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ABSTRACT Carbapenem-resistant Acinetobacter baumannii and Enterobacterales are iden-
tified as urgent threats, and multidrug-resistant (MDR) Pseudomonas aeruginosa and
extended-spectrum beta-lactamase (ESBL)-producing pathogens are identified as serious
threats by the Centers for Disease Control and Prevention (CDC). SPR206 is a novel
polymyxin derivative with potent in vitro and in vivo activity against A. baumannii, P. aeru-
ginosa, and multiple clinically important species of Enterobacterales, including multidrug-
and extensively drug-resistant strains. This was a first-in-human (FIH) double-blind, pla-
cebo-controlled, single-, and multiple-ascending-dose study of the safety, tolerability, and
pharmacokinetics (PK) of SPR206 in 94 healthy subjects. Following intravenous (i.v.) admin-
istration (1-h infusion) at single doses of 10 mg to 400 mg and multiple doses of 25mg to
150 mg every 8 h (g8h) for 7 days and 100 mg g8h for 14 days, SPR206 was generally safe
and generally well tolerated. While the incidence of adverse events increased with dose,
most were of mild severity. Systemic exposure (maximum concentration of drug in serum
[Cad @nd area under the concentration-time curve [AUC]) to SPR206 was approximately
dose proportional, time to peak concentrations ranged from 1.1 to 1.3h, and half-life
ranged from 2.4 to 4.1 h. No appreciable accumulation occurred with repeated dosing of
SPR206, and trough concentrations suggest that steady state was achieved by day 2.
Urinary excretion of unchanged SPR206 was dose dependent across single- (SAD) and
multiple-ascending-dose (MAD) cohorts, and the percentage of dose excreted as SPR206
was up to >50%. Importantly, no evidence of nephrotoxicity was observed over 14 days
of 100mg g8h dosing of SPR206; a dosing regimen anticipated to exceed requirements
for clinical efficacy. (This study has been registered at ClinicalTrials.gov under identifier
NCT03792308.)
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mong Gram-negative pathogens, antimicrobial resistance is a growing problem

worldwide (1). Carbapenem-resistant Acinetobacter baumannii and Enterobacterales
have been identified as urgent threats, and multidrug-resistant (MDR) Pseudomonas aeru-
ginosa and extended-spectrum beta-lactamase (ESBL)-producing pathogens are consid-
ered a serious threat by the Centers for Disease Control and Prevention (CDC) and World
Health Organization (WHO) (1, 2). Acinetobacter baumannii is associated with serious infec-
tions, including bacteremia, hospital-acquired and ventilator-associated bacterial pneumo-
nia (HABP/VABP), and complicated urinary tract infections (cUTIs) (3, 4), and over 60% of
infections due to A. baumannii are MDR (5-8) and are associated with excess morbidity
and mortality rates of 50% or greater (3, 9-15). Carbapenem resistance in clinical isolates
of P. aeruginosa approaches approximately 20% (16), and infections caused by this patho-
gen are associated with substantial morbidity and increased rates of mortality (17, 18). The
WHO, the CDC, and others have highlighted the urgent need to identify new antimicrobial
agents to treat serious infections due to MDR pathogens (1, 2, 19-21).
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FIG 1 Chemical structure of SPR206.

