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Abstract

Sustained pain is a major characteristic of clinical pain disorders, but it is difficult to assess 

in isolation from co-occurring cognitive and emotional features in patients. In this study, we 

developed a functional magnetic resonance imaging signature based on whole-brain functional 

connectivity that tracks experimentally induced tonic pain intensity and tested its sensitivity, 

specificity and generalizability to clinical pain across six studies (total n = 334). The signature 

displayed high sensitivity and specificity to tonic pain across three independent studies of 

orofacial tonic pain and aversive taste. It also predicted clinical pain severity and classified 

patients versus controls in two independent studies of clinical low back pain. Tonic and clinical 

pain showed similar network-level representations, particularly in somatomotor, frontoparietal 

and dorsal attention networks. These patterns were distinct from representations of experimental 

phasic pain. This study identified a brain biomarker for sustained pain with high potential for 

clinical translation.

Pain is a major clinical and social problem. In the United States, one in five adults (20.4%) 

currently suffers from clinical pain1, with an annual economic cost of hundreds of billions 

of dollars2. One important characteristic of clinical pain is its sustained nature3, which 

may involve brain regions related to top-down cognitive and affective coping responses in 

addition to sensory-discriminative processes. However, it remains difficult to objectively 

assess sustained pain in patients because clinical pain is usually affected by multiple factors, 

such as learning and appraisal4, mood and emotions5,6 and attention and self-referential 

processes7,8.

Tonic experimental pain, which has long been used as an experimental model of clinical 

pain9, shares similar characteristics with clinical pain. Both tonic and clinical pain unfold 

over protracted time scales, are more unpleasant than experimental phasic pain (EPP)10,11 

and are more likely to elicit spontaneous coping responses12,13. EPP, in contrast, lasts 

for a short time and is known to be qualitatively and neurobiologically distinct from 

clinical pain14,15 and tonic pain12,16,17. These raise the possibility that tonic pain might be 

neurobiologically closer to ongoing clinical pain. However, to our knowledge, no previous 

human neuroimaging studies have directly examined how the neural representations are 

similar or distinct among tonic experimental pain, phasic experimental pain and clinical 

pain.

In this study, we addressed this question by identifying a neuroimaging-based signature for 

tonic pain and comparing it with clinical pain and EPP. More specifically, we addressed 

the following three research questions (Fig. 1a): 1) Can we identify a functional magnetic 

resonance imaging (fMRI)-based signature for experimental tonic pain based on whole-brain 

functional connectivity? 2) Can this tonic pain signature explain individual differences in 

clinical pain? 3) How similar or distinct are the functional connectivity models in capturing 

experimental tonic pain, clinical pain and EPP?

To answer these questions, we collected three fMRI datasets (Studies 1–3, n = 109) while 

participants were experiencing tonic pain. To induce tonic pain, we applied capsaicin-rich 

hot sauce on participants’ tongues using a filter paper before fMRI scanning. We also tested 
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other non-painful aversive stimuli in separate scanning runs. We used these data to develop a 

machine learning model predictive of ongoing pain ratings based on whole-brain functional 

connectivity patterns. The Tonic Pain Signature (ToPS) was highly predictive of dynamic 

changes in pain ratings across three independent datasets (within-individual prediction r = 

0.47–0.64). In addition, the ToPS correctly discriminated tonic pain from other non-painful 

aversive conditions, including bitter taste and aversive odor (76–85% accuracy), providing 

evidence for its specificity. We then tested the ToPS on two clinical back pain datasets 

(Studies 4 and 5, n = 192). The ToPS predicted overall pain severity in two different 

clinical pain conditions—that is, subacute back pain (SBP) and chronic back pain (CBP) (r 
= 0.56–0.57 depending on the task types)—and accurately discriminated patients with CBP 

from healthy controls (71–73% accuracy). When we compared predictive brain connectivity 

patterns across tonic, clinical and phasic pain (Study 6, n = 33), tonic experimental and 

clinical pain models were similar, particularly in somatomotor, frontoparietal and dorsal 

attention networks. These patterns were distinct from EPP. Overall, this study revealed a 

unique functional brain architecture for sustained, ongoing pain and provides a brain-based 

biomarker predictive of tonic pain intensity. This biomarker has the potential to be used 

in clinical settings to characterize pain experience-related brain activity in patients and 

treatment response.

Results

Developing a functional connectivity signature for tonic pain.

Using Study 1 as a training dataset (n = 19), we modeled the relationship between functional 

connectivity and pain ratings across the ‘capsaicin’ and ‘control’ conditions across all 

participants (Q1 in Fig. 1a; for its behavioral and physiological results, see Extended Data 

Fig. 1 and Supplementary Results). We trained multiple candidate models (a total of 5,916 

models for each of pain intensity and unpleasantness) using combinations of input features 

and algorithms (see Extended Data Fig. 2 for details of modeling). Then, we evaluated these 

models using cross-validation (Study 1) and prospective validation (Study 2, n = 42; see 

Supplementary Fig. 1a for the behavioral results of Study 2). We selected the best models 

for pain intensity and pain unpleasantness based on a composite score across multiple 

objectives, including sensitivity in predicting pain ratings, specificity to pain versus aversive 

taste and generalizability in the validation dataset18 (see Extended Data Figs. 2 and 3 for the 

details of evaluation criteria and the results).

The best-performing intensity and unpleasantness models both used dynamic conditional 

correlation (DCC)19 with a modified 279-region version of the Brainnetome parcellation20 

that included additional midbrain, brainstem and cerebellar regions (Methods). The selected 

modeling algorithm was principal component regression (PCR)21 with a reduced number of 

principal components (PCs) (21 components for the pain intensity model and 26 for the pain 

unpleasantness model; Supplementary Fig. 2). Because the performance of the pain intensity 

model was slightly better than the pain unpleasantness model (Supplementary Tables 1 and 

2), we focused on the pain intensity model in the following analyses. We named this final 

model the ToPS; naming a model allows the same model (with fixed parameters) to be 

referred to and validated across studies22,23. In the validation dataset (Study 2), the ToPS 
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model predicted within-individual variation in avoidance ratings for tonic pain stimuli with 

the mean correlation between actual and predicted ratings of r = 0.47, P = 3.24 × 10−10, 

bootstrap test (Fig. 2a), and also discriminated the capsaicin condition from the bitter taste 

condition with 76% classification accuracy, P = 0.0009, binomial test (Fig. 2b).

Predictive performance of the ToPS.

To obtain an unbiased estimate of the predictive performance of the ToPS, we tested the 

model on an additional independent test dataset (Study 3, n = 48), which was based on a 

similar experimental design as Studies 1 and 2, but was conducted at a different site on a 

different study population (in South Korea) and had a longer scan duration (20 min) than 

Studies 1 and 2 (see Supplementary Fig. 1b for the behavioral results of Study 3).

The ToPS showed good performance in tracking within-individual variation in avoidance 

ratings for tonic pain stimuli (correlations between time-binned actual and predicted ratings 

(five bins per run): mean r = 0.51 and P = 3.20 × 10−14 across the capsaicin and control 

runs; mean r = 0.38 and P = 6.51 × 10−6 within the capsaicin run; bootstrap tests) (Fig. 2c 

and Supplementary Fig. 3). The ToPS discriminated the capsaicin condition both from the 

bitter taste and aversive odor conditions with high accuracy (85% and P = 6.24 × 10−7 for 

both contrasts; binomial tests; Fig. 2d), and its prediction performance for bitter taste and 

aversive odor ratings was significantly worse than the prediction for the tonic pain ratings 

(t47 = 3.85–4.88, all P < 0.001, paired t-test; Extended Data Fig. 4), suggesting specificity of 

the ToPS to tonic pain compared to non-painful, tonic aversive experiences.

In addition to predicting within-individual variation, ToPS responses also predicted 

individual differences in average pain ratings (r = 0.51 and P = 8.23 × 10−8 when 

using both capsaicin and control runs; r = 0.40 and P = 0.004 when using the capsaicin 

run only; bootstrap tests) and accurately discriminated the capsaicin condition from the 

control condition in the forced-choice test (88% accuracy, P = 1.01 × 10−7, binomial test). 

Supplementary Table 1 summarizes the test results across three independent tonic pain 

studies (Studies 1–3). Furthermore, the prediction performance was not driven by movement 

or physiological noise and generalized to different preprocessing pipelines (Extended Data 

Fig. 5 and Supplementary Results).

The ToPS predicts clinical back pain.

