabbits up to 
6 kg; or P – 260 mm 
bore for non-human 
primates, canine or 
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Type Scanner 
Manufacturer/
Model

Diameter 
FOV 
(mm)

Length 
(mm)

Spatial 
Res.

kVp Scanning 
Time

Gating Other 
Characteristics

porcine up to 10 kg. 
Each model can be 
configured with 2, 4, 
or 6 PET rings

MRSolutions 
MRS*PET/CT 
80

112 mm 80 mm Up to 18 
μm

40–90 kVp minutes Not available - Uses MRS*PET 
CLIP-ON technology
- Variable zoom
- Dual Energy
- Suitable for both 
in-vivo and ex-vivo 
applications

Photon 
Counting 
Systems

Mars 
Bioimaging 
Preclinical 
Spectral CT 
System

100 mm 280 
mm

30–100 
μm (user 
selects)

30–120 kVp 8 mins for 
30 × 15 mm 
volume

Not available - Uses photon 
counting detector with 
8 energy bins
- Detector 
constructed from CZT
Medipix3RX detector 
modules with 110-μm2 

pixels
- Charge summing 
mode improves 
spectral measurement 
accuracy
- Radiation dose: 20–
80 mGy
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Table 2

Examples of commercially available contrast agents for micro-CT.

Contrast Agent Contrast 
Element

Characteristics

Bracco Imaging, 
Iopamidol (Isovue-370)

Iodine - Small molecular weight contrast agent used in humans
- Rapidly excreted by the kidneys
- Can be used for perfusion micro-CT or to study kidneys

MediLumine, Fenestra 
LC/VC

Iodine - Lipid emulsion containing an iodine-based compound
- VC is for vascular contrast, LC is for liver contrast
- Used for in vivo preclinical imaging

Binitio Biomedical, eXIA 
160, eXIA 160XL

Iodine - Aqueous, colloidal, poly-disperse contrast agents behaving initially as blood pool contrast 
agents
- Subsequently taken up by the myocardium and other metabolically active tissues over time [9]
- Metabolized by catabolic pathways in the body thus enabling metabolic imaging of the 
myocardium and brown adipose tissue
- Used for in vivo preclinical imaging

Miltenyibiotec, ExiTron 
nano 6000,12000

Barium - Nanoparticle-based blood pool contrast agents
- Accumulates over time, particularly in the liver and spleen
- Used for in vivo preclinical imaging

Nanoprobes, Aurovist 15 Gold - Nanoparticle-based blood pool contrast agent
- Accumulates over time, particularly in the liver and spleen
- Used for in vivo preclinical imaging

Scarletimaging, BriteVu Barium It is used only for ex vivo studies as an intravascular agent to cast the cardiovascular system down 
to the capillary level.
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Table 3

Summary of data acquisition and reconstruction parameters for the figures in this work. PCD: Photon 

Counting Detector. EID: Energy Integrating Detector.

Figure Scanner Model Acquisition and Reconstruction Contrast 
Agent(s)

Voxel Size 
(Resolution)

Reported Dose

1 CosmoScan FX Rigaku 
Corporation

- 2 min. at 90 kVp, 88 μA, FOV 45 mm
- CosmoScan Database software

N/A 90 μm Not reported

2 - Custom-built system 
within a refurbished 
clinical CT gantry
- Dexela 2923 MAM 
EID, Perkin Elmer Inc.
- L10951 source, 
Hamamatsu Photonics K. 
K.

- 5 min. at 60 kVp, 50 W
- 11.7 ms exposure per projection
- 10 cardiac, 4 respiratory phases
- Intrinsic gating
- Motion compensated reconstruction 
[10]
- Post-reconstruction denoising [11]

ExiTron nano 
12,000 (Ba 
based), nanoPET 
Pharma GmbH

<75 μm (10% MTF: 
7.5 lp/mm)

5 Gy (0.5–2 Gy 
results also 
demonstrated)

3 - Custom-built ex vivo 
scanner
- Rotating specimen 
geometry
- XCounter Thor PCD, 
Direct Conversion AB
- L9181-02 source, 
Hamamatsu Photonics K. 
K.