In

SPR206 is a novel polymyxin derivative (Fig. 1) with potent in vitro and in vivo activity
against A. baumannii, P. aeruginosa, and multiple clinically important species of
Enterobacterales, including drug-resistant ESBL-producing and Ambler class A, B, C, and
D beta-lactamase-producing strains. In vitro studies have shown SPR206 exhibits lower
MICs (MIC,, range, 0.12 to 0.5 wg/ml) than colistin and meropenem against A. baumannii,
Klebsiella pneumoniae, and P. aeruginosa (22-27), and in vivo studies in thigh, lung, and
urinary tract infection models in mice indicate that SPR206 achieves efficacy endpoints
(reduction in bacterial burden in CFU/g) at similar or lower required doses (mg/kg) than
polymyxin B (PMB) with a change from baseline in Log,, of —4.6 for SPR206 and —2.8
for polymyxin B at 20 mg/kg (28-30). Nonclinical toxicology studies in mice, rats, and
nonhuman primates have demonstrated that SPR206 exhibits a lower risk for kidney tox-
icity (nephrotoxicity) than colistin and polymyxin B, including a mouse model where no
histopathological changes in the kidney were noted with SPR206 compared with all ani-
mals with polymyxin B (22, 31, 32). A suite of glycolipoprotein (GLP) repeat dose toxicol-
ogy, safety pharmacology, and absorption, distribution, metabolism, and excretion
(ADME) studies have shown SPR206 to be generally safe and generally well tolerated at
exposures above those anticipated to be required for efficacy, with low risk for respira-
tory, central nervous system, or cardiovascular events and low risk for clinical drug-drug
interactions. In preclinical studies, SPR206 demonstrated no apparent accumulation after
repeat dosing in rats and monkeys and undergoes minimal metabolism in vitro and in
vivo, and SPR206 exhibits relatively low protein binding across species, including human
(<21%). SPR206 is undergoing clinical development as an intravenous (i.v.) therapy to
treat serious Gram-negative infections of the lung, bloodstream, intraabdominal, and
urinary tract in the hospital setting caused by MDR pathogens. This first-in-human (FIH)
study evaluated the safety, tolerability, and pharmacokinetics (PK) of SPR206 in healthy
subjects.

RESULTS

Subject disposition and baseline characteristics. In the single-ascending-dose
(SAD) phase, 54 subjects were enrolled; 48 were randomized to one of six ascending-
dose cohorts and received SPR206 at 10mg, 25mg, 50mg, 100mg, 200mg, and
400 mg or placebo at a ratio of 3:1, respectively (Fig. 2). Due to reversible, paresthesia-
like events experienced by subjects at the 400-mg dose, subjects in cohort 7 were
administered a deescalated dose of 300 mg, and 6 subjects were dosed (4 SPR206 and
2 placebo) instead of 8 in other cohorts (6 SPR206 and 2 placebo). All 54 subjects com-
pleted the study and were included in the safety analysis, and all 40 subjects who
received SPR206 were included in the PK analysis.

In the multiple-ascending-dose (MAD) phase, 40 subjects were randomized to one
of four ascending-dose cohorts and received SPR206 at 25 mg, 50 mg, 100 mg, and
150 mg or placebo every 8 h (q8h) for 7 days at a ratio of 3 active to 1 placebo (Fig. 2).
Cohort 13 (n=28) received a dose of 100 mg of SPR206 or placebo q8h for 14 days at
the same ratio of 3 active to 1 placebo. All 40 (100.0%) subjects completed the study
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FIG 2 Study design.

and were included in the safety analysis, and all 30 subjects who received SPR206 were
included in the PK analysis.

In the SAD phase, the median age for all subjects was 26.0years (range, 18.0 to
48.0 years), mean (standard deviation) body weight was 76.4 (9.4) kg, and mean (stand-
ard deviation) body mass index (BMI) was 24.3 (2.4) kg/m?2. The majority were white (38
[70.4%]), and 14 were Asian (25.9%). In the MAD phase, the median age was 29.5 years
(range, 18.0 to 55.0years), mean body weight was 78.4 (10.2) kg, and mean BMI was
24.9 (2.3) kg/m2. The majority of participants were white (31 [77.5%)]), and 9 (22.5%)
were Asian.