To determine whether the ToPS can explain individual differences in clinical pain (Q2 in 

Fig. 1a), we tested the ToPS on a publicly available clinical pain dataset (Study 4, n = 

95) obtained from the OpenPain Project (http://www.openpain.org/). This dataset is from a 

longitudinal fMRI study of clinical back pain including patients with SBP (n = 70) and CBP 

(n = 25)5,24,25. Both clinical conditions are characterized by the presence of sustained back 

pain. This dataset had two types of experimental tasks: one was a ‘spontaneous pain rating’ 

task, in which the participants were asked to report their spontaneous pain continuously 

during scanning; the other was the ‘resting state’ task, in which the participants rested 

without performing any other task. We evaluated how well the ToPS explained individual 

differences in overall pain severity, averaged over multiple sessions (2–5 visits depending on 

individual patients, during a 1–3-year follow-up period). We tested the ToPS on both pain 
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conditions (SBP and CBP) and task types (that is, ‘spontaneous pain rating’ and ‘resting 

state’ conditions). In this analysis, we included the patients who had data from both task 

types (testing n = 53 and n = 20 for SBP and CBP patients, respectively).

The ToPS response predicted individual differences in the overall pain severity of patients 

with clinical pain but in a task-dependent fashion (Supplementary Table 3). For the patients 

with SBP (Fig. 3a), the ToPS model showed significant prediction only for the spontaneous 

pain rating data (r = 0.59 and P = 3.91 × 10−6), not for the resting state data (r = 0.09 and 

P = 0.528). In contrast, for the patients with CBP (Fig. 3b), the model showed significant 

prediction for the resting state data (r = 0.56, P = 0.011) and non-significant but medium 

effect size prediction for the spontaneous pain rating data (r = 0.30 and P = 0.197). For the 

patients with CBP, differences in the correlation coefficients between the task types were 

not significant (z = 0.93 and P = 0.353), indicating that the task-dependent difference in 

prediction was minimal in patients with CBP. These task-dependent results suggest that, for 

the patients with SBP, paying attention to their ongoing pain experience is needed to produce 

functional connectivity patterns similar to our tonic pain model, but, for the patients with 

CBP, even resting state can produce the functional connectivity patterns. Intriguingly, the 

ToPS performed better in predicting clinical back pain severity than the models trained on 

the clinical pain datasets themselves (Supplementary Results and Extended Data Fig. 6). 

Note that caution is needed in interpreting the results for CBP given the small sample size.

We further tested the ToPS on two more CBP datasets (Study 5, n = 63 and n = 34 from 

Japan and the United Kingdom, respectively; also available at http://openpain.org) (Fig. 

3c,d). In a previous study26, these datasets were used to develop a diagnostic classifier 

that discriminated patients with CBP from healthy controls. In the current study, we also 

tested the ToPS as a classifier of patients with CBP versus controls. The ToPS discriminated 

the patients with CBP (n = 24 and n = 17 for the Japan and United Kingdom datasets, 

respectively) from the matched healthy controls (n = 39 and n = 17, respectively) with high 

accuracy. For the Japanese sample, the classification accuracy with an optimal threshold was 

73% (P = 0.0003, binomial test), with 79% sensitivity, 69% specificity and area under the 

curve (AUC) = 0.79; for the United Kingdom dataset, maximum accuracy with the optimal 

threshold was 71% (P = 0.024, binomial test), with 65% sensitivity, 76% specificity and 

AUC = 0.74.

Overall, the ToPS model 1) predicted variation in tonic pain over time within individuals; 

2) was specific to tonic pain compared to other conditions tested; 3) predicted individual 

differences in clinical pain severity ratings; and 4) was higher in patients than matched 

controls. These results suggest that experimental tonic pain produces similar patterns of 

brain connectivity to clinical pain.

Network-level characterization of the ToPS.

To understand how and why the ToPS model works and to examine its neurobiological 

validity, it is crucial to investigate which brain connectivity changes were the main 

drivers of the ToPS prediction performance. To help interpret the model, we used nine 

large-scale functional brain networks27 to visualize the model predictive weights (Fig. 

4 and Supplementary Fig. 4). We conducted bootstrap tests to identify the connectivity 
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features that most reliably contribute to the prediction. Then we selected the top 0.1% (39 

connections, P < 0.000028, false discovery rate (FDR)-corrected q < 0.027; Supplementary 

Table 4) for visualization and interpretation.

As shown in Fig. 4b, the most reliable positive weights (that is, higher pain with increasing 

connectivity) were found in the connections among the somatomotor network (SMN), the 

frontoparietal network (FPN), the visual network (VN) and the dorsal attention network 

(DAN), which seems to suggest the importance of multisensory integration28 and top-down 

attention processes29,30 in tonic pain. The most reliable negative weights (that is, lower 

pain with increasing connectivity) were found in the limbic and paralimbic cortical regions 

(limbic network (LN)) and brainstem (BS) regions, suggesting the importance of context 

processing31,32 and the involvement of descending pain modulation33,34 in reducing tonic 

pain intensity. Similar results were found when we grouped the parcels into gross anatomical 

brain regions and examined the top ten positive and bottom ten negative features (Fig. 4c). 

For example, the connections between the paracentral lobule (in the SMN) and the dorsal 

part of precuneus (in the FPN) had strong positive weights, whereas the connections with 

the LN, such as the parahippocampal gyrus near amygdala and the superior temporal gyrus 

including medial temporal pole had strong negative weights. For more detailed information 

about the node-level connectivity patterns, see Extended Data Fig. 7. Additional network

level characterization of raw functional connectivity data and the pain unpleasantness model 

are displayed in Supplementary Figs. 5 and 6, respectively.

Regions of interest analysis within the ToPS.

We further examined the patterns of predictive weights across some selected regions of 

interest (ROIs) that are commonly studied and received attention in the context of the pain 

neuroimaging studies35–37. The ROIs include pain processing and modulatory brain regions 

(Fig. 5a). Because the ToPS was developed based on whole-brain functional connectivity, 

this analysis allows us to better understand the relative contributions of the ROIs while 

controlling for other regions and connections.

With a Bonferroni-corrected threshold P < 0.05, the connection between the dorsomedial 

prefrontal cortex (dmPFC) and ventral striatum survived, and its predictive weight was 

positive. A supplementary seed-based connectivity analysis using the ventral striatum as 

a seed region also showed a similar pattern of results—that is, positive pain-predictive 

weights in the dmPFC (Extended Data Fig. 8 and Supplementary Results). At a more 

liberal threshold (uncorrected P < 0.05), dorsolateral prefrontal cortex (dlPFC) connectivity 

with classical pain processing regions predicted increased pain, including primary/secondary 

somatosensory cortices (S1/S2) and dorsal posterior insula (dpINS), whereas connectivity 

with the brainstem predicted lower pain, suggesting that the dlPFC might play a dual role 

in processing tonic pain38–40. With this threshold, most of the negative weight connections 

came from the brainstem, and the regions that are connected to the brainstem included 

key brain regions for descending pain modulation33,34, such as the periaqueductal gray 

(PAG). When we calculated the proportions of positive versus negative weight connections 

with the rest of the brain with this threshold (Fig. 5b), the brainstem, hippocampus, PAG, 

ventromedial prefrontal cortex (vmPFC) and amygdala had more negative connectivity 
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weights than positive ones. Conversely, the dpINS, ventral striatum, S1, dorsal anterior 

cingulate cortex (dACC), dmPFC, dlPFC and anterior insula (aINS) had more positive than 

negative connectivity weights. This pattern reveals potential brain regions for facilitatory and 

inhibitory roles in tonic pain, respectively.

Comparing the ToPS with the predictive models of clinical pain and EPP.

To examine how similar or distinct the functional connectivity models are among tonic pain, 

clinical pain and EPP (Q3 in Fig. 1a), we compared the ToPS model with the SBP model, 

which was trained using the SBP dataset (Study 5, n = 70; Extended Data Fig. 6a), and with 

the EPP model, which was trained using an experimental heat pain dataset (Study 6, n = 33, 

12.5-s heat stimulation)41,42. We trained the EPP model using the same modeling options 

used in the tonic pain and SBP models, and it showed good cross-validated prediction 

performance (mean within-individual r = 0.63, P = 1.53 × 10−19, bootstrap test). Here, the 

CBP model was not used for comparison, because the model showed poor cross-validated 

performance.

When we calculated the pattern similarity among the network-level averages of different 

pain models (Fig. 6a), the ToPS appeared to be more similar to the SBP model than the 

EPP model: rToPS-SBP= 0.25, P = 0.095 and rToPS-EPP = −0.04, P = 0.795. This result also 

held after thresholding to retain the top 0.1% of predictive weights (Supplementary Fig. 

