Skip to main content
. 2021 Mar 3;34(4):320–328. doi: 10.1177/1971400921998979

Table 2.

Top five models on each feature set and mean (SD) of AUC.

Rank
Whole tumour

Single largest slice
Model AUC Optimal feature subset Model AUC Optimal feature subset
1 lasso_corr 0.924 (0.049) 8 mlp_corr 0.914 (0.059) 20
2 svmRad_pca 0.922 (0.046) 8 svmPoly_corr 0.912 (0.065) 20
3 rf_pca 0.922 (0.044) 7 mlp_full 0.910 (0.053) 36
4 ridge_corr 0.921 (0.051) 19 lasso_corr 0.910 (0.065) 6
5 mlp_corr 0.919 (0.053) 19 ridge_corr 0.909 (0.068) 20

lasso: least absolute shrinkage and selection operator; svmRad: support vector machine with a radial kernel; rf: random forest; ridge: ridge regression; mlp: multilayer perceptron; svmpoly: support vector machine with a polynomial kernel; corr: high correlation filter; PCA: principal components analysis; SD: standard deviation; AUC: area under the curve.