Safety/tolerability. In the SAD phase, the incidence of adverse events (AEs) generally
increased at doses of =300 mg, and in the MAD phase, the incidence of AEs was dose de-
pendent (Table 1). Across both the SAD and MAD phases, 84% of all AEs were of mild se-
verity, and there were no severe AEs. Two (2.1%) subjects in the highest dose group in the
MAD phase (150 mg q8h) discontinued SPR206 for paresthesia and hypoesthesia. In the
MAD phase, 2 subjects experienced a mild elevation of alanine aminotransferase levels >2
and <3 times the upper limit of normal (ULN) and aspartate aminotransferase levels >1.5
and <2 times the ULN, which resolved by day 15 without intervention. Alkaline phospha-
tase, bilirubin, and gamma-glutamyl transferase levels remained normal. One subject in
the 150 mg g8h for 7 days cohort experienced mild changes in renal function: serum creat-
inine and calculated creatinine clearance (CrCl) remained within normal limits during dos-
ing and follow-up, but CrCl decreased by 27% from baseline on day 7 and serum creati-
nine increased by 0.36 mg/dl on day 6. Of note, this subject experienced approximately
23% higher plasma area under the concentration-time curve from 0 to 8 h (AUC,_) and
maximum concentration of drug in serum (C,,,.,) on day 1 and day 7 relative to the mean
values for the cohort. No other subjects at any dose or duration of dose experienced
changes in serum creatinine (Fig. 3) or calculated creatinine clearance and no clinically sig-
nificant changes in fractional excretion of calcium and magnesium or urine cation/Cr ratios
(Ca and Mg) to suggest a change in renal function was observed. No serious AEs were
reported, and no clinically significant changes were observed in vital signs, physical exami-
nation, or electrocardiogram (ECG) parameters.

Pharmacokinetics. (i) SAD phase. Plasma SPR206 concentrations increased with
increasing dose (Fig. 4). Overall, mean SPR206 concentration-time profiles showed an
initial peak at the end of infusion (i.e., 1 h following the start of infusion), followed by a
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FIG 3 Mean (standard deviation) serum creatinine values over time with multiple ascending doses of
SPR206 (safety population).

biexponential decline. Mean peak plasma concentrations (C,,,,) and systemic exposure
(AUC) generally increased in a dose-proportional manner with SPR206 dose (Table 2).
Interindividual variability in systemic exposure to SPR206 across doses was low with
geometric coefficient of variation (CV) for AUC,_,,, AUCy.nr, and C,... ranging from
7.0% to 18.2%, 6.9% to 17.4%, and 6.9% to 13.8%, respectively. Dose proportionality
estimates (90% confidence interval [Cl]) for C,,,, AUC, .. and AUC, ;. were 1.05 (1.02,
1.08), 1.14 (1.11, 1.18), and 1.11 (1.07, 1.14), respectively. Although 90% Cls did not
include the value of 1, the upper limit of all Cls was <1.2, indicating that SPR206 expo-
sure was generally dose proportional, although strict dose proportionality cannot be
concluded.

Mean cumulative amount of SPR206 excreted in urine increased with dose follow-
ing single dose administration (Fig. 5). Generally, SPR206 was mostly excreted during
the 0- to 4-h interval following the start of infusion and was low or below quantitation
limit (BLQ) for the 4- to 8-h, 8- to 12-h, and 12- to 24-h collection times. Mean (standard
deviation [SD]) total amount of SPR206 excreted from 0 to 24 h following the start of
infusion on day 1 ranged from 0.08 mg at 10mg up to 213.4 (24.8) mg at 400 mg
(Table 3). Mean percentage excreted of SPR206 ranged from 0.7% to 53.4% after single
doses of 10 to 400 mg. Renal clearance increased in a dose-proportional manner.

(ii) MAD phase. For each cohort, mean plasma SPR206 levels increased with
increasing dose levels following g8h dosing for 7 or 14 days (Fig. 6). Systemic exposure

30000
- 10 mg (n=6)
-~ 25 mg (n=6)
25000 50 mg (n=6)
100 mg (n=6)
-~ 200 mg (n=6)
20000 -~ 400 mg (n=6)
- 300 mg (n=4)
15000

10000

5000

Mean SPR206 Plasma Concentration (ng/mL)

o1 2 3 5 8 12 18 24
Time After Dose (hours)