7): rToPS-SBP = 0.31, P = 0.036 and rToPS-EPP = 0.04, P = 0.817. The pattern similarity 

between the SBP model and the EPP model was low, rSBP-EPP = −0.05, P = 0.747, and with 

thresholding, rSBP-EPP = −0.01, P = 0.940. The prediction performances of the SBP and EPP 

models on the tonic pain data also provided a similar conclusion: the SBP model predicted 

tonic pain better than the EPP model (SBP model, mean r = 0.35 and P = 1.20 × 10−6; EPP 

model: mean r = 0.19 and P = 0.008), although both models showed worse performance than 

the ToPS.

Lastly, to examine which connections showed similar predictive weights between the ToPS 

and other models, we compared the magnitude of network-level weight averages using 

bootstrap tests (with 10,000 iterations; Fig. 6b,c). The results further provided a similar 

conclusion that the differences in network-level weight magnitude between the ToPS and the 

SBP model were smaller than the differences between the ToPS and the EPP model in seven 

of the nine networks (Fig. 6d). In particular, the SMN, DAN and FPN showed significant 

differences for the ToPS versus the EPP model—SMN: z = 3.49 and P = 0.0005; DAN: z = 

6.95 and P < 0.0001; and FPN: z = 5.81 and P < 0.0001—whereas these networks showed 

much smaller differences for the ToPS versus the SBP model—SMN: z = −0.35 and P = 

0.728; DAN, z = 2.31 and P = 0.021; and FPN, z = 2.35 and P = 0.019. The differences in 

the SMN, DAN and FPN between the ToPS/SBP models versus the EPP model suggest that 

multi-functional brain systems involved in ‘top-down’ prediction and regulation of attention 

and cognition are important for understanding sustained pain, and that tonic and clinical pain 

share common connectivity patterns within these networks.
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Discussion

In this study, we developed a predictive model for tonic pain based on the whole-brain 

functional connectivity. The ToPS was sensitive to within-individual variation in tonic pain 

intensity over time, whereas it did not respond to other tonic non-painful aversive stimuli. 

The ToPS also predicted inter-individual differences in pain severity of patients with clinical 

back pain, and its prediction accuracy was higher than models trained on the clinical pain 

datasets themselves. Direct comparisons among predictive models for different kinds of pain 

provided evidence that clinical pain shares common brain representations with experimental 

tonic pain. These commonalities appear to be substantial enough that the ToPS can predict 

clinical pain severity. Therefore, this study provides a promising neuroimaging biomarker 

for tonic pain with potential for clinical translation43.

The ToPS showed good generalizability across multiple fMRI datasets. Particularly, we used 

three independent datasets (Studies 1–3) for training, validation and independent testing of 

the model, respectively. These datasets were heterogeneous in terms of acquisition sites, 

scanners, participant ethnicity and the details of the experimental design. This heterogeneity 

of the samples might reduce predictive accuracy during training and validation, but it helps 

develop a model with better robustness and generalizability18. To fully exploit this feature, 

we conducted a broad exploration by developing thousands of candidate models from the 

training data and selected the optimal hyperparameters using a model competition based on 

the validation dataset (Extended Data Fig. 2). This two-step model development framework 

allows us to find a robust and generalizable predictive model without appreciable overfitting.

A few studies developed generalizable signatures for pain using multiple datasets with 

prospective testing41,44, but most were designed to predict experimentally induced phasic 

heat pain, which is qualitatively different from tonic and clinical pain10. We showed that 

a functional connectivity model for EPP could not explain tonic pain experience, and its 

pattern of predictive weights was different from the tonic and clinical pain models. When 

we additionally tested a priori predictive models for EPP on Studies 2 and 3 datasets, 

including the Neurologic Pain Signature (NPS)41 and Stimulus Intensity Independent Pain 

Signature-1 (SIIPS1)44, both models showed poor performance (Extended Data Fig. 9), 

indicating that the ToPS captures unique features of brain representations for pain that could 

not be captured by EPP models.

Our tonic pain model provides evidence that tonic pain experience involves a highly 

distributed, global neural process45. For example, most of the connections that survived 

thresholding (top 0.1%) were between-network connections (35 of 39 connections), 

suggesting that the interactions among different functional networks are crucial to the tonic 

pain experience. Particularly, we found that the connections between the SMN and FPN 

networks were among the most important predictors of tonic pain. Compared to the SMN, 

which includes many well-known classical pain-processing regions, the FPN’s role in tonic 

pain is less well understood46. It could reflect the heightened consciousness induced by 

tonic pain as suggested in the global workspace theory47, and recent neuroimaging studies 

have also suggested its role in attention- or expectancy-based pain modulation29,30,48. 

Supplementary analyses using an additional clinical pain dataset49 (Supplementary Data 
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1, n = 56; also available at http://openpain.org) suggest that our tonic pain model can predict 

the future placebo-induced analgesic responses largely based on the FPN connections in 

our model (r = 0.67 in the placebo-responder group, n = 18; for details, see Supplementary 

Fig. 8 and Supplementary Results). Furthermore, a recent study demonstrated that the 

spontaneous coping behaviors become more important for sustained pain12. Taken together, 

these results suggest that the FPN may play a crucial role in attentional or contextual 

modulation of pain-related signal in our tonic pain model29, although this hypothesis needs 

to be tested more thoroughly in the future.

The examination of the ToPS weights among several selected ROIs36 revealed that the ToPS 

weight patterns were largely consistent with previous literature24,31,34,36,38,41,44,50–55, but 

the model also identified some connections that have not been well documented in pain 

literature, such as the positive weight between the dmPFC and the ventral striatum. Previous 

studies mainly focused on the functional roles of the vmPFC–ventral striatum connectivity 

in pain perception, modulation, prediction error and transition to chronic pain24,42,56,57. 

Thus, an interesting future direction would be to examine the different functional roles 

of the dmPFC–versus vmPFC–ventral striatum connections in tonic pain processing and 

modulation (for more discussion, see Supplementary Results).

Notably, this study provides evidence that a neuroimaging-based marker for experimental 

tonic pain has the potential to diagnose and evaluate clinical pain conditions. It has been an 

unresolved question as to what degree experimentally evoked pain models apply to clinical 

pain and how much the brain representations of experimental and clinical pain overlap15,58. 

In this study, we found that our tonic pain model could predict clinical back pain severity 

and classify patients with chronic pain from healthy controls with reasonable levels of 

accuracy, and the patterns of the tonic pain model weights shared some features with a 

clinical back pain model. Furthermore, our findings provide supporting evidence that tonic 

pain is a better approximation to chronic pain than EPP13. Note that we used orofacial 

pain, which is emotionally more draining than other body pain59, and, more specifically, 

intraoral taste stimuli are known to activate the visceral defense system for the body’s 

internal milieu60. Therefore, our results may suggest that taste-induced orofacial tonic pain 

can be a good target for translational research on clinical pain.

It was quite counterintuitive that our tonic pain model was able to predict clinical pain scores 

better than a model trained on the data from patients with clinical back pain. Although 

there could be multiple explanations for this, one main reason could be that clinical data 

tend to be more heterogeneous and noisier than experimental data collected from healthy 

participants. For example, chronic pain is highly heterogeneous even within the same disease 

category and co-occurs with multiple psychiatric conditions, such as depression. Moreover, 

chronic pain experience is spontaneous by nature, and the uncontrolled characteristics of 

spontaneous pain could lower the statistical power and increase the possibility of confounds. 

This heterogeneous and noisy nature of clinical pain data could make model training 

vulnerable to confounds and overfitting if a large amount of data are unavailable. Therefore, 

data from tens of patients might not be enough to capture generalizable brain representations 

of clinical pain.
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Our tonic pain model, in contrast, capitalized on data from a well-specified experimental 

procedure that produced a similar temporal profile of pain experience across participants. 

It also used data from healthy volunteers free of co-occurring conditions and medications. 

Models predicting within-person variation, where each participant ‘serves as their own 

control’, can further reduce confounds and noise due to individual differences in brain 

vasculature and morphometry. Therefore, experimental pain data from healthy participants 

could be well suited to capture generalizable brain representations of sustained pain. 

Although the tonic pain model is biased in the sense that it does not capture all features 

of chronic pain, biased models often generalize well to new data because of robustness to 

sampling variance21. However, further investigation will be needed to fully understand why 

the tonic pain model worked well for clinical back pain data. In addition, the predictive 

performance of the ToPS for clinical back pain was dependent on the type of task patients 

performed. Although we speculate that the different task types might better reflect the 

different clinical pain conditions—for example, whether the attention to pain is required for 

the brain representations of ongoing pain to fully emerge—this needs further investigation.