- 2 h at 80 kVp, 0.2 mA
- Helical acquisition with 2.5 cm 
vertical translation (1070 projections, 
1070°)
- Split Bregman algebraic 
reconstruction regularized with rank
sparse kernel regression [12]

BriteVu (Ba 
based), Scarlet 
Imaging

38 μm (10% MTF: 
6.5–7.1 lp/mm)

N/A (ex vivo)

4 - Custom dual-source, 
dual-energy in vivo 
scanner
- Vertical subject 
geometry
- Dexela 1512CL EID 
(CsI), Perkin Elmer Inc.
- G-297 sources, Varex 
Imaging

- Chain 1: 40 kVp, 50 mA, 25 ms
- Chain 2: 80 kVp, 40 mA, 10 ms
- Circular scan (360 projections, 360°)
- Analytical reconstruction
- Post-reconstruction denoising with 
joint bilateral filtration [13]

- Iodine 
liposomes [14]
– 15 nm AuroVist 
gold 
nanoparticles

63 μm (10% MTF: 
3.4 lp/mm)

57 mGy

5A Same as Fig. 4 - Chain 1: 40 kVp, 50 mA, 25 ms
- Chain 2: 50 kVp, 80 mA, 12.5 ms
- Circular scan (720 projections, 360°)
- Split Bregman algebraic 
reconstruction regularized with rank
sparse kernel regression [12]

- Iodine 
liposomes [14]
- Gadolinium 
liposomes [15]

123 μm (10% MTF: 
3.4 lp/mm)

162 mGy

5B - Custom-built in vivo 
scanner
- Vertical subject 
geometry
- SANTIS 0804 ME 
prototype PCD, Dectris 
AG
- G-297 source, Varex 
Imaging

- 3 min. at 80 KVp, 2 mA, 200 ms
- Helical acquisition, 1.25 cm vertical 
translation (900 projections, 1070°)
- Energy thresholds: 25, 34, 50, 60 keV
- Split Bregman algebraic 
reconstruction regularized with rank
sparse kernel regression [12]

- Iodine 
liposomes [14]
- Gadolinium 
liposomes [15]

123 μm (10% MTF: 
3.5 lp/mm)

43 mGy

6 Same as Fig. 5B - 90 sec. at 80 KVp, 5 mA, 10 ms
- Helical acquisition, 1.25 cm vertical 
translation (9000 projections, 1070°)
- 10 cardiac phases, retrospective 
gating
- Energy thresholds: 25, 34, 40, 55 keV
- Split Bregman algebraic 
reconstruction regularized with rank
sparse kernel regression [12]

- Iodine 
liposomes [14]
– 15 nm AuroVist 
gold 
nanoparticles

123 μm (10% MTF: 
2.8–3.0 lp/mm 
depending on 
energy threshold)

190 mGy

7 Similar to Fig. 4 - Iodine 
liposomes [14]

8 - Edge-illumination XPC 
imaging
- Pixirad-2 PCD [16]
- MicroMax-007 HF, 
Rigaku source (Mo 

- 18 h at 40 kVp, 30 mA, 1 s
- 1441 projection angles over 360°
- 5 phase steps, 4 dithering steps per 
angle
- Reconstruction with filtered 

N/A (19 μm FWHM) Not measured 
(lower dose 300 
mGy scan also 
presented)
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Figure Scanner Model Acquisition and Reconstruction Contrast 
Agent(s)

Voxel Size 
(Resolution)

Reported Dose

anode)
- 30 μm Mo source filter

backprojection (Hilbert filter for phase)
- Sample translation during scanning to 
reduce ring artifacts

9 Same CT data as in Fig. 6 - Only 25 keV threshold data used for 
4D CNN training
- 10 cardiac phases, retrospective 
gating
- Split Bregman algebraic 
reconstruction regularized with rank
sparse kernel regression [12] (Fig. 9B; 
CNN training labels; 9000 projections 
over 1070°)
- Unregularized algebraic 
reconstruction (Fig. 9C; CNN training 
inputs; subsampled to 2250 projections 
over 1070°)

123 μm (10% MTF: 
2.7 lp/mm, 4D 
CNN output, Fig. 
9D)

10 - Non-contrast scans: 
TomoScope Duo 
commercial scanner, 
formerly CT Imaging 
GmbH
- Contrast-enhanced 
scans: InSyTe μCT 
commercial scanner, 
Trifoil Imaging

- Non-contrast scans: 90 sec. per scan, 
65 kVp, 1 mA; 720 projections over 
360°
- Contrast-enhanced scans: 75 kVp, 
230 ms; 207 projections over 360°

- No contrast or 
ExiTron nano 
6000 (Ba based), 
nanoPET Pharma 
GmbH

- Non-contrast 
scans: 80 μm spatial 
resolution reported
- Contrast scans: 
280 μm voxels
- Segmentations 
processed with 240 
μm voxels

Not reported
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