FIG 4 Mean (standard deviation) plasma SPR206 concentrations after single ascending doses (PK
population).
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TABLE 2 Arithmetic mean PK parameters for SPR206 after single ascending doses (PK population)

Antimicrobial Agents and Chemotherapy

SPR206 (mean = SD) according to dose

Parameter 10mg (n=6) 25mg (n=6) 50mg (n=6) 100 mg (n=6) 200 mg (n=6) 400 mg (n=6) 300mg (n=4)
Cinax (Ng/ml) 495 + 46.5 1,286 = 184 3,422 =478 5,330 £ 634 11,265 = 1,068 25,400 += 1,747 18,175 £ 1,733
Trnax (D)2 1(1.0-1.1) 1(1.0-1.0) 1(1.0-1.0) 1.1 (1.1-1.1) 1.1 (1.1-1.1) 1.1 (1.1-1.1) 1.1(1.1-1.1)

AUC,_5 (h-ng/ml) 1,562 + 203 3,806 =708 9,375+ 1,098 17,324 £ 2,343 34,475 * 2,279
AUC ¢ (h-ng/ml) 1,809 * 258 4,443 + 841 10,674 = 1,223 20,402 * 3,200 40,871 £ 3,397

Half-life (h) 26*0.1 28*+0.2 26*+03 3003 34*+07
CL (liters/h) 56*08 58*09 4.7 £0.5 50*09 49+04
V, (liters) 21034 23.5*4.3 17.8 +29 214+28 24.0 £ 3.1

89,257 + 5978
10,9757 7,398
3.7*05
3.7*03

194+ 3.2

57,733 * 3,754
71,008 + 5,201
41x04
42+03

254 *33

aMedian (range).

(AUCQ) to SPR206 increased in a dose-proportional manner (Table 4). Time to maximum
concentration of drug in serum (T,,,) was 1.1 h across all dose regimens. SPR206 steady
state was achieved by day 2 with g8h dosing based on Ci,gn levels. Similar to SAD,
interindividual variability in systemic exposure to SPR206 was generally low with geo-
metric CVs for AUC,_,s, AUC, i and C,,.,, ranging from 11.8% to 16.8%, 6.8% to 18.7%,
and 10.9% to 21.7% on day 1 and 13.8% to 24.3%, 13.7% to 24.6%, and 9.5% to 17.7%
on day 7, respectively, across all doses. Based on estimates of the exponent from the
power model, estimates (90% Cl) for C,,,,, AUC, .., and AUC, ;. were 1.03 (0.96, 1.10),
1.07 (0.98, 1.16), and 1.03 (0.94, 1.12), respectively, and for C,,..,, AUCy_,., and AUC_;.q
the 90% Cls included the value of 1 for all three parameters. Trough concentrations of
SPR206 remained constant during the 7- and 14-day dosing periods (Fig. 7).

For cohorts 9 through 12 (q8h dosing for 7 days), the mean (SD) total amount of
SPR206 excreted in urine on day 7 (0 to 24 h) following the start of infusion increased
with increasing dose ranging from 1.8 mg (0.7) for the 25-mg dose up to 81.2 mg (3.8)
for the 150-mg dose. For cohort 13 (100 mg q8h dosing for 14 days), the mean total
amount of SPR206 excreted in urine on day 14 was 36.3 mg (6.7). Similar to the SAD
phase, the majority of SPR206 excreted in urine was observed during the 0- to 4-h col-
lection period on day 7 or day 14 (cohort 13), and the amount excreted generally
decreased for each subsequent collection interval. The mean percentage of dose
excreted in urine increased with increasing dose level (Table 3). On day 1, mean (SD)
percentage dose excreted was 4.1 (2.7), 13.0 (3.7), 25.3 (4.9), 25.0 (8.1), and 38.4 (5.2)
with 25-mg, 50-mg, 100-mg (7 days), 100-mg (14 days), and 150-mg doses, respectively.
On day 7, mean (SD) percentage excreted was 7.0 (2.9), 17.0 (5.6), 33.1 (13.4), 36.3 (6.7),
and 54.1 (2.5) with 25-mg, 50-mg, 100-mg (7 days), 100-mg (14 days), and 150-mg
doses, respectively. Renal clearance increased in a dose-proportional manner. No clini-
cally significant changes in urine cation/Cr ratios (Ca and Mg) were observed.