There are some caveats in the current study, which are addressed and discussed in further 

detail in the Supplementary Results, including additional test results on Supplementary Data 

2 (n = 58). We also included an in-depth discussion on the potential clinical scenarios and 

challenges for the ToPS in Supplementary Results.

Overall, we developed a functional connectivity-based signature for tonic pain with potential 

for clinical translation. Although further validation and independent tests on data from 

different populations and different laboratories will be required to provide more definitive 

evidence for the robustness and generalizability of the ToPS, our results on generalizability 

across eight unique study cohorts (including two Supplementary Datasets) provide a 

meaningful step toward a neuroimaging pain biomarker that can quantitatively assess 

sustained pain and serve as a target for interventions.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591-020-1142-7.

Methods

Overview.

This study included eight independent fMRI studies (total n = 448) to develop, validate and 

prospectively test a functional connectivity-based predictive model of tonic pain. Sample 

sizes ranged from n = 19 to n = 97 per study. Studies 1–3, 6 and Supplementary Data 2 were 

locally collected datasets; Studies 4 and 5 and Supplementary Data 1 were publicly available 

(OpenPain Project; available at http://www.openpain.org/). Study 1 served as a ‘training 

dataset’ and was used for developing and evaluating multiple candidate models. Study 2 was 

a ‘validation dataset’ used only for the evaluation of the candidate models. Studies 3–6 and 
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Supplementary Data 1 and 2 were ‘independent test datasets’ for testing and characterizing 

the final model in an unbiased way. These independent datasets provide strong tests of 

the model’s generalizability, as they were not used in model training and validation and 

differed from Studies 1 and 2 in study site, scanning parameters and participant ethnicity. 

Furthermore, considering that we applied a pre-trained model (as trained in Studies 1 and 

2), these involved no multiple comparisons or model degrees of freedom in the test beyond 

those involved in calculating the correlation. Studies 1–3 (n = 109) and Supplementary 

Data 2 (n = 58) were from healthy participants with a capsaicin-induced tonic pain task. 

Studies 4 and 5 (n = 192) and Supplementary Data 1 (n = 56) were collected from patients 

with subacute and chronic pain. Study 6 (n = 33) was from healthy participants with a 

heat-induced phasic pain task. For details of methods for each study, see Supplementary 

Methods.

Brain parcellations.

Four types of brain parcellations were tested in this study (Extended Data Fig. 2). First, 

the Buckner group parcellation, which included cerebral cortex27, cerebellum61 and basal 

ganglia62, was combined with additional thalamic and brainstem regions from the SPM 

anatomy toolbox63. We divided the contiguous sub-regions within each network into 

separate regions, resulting in a total of 475 regions. Second, the Brainnetome atlas20, 

combined with additional cerebellum regions from a probabilistic atlas64 and brainstem 

regions63, resulted in a total of 279 regions. Third, the Human Connectome Project multi

modal parcellation (HCP-MMP)65, combined with additional subcortical regions from the 

Brainnetome atlas20, cerebellum regions64 and brainstem regions63, resulted in a total of 

249 regions. For these three parcellations, we spatially averaged the blood oxygen level

dependent (BOLD) signal time-series within each region for further functional connectivity 

processing. Lastly, we also tested the contiguous sub-regions from the NPS41 and the SIIPS1 

(ref. 44), resulting in a total of 59 regions. For the NPS and SIIPS1 sub-regions, we used 

pattern expression values for each region by calculating the dot product between the data 

and the regional predictive weight patterns. All the parcellations were used as volumetric 

atlas with re-sampling to 3×3×3-mm3 voxel size.

Functional connectivity processing.

We tested both static and dynamic functional connectivity features for the prediction 

(Extended Data Fig. 2). For static connectivity, we used Pearson’s correlation between pairs 

of the BOLD time series, which yielded one connectivity value per one pair of parcels. For 

dynamic connectivity, we used the DCC19, which was based on generalized autoregressive 

conditional heteroscedastic (GARCH) and exponential weighted moving average (EWMA) 

models (codes are available at https://github.com/canlab/Lindquist_Dynamic_Correlation). 

The DCC model has been shown to have better sensitivity and specificity in capturing 

dynamical changes in correlation as compared to the conventional sliding window dynamic 

correlation method66. For computational efficiency, we estimated parameters of the DCC 

model from the whole pairs of BOLD time series (using DCCsimple.m from the DCC 

toolbox) with the assumption that EWMA model parameters are consistent across whole 

connections. With these two different methods, we created two types of features for the 

prediction of between- and within-individual variations in pain: the first was the ‘overall’ 
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functional connectivity for between-individual prediction; the second was the ‘binned’ 

functional connectivity for within-individual prediction. Details of functional connectivity 

analysis for different groups of datasets (capsaicin tonic pain datasets (Studies 1–3 and 

Supplementary Data 2), clinical pain datasets (Studies 4 and 5 and Supplementary Data 1) 

and heat-induced phasic pain datasets (Study 6)) can be found in Supplementary Methods.

Developing tonic pain models.

Using the training data (Study 1, n = 19), we generated many different candidate models 

based on different modeling options as described below. Overall, we created features 

using different parcellations (Option 1) and correlation methods (Option 2) and predicted 

intermittent pain ratings (intensity or unpleasantness ratings, Option 4) with different 

algorithms and hyperparameters (Option 3). We concatenated all participants’ data across 

the capsaicin and control runs, each of which has seven time bins. Therefore, the number 

of observations (rows) of the training data was 266 (7 bins × 2 runs × 19 participants). The 

number of features (the columns of the training data) varied depending on the modeling 

options. A total of 5,916 models per each outcome variable were generated; the graphical 

illustration of this model building process is provided in Fig. 1b and Extended Data Fig. 2.

Option 1: parcellations.—We used four different types of brain parcellation: 1) the 

Buckner atlas, 2) the Brainnetome atlas, 3) the HCP-MMP and 4) the NPS and SIIPS1 

sub-regions.

Option 2: correlation methods.—We used two different types of correlation methods 

for calculating functional connectivity: 1) static correlation using Pearson’s correlation and 

2) DCC.

Option 3: algorithms and hyperparameters.—We mainly used three different 

modeling approaches with multiple hyperparameters for model training. The first modeling 

method was the connectome-based predictive modeling (CPM)67 with multiple levels of 

thresholding on P values of correlations (a total of 250 logarithmically spaced thresholds 

from P = 0.000001 to P = 0.1). Some of the thresholds were excluded when there was 

no survived feature. The numbers of features varied depending on the datasets and other 

options. The second algorithm was the PCR21 with reduced numbers of PCs based on the 

amount of explained variance. The number of PCs ranged from 1 (using only PC1) to 251 

(using PC1, PC2, … and PC251). The third algorithm was the PCR with least absolute 

shrinkage and selection operator (LASSO) regularization21. The number of PCs ranged from 

1 to 251, each of which consisted of the PCs that survived from LASSO regularization with 

different weight of penalty parameter λ.

Option 4: outcome variables.—We used two different outcome variables: 1) pain 

intensity and 2) pain unpleasantness.
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Calculating signature responses.

To test the performance of connectivity-based predictive models, we calculated signature 

response scores (the intensity of pattern expression) using a dot product of each vectorized 

functional connectivity data with model weights.

Signature response = w ⋅ x = ∑i = 1
n wixi

where n is the number of connections within the connectivity-based predictive models, w is 

the connection-level predictive weights and x is the test data.

Forced two-choice classification test for specificity tests.

For specificity tests, we used two-alternative forced choice tests, which compared two 

paired values of averaged signature responses for each individual. This approach does 

not need the assumption that all participants’ brain responses are on the same scale41. 

More specifically, we first calculated signature responses across time by obtaining the dot 

product of a signature model with time-varying connectivity matrices and averaged the 

time series of signature responses within each participant. Then, we compared the averaged 

signature responses of different experimental conditions within individual. For example, if 

the averaged signature response of the capsaicin condition was higher than that of the bitter 

taste (or aversive odor) condition within a participant, the model did a ‘correct’ classification 

for the participant. Classification accuracy was calculated with the probability of correct 

comparison across individuals.

Model competition.

To choose the best final model, we held a competition among the candidate models based on 

their prediction and classification performances across training and validation datasets. The 

seven a priori criteria included the performance scores related to model sensitivity in Study 1 

(Criteria 1–3) and Study 2 (Criteria 4–6) and specificity in Study 2 (Criterion 7).

Criterion 1 (Sensitivity): within-individual prediction in Study 1.—The first 

criterion was the cross-validated performance in predicting within-individual variation in 

pain ratings in Study 1 (n = 19). We calculated Pearson’s correlation values between the 

actual pain ratings and the predicted ratings (that is, pain ratings and signature response 

values from 14 time bins: seven from the capsaicin run and seven from the control run) for 

each participant and then averaged the correlation values to obtain one value per model. 

