Table 2.
Model |
Cross-validated ROC AUC |
||||
---|---|---|---|---|---|
M | Median | SD | Min | Max | |
Neural network | 0.696 | 0.714 | 0.107 | 0.519 | 0.811 |
Ridge regression | 0.686 | 0.714 | 0.095 | 0.532 | 0.783 |
XGBoost | 0.659 | 0.667 | 0.161 | 0.429 | 0.833 |
Linear with PCA | 0.647 | 0.667 | 0.075 | 0.532 | 0.717 |
Logistic with PCA | 0.641 | 0.652 | 0.082 | 0.506 | 0.714 |
SVM | 0.625 | 0.636 | 0.104 | 0.481 | 0.727 |
Regression tree | 0.621 | 0.667 | 0.064 | 0.533 | 0.669 |
Elastic net | 0.597 | 0.500 | 0.132 | 0.500 | 0.750 |
AdaBoost | 0.582 | 0.636 | 0.205 | 0.234 | 0.740 |
GBM | 0.581 | 0.584 | 0.140 | 0.364 | 0.742 |
Random forest | 0.581 | 0.583 | 0.188 | 0.286 | 0.758 |
LASSO | 0.525 | 0.500 | 0.056 | 0.500 | 0.625 |
SVM: support vector machine; PCA: principal component analysis; GBM: generalized boosting model; LASSO: least absolute shrinkage and selection operator; ROC: receiver operating characteristic; AUC: area under the curve.