We used leave-one-participant-out cross-validation to obtain unbiased (or less biased) test 

results.

Criterion 2 (Sensitivity): between-individual prediction in Study 1.—The second 

criterion examined the cross-validated performance in predicting between-individual 

variation in pain ratings in Study 1 (n = 19). We calculated Pearson’s correlation values 

between the averaged actual pain ratings and predicted ratings for each condition and across 

participants (that is, 1 overall rating or prediction per condition per person × 2 conditions 
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(capsaicin and control) × 19 subjects = a total of 38 actual ratings and 38 predicted ratings). 

We used leave-one-participant-out cross-validation.

Criterion 3 (Sensitivity): classification of capsaicin versus control in Study 
1.—The third criterion examined the cross-validated classification performance between the 

capsaicin versus control conditions using Study 1 data (n = 19). We used two-alternative 

forced choice classification, which compared two paired values (one for capsaicin and the 

other for control) for each individual. Similarly to Criteria 1 and 2, leave-one-participant-out 

cross-validation was used.

Criterion 4 (Sensitivity): within-individual prediction in Study 2.—The fourth 

criterion was the model performance in predicting within-individual variation in pain ratings 

using Study 2 data (validation dataset, n = 42). Analysis details were the same as Criterion 

1 except that Study 2 had ten time bins for each run and that we did not use cross-validation 

because Study 2 was not included in the training of candidate models.

Criterion 5 (Sensitivity): between-individual prediction in Study 2.—The fifth 

criterion measured model performance in predicting between-individual variation in pain 

ratings in Study 2. Analysis details were the same as Criterion 2 except that we did not use 

cross-validation because Study 2 was not included in the training of candidate models.

Criterion 6 (Sensitivity): classification of capsaicin versus control in Study 2.
—The sixth criterion examined the classification performance between the capsaicin versus 

control conditions using Study 2 data. Analysis details were the same as Criterion 3 except 

that we did not use cross-validation because Study 2 data were not included in the training of 

candidate models.

Criterion 7 (Specificity): classification of capsaicin versus quinine in Study 
2.—The last criterion examined the model specificity with the model performance in 

discriminating the capsaicin (painful) condition from the quinine (non-painful, aversive) 

condition using Study 2 data. In the context of the current study, model specificity refers 

to whether the model responds only to the tonic pain condition and not to other confusable 

conditions, such as non-painful but salient and aversive stimuli. The analysis details were 

almost the same as Criterion 6 using forced two-choice classification test, except that the 

two conditions to be compared were the capsaicin and quinine conditions, not the capsaicin 

and control conditions.

Final model selection.

To combine results from the seven preset criteria, which consisted of four correlation 

coefficients (Criteria 1, 2, 4 and 5) and three classification accuracy (Criteria 3, 6 and 7), 

we used a percentile-based scoring method (ranged from 0 to 100 for each criterion). The 

method can be expressed using the following equation:

Pi, j =
Si, j − minV j

maxV j − minV j
× 100, where V j = Si, j ∣ i = 1, 2, …, n
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where Si,j represents the raw performance scores of i-th model for the j-th criterion; Vj 

represents the vectorized performance scores Si,j across models (n = the total number of 

candidate models); and Pi,j represents the percentile-based normalized score of i-th model 

for the j-th criterion. This equation assigns 100 to the model with the highest performance 

score and 0 to the model with the lowest performance score for each criterion. Then, the 

normalized percentile scores of the seven criteria were summed to one composite score 

value (possible range: 0–700), and we selected the model that had the highest composite 

score as the final model. We selected one best model per each outcome variable (that is, 

pain intensity and unpleasantness), and, therefore, there were two best models (one for pain 

intensity (Fig. 4) and the other for pain unpleasantness (Supplementary Fig. 6)). However, 

because the performance of the pain intensity model was slightly better than the pain 

unpleasantness model (Supplementary Tables 1 and 2), we focused on the pain intensity 

model in the current study, although the pain unpleasantness model is also available for 

further tests. For the graphical illustration of the model selection procedure, see Fig. 1b and 

Extended Data Figs. 2 and 3.

Independent testing of the ToPS.

We tested the ToPS on Study 3 data (n = 48) that were not included in the model training 

or validation at all. The Study 3 data, therefore, could provide a good test for the model 

generalizability and also allow us to obtain unbiased estimates of the model sensitivity 

and specificity. The tests included (a) within-individual tonic pain prediction; (b) between

individual tonic pain prediction; (c) classification between pain (capsaicin) versus control; 

(d) classification between pain versus bitter taste (quinine); (e) classification between pain 

versus aversive odor (fermented skate); (f) within-individual prediction of bitter taste; and 

(g) within-individual prediction of aversive odor. Tests (a) to (c) concerned model sensitivity, 

whereas tests (d) to (g) concerned model specificity. Most of the analysis details of tests 

(a) to (d) were same as Criteria 4–7 above (the ‘Model competition’ section), except that 

we divided the BOLD time series and continuous pain ratings into predefined numbers of 

time bins (five or ten bins) as described in the ‘Functional connectivity processing details for 

each study’ section (Supplementary Methods) for further analyses because the continuous 

pain rating was used in Study 3. Test (e) was the same as (d), except that an aversive odor 

condition was used for additional specificity testing. Tests (f) and (g) were the same as test 

(a), except that the avoidance ratings for bitter taste (f) and ratings for aversive odor (g) were 

the outcome variables, instead of the ratings for tonic pain as in (a).

Functional resting-state network assignment.

To facilitate the functional interpretation of the tonic pain model, we assigned the final 

brain parcellations (279 brain regions) to nine functional groups, which included seven 

cortical functional networks from the Buckner group27, subcortical regions and brainstem/

cerebellum. The graphical illustration of the Brainnetome parcellation and its nine functional 

groups are provided in Supplementary Fig. 4.

Thresholding of the predictive weights using bootstrap tests.

To facilitate the feature-level interpretation of the predictive model, we conducted bootstrap 

tests. We iteratively generated bootstrap samples from training data (random sampling 
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of participants with replacement; 10,000 iterations), trained predictive models using each 

bootstrap sample (with the same hyperparameters) and tested which features consistently 

contributed to the prediction using one-sample t-tests. Because too many features survived 

with the FDR-corrected q < 0.05, we decided to visualize the top 0.1% connections (39 

connections), which corresponded to q < 0.027, FDR corrected (Fig. 4b). For the anatomical 

region-level connectivity patterns shown in Fig. 4c or Fig. 5a, we grouped bootstrapped 

weights into gross anatomical brain regions and calculated the statistical significance of each 

region-level predictive weights.

Developing and evaluating an SBP model.

To compare the tonic pain model with other pain predictive models, we trained an fMRI 

connectivity-based predictive model of SBP using Study 4 data. For the SBP model, we used 

the ‘spontaneous pain rating’ task data only for the model development and validation (n 
= 70) because the ToPS showed its best performance with the task-type data. We divided 

the dataset into training and testing data, each of which included 35 patients, to obtain an 

unbiased estimate of the model performance. The grouping was stratified on the overall pain 

score—sorting the patients based on their overall pain scores in a descending order, grouping 

every two patients from the top to the bottom ranks (a total of 35 groups) and randomly 

sampling one patient from each group (total of 35 patients). This stratification method68 

allowed us to keep the training and test samples similar on the outcome variable and 

avoid spurious extrapolation in prediction. Using the training dataset (n = 35), we trained 

models to predict overall pain severity based on the patterns of whole-brain functional 

connectivity averaged over longitudinal visits. We keep the modeling options the same with 

the ToPS—Brainnetome parcellations, DCC and PCR with reduced number of PCs— except 

for the hyperparameter, that is, the number of PCs, which was determined based on the 

leave-one-participant-out cross-validation. Because the best SBP model showed reasonable 

levels of cross-validated performance in the training sample, we continued to test the model 

onto the remaining independent testing dataset (n = 35).

Developing and evaluating a CBP model.

Similarly to the SBP model, we trained an fMRI connectivity-based predictive model of 

CBP using Study 4 data. For the CBP model, we used the ‘resting state’ data for only the 

model development and validation (n = 20) because the ToPS showed its best performance 

with the task-type data. Among 20 patients with CBP, three were excluded in the model 

development because their fMRI scans did not cover the whole brain. Using the data of the 

remaining 17 patients with CBP, we trained models to predict overall pain severity scores 

based on the patterns of whole-brain functional connectivity averaged over longitudinal 

visits. Other modeling procedures were the same as the development of the SBP model 

above. Because the best CBP model from the model training did not show good predictive 

performance in leave-one-participant-out cross-validation (r = −0.28), we did not proceed to 

further test the model.

Developing and evaluating an EPP model.

We also trained an fMRI connectivity-based predictive model of heat-induced phasic pain 

using Study 6 data. Using the same modeling options (that is, Brainnetome, DCC and PCR 
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with reduced number of PCs) as other models, we trained models to predict trial-by-trial 

pain ratings. Similarly to the SBP models, we determined the optimal hyperparameter (that 

is, the number of PCs) based on the model performance from the leave-one-participant-out 

cross-validation.

Network-level comparisons of weight patterns among different predictive models.

To compare weight patterns among different models, we first used Pearson’s correlation 

between network-level averages of predictive weights (a total of 45 network-level weight 

averages for each model: nine within-network connections (diagonal) and 36 between

network connections (upper or lower triangle; 9C2 = 36)). To compare the mean predictive 

weights between predictive models (tonic versus phasic and tonic versus SBP), we 

conducted bootstrap tests, in which we 1) randomly sampled data with replacement 

10,000 times; 2) trained the model for each iteration and applied L2 normalization to the 

bootstrapped model weights (to make them comparable); and 3) subtracted the network-level 

mean predictive weights of the EPP or SBP models from the tonic pain model. Based on the 

bootstrapped distribution of the difference, we 4) calculated the statistical significance for 

each comparison.

Statistical analysis.

In Fig. 2a,c, we used bootstrap tests (with 10,000 iterations) to test whether the distributions 

of within-individual prediction–outcome correlations (n = 42 and n = 48 for Fig. 2a,c, 

respectively) were significantly higher than zero. Before the bootstrap tests, the correlation 

coefficients were r to z transformed. In Fig. 2b,d, the binomial tests were used to test 

whether the forced two-choice classification accuracies were significantly higher than the 

distribution of expected classification results with the chance-level probability (that is, 50%). 

Here, n = 42 and n = 48 for Fig. 2b,d, respectively. In Fig. 3a,b, t-statistics calculated 

from Pearson’s correlation coefficients were used to test whether the between-individual 

prediction–outcome correlations (n = 53 and n = 20 for Fig. 3a,b, respectively) were 

significantly higher than zero (one-sample t-test). In Fig. 3c,d, binomial tests were used 

to test whether the classification accuracies were higher than the chance level, which was 

63% for the test in Fig. 3c because of its unbalanced samples (patients n = 24 and healthy 

controls n = 39) and 50% for the test in Fig. 3d (patients n = 17 and healthy controls n = 

17). In Figs. 4b,c and 5, we used bootstrap tests (with 10,000 iterations) to threshold the 

parcel-level, anatomical region-level or ROI-level predictive weights of the ToPS. In Fig. 

6a, t-statistics calculated from Pearson’s correlation coefficient r were used to test whether 

the correlations between network-level predictive weights of different models (45 weights 

per model) were significantly higher than zero (one-sample t-test). In Fig. 6c, bootstrap 

tests (with 10,000 iterations) were used to test whether there was a significant difference 

between network-level predictive weights of different predictive models. Further details of 

the statistical methods are specified in each relevant description.
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Extended Data

Extended Data Fig. 1 |. Behavioral data of Study 1.
a, Pain intensity and unpleasantness ratings of Study 1 (n = 19). b, Heart rate (HR; 

beat-per-minute) and skin conductance response (SCR; μS) of Study 1 (n = 14). Note 

that physiological data of five participants were discarded, because they were not recorded 

during scan or the data quality was too bad. Error bars represent within-subject standard 

errors of the mean (s.e.m.).

Extended Data Fig. 2 |. Overview of the signature development and test procedure.
Step 1: Model training. Using Study 1 data, we trained a large number of candidate models 

for each outcome variable (pain intensity and unpleasantness) with multiple combinations 

of different parcellation solutions (features), connectivity estimation methods (feature 
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engineering), algorithms, and hyperparameters. We generated a total of 5916 candidate 

models for each outcome variable. Step 2: Model competition. To select the best model, 

we conducted a competition among the candidate models based on the pre-defined criteria 

including sensitivity, specificity, and generalizability based on cross-validated performance 

in Study 1 and also using Study 2 data as a validation dataset. For the full description of 

the competition procedure, please see Methods, and for the full report of the competition 

results, please see Extended Data Fig. 3. Step 3: Independent testing. To further characterize 

the final model in multiple test contexts, we tested the final model on multiple independent 

datasets, including two additional tonic pain dataset (Study 3 and Supplementary Data 2), 

three clinical pain datasets (Studies 4–5 and Supplementary Data 1), and one experimental 

phasic pain dataset (Study 6). Gray boxes represent locally collected datasets, and green 

boxes represent publicly available datasets. Different font colors indicate different scan sites.

Extended Data Fig. 3 |. Model competition results of pain intensity models.
Using multiple candidate models generated from the model development step (see Extended 

Data Fig. 2 and Methods for details), we conducted a model competition using 7 predefined 

criteria. The criteria consist of 4 correlation coefficients (within- and between-individual 

prediction-outcome correlations of Studies 1 and 2; shown in the top panel), and 3 

classification accuracy values (for Capsaicin vs. Control in Studies 1 and 2, and for 

Capsaicin vs Quinine in Study 2; shown in the middle panel). Dotted lines separate different 

parcellations, and colored bars on the top of the plots (gray, light green, green, red, orange, 

and pink) represent different options of connectivity calculation methods and algorithms (see 

the top right for detailed description for each color bar). For CPM-based models (gray and 

red color bars), thresholds become more stringent from the left to the right. For PCR-based 

models (light green, green, orange, and pink), more PCs were used from the left to the right. 

To combine the 7 different performance metrics, we used a percentile-based scoring method 

(ranging from 0 to 100 for each criterion). The combined score (possible range: 0 to 700) 
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was shown in the bottom panel, and the selected best model was indicated with the red arrow 

on the plots. Here we show the competition results only for the predictive model for pain 

intensity.

Extended Data Fig. 4 |. Specificity tests using a prediction approach (Study 3).
We used the ToPS to predict the avoidance ratings while participants were given a, bitter 

taste (quinine) or b, aversive odor. Left: Actual versus predicted ratings (that is, signature 

response) are shown in the plot. Signature response was calculated using the dot product 

of the model with the data. Signature response is using an arbitrary unit. Each colored 

line (or symbol) represents an individual participant’s data for across the treatment (quinine 

or aversive odor) and control runs (red: higher r, yellow: lower r, blue: r < 0). The exact 

P-values were P = 0.014 for bitter taste and P = 0.372 for aversive odor, two-tailed, bootstrap 

tests, n = 48. Right: Mean avoidance rating (black) and signature response (red) across 

the treatment and control runs. Shading represents within-subject s.e.m. Note that the left 

and right plots were based on averaging within five and ten time bins, respectively. ns = 

non-significant, *P < 0.05.
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Extended Data Fig. 5 |. Noise analysis.
a, Univariate comparisons of head motion (framewise displacement, FD) and physiological 

measures (heart rate, HR, and respiratory rate, RR) between the capsaicin versus control 

conditions with the independent test dataset (Study 3, n = 48). We used the violin and 

box plots to show the distributions of the values. The box was bounded by the first 

and third quartiles, and the whiskers stretched to the greatest and lowest values within 

median ±1.5 interquartile range. The data points outside of the whiskers were marked 

as outliers. Note that 10 participants’ physiological data were excluded due to technical 

issues with acquisition (remaining n = 38). For statistical testing, paired t-tests (two-tailed) 

were conducted. b, Noise analysis 1. To examine whether the nuisance and physiology 

variables explain the Tonic Pain Signature (ToPS) response, we trained a model to predict 

the ToPS scores based on 34 nuisance variables + 2 additional physiology variables 

with Study 3 data. The 34 nuisance variables included 24 head motion parameters (6 

movement parameters including x, y, z, roll, pitch, and yaw, their mean-centered squares, 

their derivatives, and squared derivative), 5 principal component scores derived from white 

matter (WM), and 5 principal component scores derived from cerebrospinal fluid (CSF). 

The 2 physiological variables were heart rate and respiratory rate. Because the effects of 

these confounding variables can be different across individuals and conditions, we trained 

predictive models for each condition and for each individual. To achieve more stable and 

unbiased predictive performance, we divided the data into 40 time-bins (each bin was 30 

seconds) and conducted 10-fold cross-validation. Prediction-outcome correlation coefficients 

are visualized with violin and box plots. For statistical testing, we used one-sample t-test, 

two-tailed. c, Noise analysis 2. To test whether the ToPS responses can explain tonic pain 

ratings above and beyond the nuisance and physiology variables, we conducted multi-level 
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general linear model (GLM) analysis (n = 38) using data averaged within 10 time bins for 

each individual across capsaicin and control condition (5 bins per condition), which is the 

same binning scheme as our main prediction results (Fig. 2c). To obtain standardized beta 

coefficients, all the features were z-scored. The exact P-values were (from left to right) 

1.86 × 10−8 (ToPS), 0.231 (FD), 0.145 (mean WM), 0.270 (mean CSF), 0.270 (HR), and 

0.272 (RR), two-tailed, multi-level GLM with bootstrap tests, 10,000 iterations. Overall, 

participants moved more and showed heart-rate acceleration during capsaicin (a), but the 

ToPS model was independent of movement and physiological variables (b). ToPS predicted 

pain avoidance ratings controlling for movement and physiological nuisance variables, but 

the nuisance variables themselves did not predict avoidance ratings. ns = not significant; 
****P < 0.0001.

Extended Data Fig. 6 |. Predictive performance of the clinical pain models.
a, Predictive performance of the SBP model, which was derived using a half of SBP 

patients’ spontaneous pain rating task data (n = 35, training set). The SBP model was then 

tested on the remaining half of the SBP data (n = 35, hold-out test set) to obtain an unbiased 

estimate of the predictive performance. Leave-one-subject-out cross-validation was used for 

predicting pain scores within the training dataset. The exact P-values for the prediction 

performance was 0.0002 for the training set (left) and 0.032 for the hold-out test set (right), 

two-tailed, one-sample t-test. b, Cross-validated performance of the CBP model, which was 

derived using the whole CBP patients’ resting state data (n = 17, after excluding data with 

insufficient brain coverages). Because the CBP model showed poor predictive performance 

even within the training dataset, further testing of the CBP model was discontinued. The 

exact P-value of the prediction performance was P = 0.269, two-tailed, one-sample t-test). ns 
= not significant, *P < 0.05, ***P < 0.001.
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Extended Data Fig. 7 |. Circular plot representation of the ToPS.
From outermost to innermost, the first layer of the circle represents different functional 

groups, and the second and third layers each represent the sum of positive and negative 

predictive weights coming from each brain region.

Extended Data Fig. 8 |. Ventral striatum seed-based connectivity analysis.
a, We used the bilateral ventral striatum (VS) ROIs from the ToPS model as a seed to 

construct whole-brain seed-based connectivity maps for each time-bin of Study 1 data (n 
= 19). We had a particular interest in the weight patterns within the two medial prefrontal 

regions, dorsomedial and ventromedial prefrontal cortices (dmPFC and vmPFC). With the 

whole-brain connectivity maps, b, we first conducted the univariate GLM analysis. For each 

individual, we regressed the VS seed-based functional connectivity (Y) on pain intensity 

ratings (X) across capsaicin and control runs and performed second-level t-tests on the beta 
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maps, treating participant as a random effect. Here we show the results for FDR-corrected q 
< 0.05 (corresponding to uncorrected P = 0.001), pruned with uncorrected P < 0.01 and 0.05 

(two-tailed). c, We also conducted a multivariate analysis, in which we used the principal 

component regression (PCR) with reduced number of PCs to predict pain intensity ratings 

based on VS seed-based connectivity across capsaicin and control condition. The number 

of PCs was selected based on cross-validated within-individual predictive performance (#PC 

= 45; mean prediction-outcome r = 0.25, P = 0.002, two-tailed, bootstrap test). To identify 

important brain regions, we conducted the bootstrap test for the PCR with 10,000 iterations. 

Here we show the results for P < 0.005 uncorrected, pruned with P < 0.01 and 0.05, two

tailed. d, Regression weights in the medial prefrontal regions, focusing on the dorsomedial 

and ventromedial prefrontal cortices (that is, dmPFC and vmPFC). The left panel shows 

the unthresholded univariate map from b, and the right panel shows the unthresholded 

multivariate regression map from c. The pie chart represents the proportion of positive 

(red) and negative (blue) weights in each of the medial prefrontal regions. Across both 

univariate and multivariate maps, a dorsal-ventral gradient (dorsal: more positive, ventral: 

more negative) was found in the medial prefrontal cortex. Black lines show the contours of 

dmPFC and vmPFC regions.

Extended Data Fig. 9 |. Predicting tonic pain ratings with fMRi activation-based signatures for 
EPP.
To examine whether the fMRI activation-based pain markers could achieve similar levels 

of predictive performance, we tested existing fMRI activation-based models, including 

a, the Neurologic Pain Signature (NPS) and b, the Stimulus Intensity Independent Pain 

Signature-1 (SIIPS1). The top panel shows the predictive performances on the validation 

dataset (Study 2), and the bottom panel shows the predictive performances on the 

independent dataset (Study 3). In the plots on the left-side, the color of dots and lines 

represented the levels of correlation (r) for each participant’s pain prediction (red: higher 

r; yellow: lower r, blue: r < 0). The plots on the right-side show mean values of the actual 

avoidance ratings (black) and signature responses (red). The capsaicin run was shown before 

the control run for the display purpose, and in the real experiment, the order of the runs 

was counterbalanced across participants. Shading represents the standard errors of the mean 

(s.e.m.). Note that the left and right plots were based on averaging within five and ten time 

bins, respectively.
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Extended Data Fig. 10 |. Testing the ToPS on an independent dataset with a different time-course 
of tonic pain and bitter taste (Supplementary Data 2).
We used the ToPS to predict the unpleasantness ratings while participants were given 

capsaicin, quinine (bitter taste), or saline (‘Control’). Here, the capsaicin and quinine stimuli 

were delivered to participants’ mouths using an MR-compatible gustometer system. This 

experimental setup allowed us to evoke capsaicin-induced orofacial tonic pain or quinine

induced bitter taste during two separate epochs within one run. a, Experimental paradigm for 

Supplementary Data 2 (n = 58). Each run lasts for around 14.5 minutes, and each stimulus 

(capsaicin for ‘Capsaicin’, quinine for ‘Bitter Taste’, and saline for ‘Control’ condition) 

was delivered two times within each run (1.5–3 min, and 7–8.5 min). The order of all 

conditions was counterbalanced across participants. b, Left: Actual versus predicted ratings 

(that is, signature responses) are shown in the plot. Signature response was calculated 

using the dot product of the model with imaging data. Each colored line (or symbol) 

represents an individual participant’s data across the capsaicin and control runs (red: higher 

r, yellow: lower r, blue: r < 0). Right: Mean avoidance rating (black) and signature response 

(red) across the capsaicin and control runs. Black arrows indicate when taste stimuli were 

delivered to participants. Shading represents within-subject s.e.m. The capsaicin and quinine 

runs are shown before the control run for the display purpose, regardless of the actual order 

of the two runs. Note that the left and right plots were based on averaging within five and ten 

time bins, respectively. The exact P-values were P = 3.32 × 10−9 for the capsaicin condition 

(top) and 0.710 for the bitter taste condition (bottom), two-tailed, bootstrap tests. ****P < 

0.0001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The dynamic functional connectivity data of Studies 3–5 are available at https://

cocoanlab.github.io/tops and https://github.com/cocoanlab/tops as a part of the tutorial. In 

addition, all the data to generate main figures are available at the same GitHub repository. 

The data that were not used in the main figures will be shared upon reasonable request. 

The raw data of Studies 4 and 5 and Supplementary Data 1 are publicly available at 

http://www.openpain.org/. The tonic pain signature can also be shared through https://

cocoanlab.github.io/tops.
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Fig. 1 |. Overview of research questions and main analyses.
a, This study aims to answer the three research questions (Q1–3) using six independent 

datasets and the predictive modeling approach. b, Overview of the experiment and data 

analyses to answer the research questions. We acquired fMRI data while participants 

experienced tonic orofacial pain and generated many candidate models predictive of pain 

ratings based on the functional connectivity patterns during tonic pain experience (Study 

1). The final model was selected through a model competition using a set of predefined 

criteria across training and validation datasets (Studies 1 and 2). We further validated the 

final model on prospective independent datasets (Studies 3–6). Different studies were used 

for answering different main research questions (for example, Study 3 for Q1, Studies 4 and 

5 for Q2 and Study 6 for Q3).
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Fig. 2 |. Sensitivity and specificity test results.
We show the sensitivity and specificity of the ToPS on the validation dataset (Study 2, n 
= 42) and on an independent dataset (Study 3, n = 48). Note that the results based on 

the validation dataset in a and b are somewhat biased because the hyperparameters were 

optimized using this dataset, whereas the results in c and d are unbiased given that this 

dataset was held out for testing until the model was developed. To obtain rating scores on a 

same scale across different stimulus modalities, we used an avoidance rating scale (question: 

‘How much do you want to avoid this experience in the future?’). a, Left: actual versus 

predicted ratings (that is, signature response) are shown in the plot. Signature response was 

calculated using the dot product of the model with the data and using an arbitrary unit. Each 

colored line (or symbol) represents individual participant’s data for across the capsaicin 

and control runs (red, higher r; yellow, lower r; blue, r < 0). P = 3.24 × 10−10, two-tailed, 

bootstrap test, n = 42. Right: mean avoidance rating (black) and signature response (red) 

across the capsaicin and control runs. Shading represents within-subject s.e.m. The capsaicin 

run is shown before the control run for the display purpose, regardless of the actual order 

of the two runs. Note that the left and right plots were based on averaging within five 

and ten time bins, respectively. b, We conducted a forced two-choice test to classify the 

mean signature response during the capsaicin run versus the bitter taste (quinine) run. We 

used the violin and box plots to show the distributions of the signature response. The box 

was bounded by the first and third quartiles, and the whiskers stretched to the greatest 

and lowest values within median ±1.5 interquartile range. The data points outside of the 

whiskers were marked as outliers. Each colored line between dots represents each individual 

participant’s paired data (red line, correct classification; blue line, incorrect classification). 

P = 0.0009, two-tailed, binomial test, n = 42. c, Left: actual versus predicted ratings. P 
= 3.20 × 10−14, two-tailed, bootstrap test, n = 48. Right: mean avoidance rating (black) 

and signature response (red) across the capsaicin and control runs. Shading represents 

within-subject s.e.m. d, A forced two-choice test results with two different test conditions, 

bitter taste and aversive odor conditions. P = 6.24 × 10−7 for both tests, two-tailed, binomial 

tests, n = 48. ***P < 0.001 and ****P < 0.0001, two tailed.
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Fig. 3 |. Testing the ToPS on the clinical pain data.
a, b, We tested the ToPS on a publicly available clinical pain dataset5,24–26 (Study 4) to 

evaluate how much the model can explain clinical pain severity of (a) patients with subacute 

back pain (SBP; n = 53) and (b) patients with chronic back pain (CBP; n = 20). The 

plots show the relationships between the actual pain scores (visual analog scale) versus 

signature response (arbitrary unit). Each dot represents an individual participant, and the line 

represents the regression line. The exact P values and degrees of freedom (d.f.) were (a) P 
= 3.91 × 10−6 (left) and 0.528 (right), d.f. = 51; (b) P = 0.197 (left) and 0.011 (right), d.f. = 

18; two-tailed, one-sample t-test. c, d, We further tested the ToPS on two publicly available 

datasets26 to evaluate how well the model can classify the patients with CBP from healthy 

control participants. One dataset (c) was obtained from Japan (n = 63), which included 24 

patients and 39 healthy participants. The other dataset (d) was obtained from the United 

Kingdom (n = 34), which included 17 patients and 17 healthy participants. The exact P 
values were P = 0.0003 for c and P = 0.024 for d, two-tailed, binomial tests. *P < 0.05, ***P 
< 0.001 and ****P < 0.0001. NS, not significant.
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Fig. 4 |. ToPS: a functional connectivity marker for tonic pain.
a, The raw predictive weights of the model. We sorted the brain regions according to their 

functional network membership. b, Left: we averaged the ToPS predictive weights for each 

network and displayed them with a lower triangular matrix and a circular plot. Right: we 

summed the top 0.1% thresholded weights based on bootstrap test with 10,000 iterations 

(P < 0.000028, FDR-corrected q < 0.027, two tailed) at the network level. c, We grouped 

the parcels into gross anatomical regions within each functional network and averaged 

the predictive weights within each anatomical region. The top ten positive and negative 

connections and the corresponding brain regions that survived at a threshold of uncorrected 

P < 0.05 with bootstrap tests (two tailed, white boxes on the left panel) were shown with 

force-directed graph layout. AU: arbitrary unit; Amyg, amygdala; BS, brainstem; BG, basal 

ganglia; CB, cerebellum; CG, cingulate gyrus; FuG, fusiform gyrus; Hipp, hippocampus; 

Hypotha, hypothalamus; IFG, inferior frontal gyrus; INS, insular gyrus; IPL, inferior parietal 

lobule; ITG, inferior temporal gyrus; LOcC, lateral occipital cortex; MFG, middle frontal 

gyrus; MTG, middle temporal gyrus; MVOcC, medioventral occipital cortex; OrG, orbital 

gyrus; PCL, paracentral lobule; PCun, precuneus; PhG, parahippocampal gyrus; PoG, 

postcentral gyrus; PrG, precentral gyrus; pSTS, posterior superior temporal sulcus; SFG, 

superior frontal gyrus; SPL, superior parietal lobule; STG, superior temporal gyrus; Tha, 

thalamus.
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Fig. 5 |. ToPS connections among ROis.
a, We examined the ToPS predictive weights among the ROIs that have been often studied 

in the field of pain neuroimaging, including prefrontal (vmPFC, dmPFC, dlPFC and dACC), 

sensory (S1, S2, aINS and dpINS), subcortical (thalamus, ventral striatum, amygdala and 

hippocampus) and brainstem (PAG and brainstem) regions. We displayed these connections 

with three different levels of threshold. Left: Bonferroni correction P < 0.05; middle: 

uncorrected P < 0.05; right: no threshold. P values were obtained from bootstrap tests with 

10,000 iterations (two tailed). b, For each pain-related brain region, we show proportions of 

positive versus negative connections with other brain regions with pie charts (red. positive; 

blue, negative). We used only the connections that survived at a threshold of uncorrected P 
< 0.05 (bootstrap tests, two tailed) for calculating proportions. Brain regions with a higher 

proportion of negative connections are shown on the left side (meaning lower pain with 

increasing connectivity), and those with a higher proportion of positive connections are 

shown on the right side (meaning higher pain with increasing connectivity).

Lee et al. Page 34

Nat Med. Author manuscript; available in PMC 2021 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6 |. Comparing the ToPS with the SBP and ePP models.
The predictive weights of the ToPS were compared to functional connectivity-based models 

of SBP and EPP. a, Pattern similarity among three different pain models, calculated by 

taking Pearson’s correlation between the network-level average of unthresholded (UT; 

statistics above the line) or thresholded (T; statistics below the line) predictive weights. 

For thresholding, the top 0.1% stable connections based on bootstrap tests were selected. 

The exact P values between ToPS and SBP were P = 0.095 (UT) and 0.036 (T); between 

ToPS and EPP, P = 0.795 (UT) and 0.817 (T); between SBP and EPP, P = 0.747 (UT) 

and 0.940 (T), two-tailed, one-sample t-test, d.f. = 43. b, Network-level differences of 

predictive weights between different pain models; the closed circles indicate the mean 

network-level weights of the ToPS, and the open circles are for the SBP model (left) or 

the EPP model (right). Color represents different functional networks. c, Bootstrap test 

results (10,000 iterations) of the network-level weight differences between the ToPS versus 

SBP model (left) or EPP model (right). The exact P values for ToPS-SBP were (from 

left to right): 1.95 × 10−8 (VN), 0.728 (SMN), 0.021 (DAN), 0.009 (VAN), 1.05 × 10−5 

(LN), 0.019 (FPN), 6.04 × 10−8 (DMN), 0.084 (SCTX) and 4.91 × 10−9 (BS/CB). For 

ToPS-EPP, P = 1.66 × 10−22 (VN), 0.0005 (SMN), 3.72 × 10−12 (DAN), 0.904 (VAN), 2.77 

× 10−17 (LN), 6.28 × 10−9 (FPN), 1.72 × 10−19 (DMN), 0.709 (SCTX) and 3.66 × 10−53 

(BS/CB), two-tailed, bootstrap tests. d, Comparison of the network-level distance (absolute 

difference) between pain models. Each colored dot indicates the absolute network-level 

weight difference between the ToPS (wToPS) and bootstrapped SBP models (wSBP-boot; x 
axis) and bootstrapped EPP model (wEPP-boot; y axis). The error bars from the center dots 

represent the s.d. from the mean of the sampling distribution with bootstrap tests. The 

dashed line indicates y = x (that is, same distance from the ToPS). Seven of the nine 

functional networks were located above the dashed line, which indicates that the weight 

distance between the ToPS and the SBP model was shorter than the weight distance between 

the ToPS and the EPP model for these networks. +P < 0.05, one tailed; *P < 0.05, **P 
< 0.01, and ****P < 0.0001, two tailed. NS, not significant (for the significance in c, 

Bonferroni correction was used).
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