5 300
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(=

° -»- 200 mg (n=6) -e- 400 mg (n=6) -e- 300 mg (n=4)
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FIG 5 Mean cumulative amount of SPR206 excreted in urine after single ascending doses (PK
population).
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TABLE 3 SPR206 urine PK parameters in single- and multiple-dose cohorts (PK population)

Mean * SD°
SPR206 dose group Ae (mg) CL; (L/h) Fe Fe (%)
SAD
10mg (n=1) 0.75 0.034 0.007 0.70
25mg (n=5) 133 +1.09 0.32*+0.29 0.05 +0.04 532*438
50mg (n=6) 9.01 +0.95 0.85 +0.10 0.18 +0.02 18.02+1.93
100 mg (n=6) 26.88 £ 5.06 1.35*0.34 0.27 = 0.05 26.92 = 5.06
200 mg (n=6) 7136 £7.68 1.77 £0.20 0.36 = 0.04 35.68 £ 3.85
400mg (n=6) 21342 +24.78 1.97 £0.22 0.53 £0.06 53.35%6.21
300mg (n=4) 147.54 £ 22.49 2.13*+0.43 0.49 = 0.08 49.15*+7.50
MAD day 1
25mg q8h (n=5) 1.04 = 0.67 0.24 +=0.15 0.04 =0.03 4.14*2.70
50mgg8h (n=6 6.51 +1.83 0.82 +0.25 0.13 +£0.04 13.03 * 3.66
100mg q8h (n=6) 25.28 £4.86 1.55+0.38 0.25 = 0.05 25.28 =4.87
150mg q8h (n=6) 57.66 = 7.86 2.13*+0.44 0.38 = 0.05 3842 +5.23
100mg q8h (14 d) (n=6) 24.97 +8.08 1.58 £ 0.39 0.25 +0.08 24.95 +8.08
MAD day 7
25mg q8h (n=6) 1.76 £0.73 0.22 = 0.06 0.07 £0.03 7.03+294
50mg q8h (n=6) 8.51+282 0.69 =0.20 0.17 = 0.06 17.03 =5.64
100 mg q8h (n=6) 33.09 £ 13.40 1.25*0.50 033 £0.13 33.08 += 13.94
150 mg q8h (n=4) 81.17 £3.81 1.55+0.17 0.54 +0.03 5410 £1.52
100mg q8h (14 d) (n=6) 36.30 £6.72 1.29+0.24 0.36 = 0.07 36.30 = 6.73

aAe, cumulative amount of drug excreted in successive urine intervals with quantifiable urine concentrations;
CL,, renal clearance; Fe, fraction of cumulative fraction of dose recovered in urine as unchanged drug in
successive urine intervals with quantifiable urine concentrations; Fe (%), percentage fraction of cumulative
fraction of dose recovered in urine as unchanged drug in successive urine intervals with quantifiable urine
concentrations.

DISCUSSION

Results from this FIH study demonstrated that SPR206 was generally well tolerated
after single and multiple doses with no serious AEs. The most common AEs were mild
paresthesia, dizziness, and headache with a greater frequency at higher doses. Five
paresthesia events considered nervous system disorders occurred in 4 (7.4%) subjects
at 300- or 400-mg doses in the SAD cohort. Eight events of oral hypoesthesia in 6 sub-
jects and 6 events of oral paresthesia occurred in 5 subjects in the MAD portion. All
paresthesia events were of mild severity, and none led to study discontinuation. Mild,
reversible paresthesia-like events are well described with the polymyxin class of antibi-
otics (33). In this study, there was only 1 report of mild, self-resolved paresthesia over
14 days of dosing at 100 mg every 8 h. SPR206 had no clinically significant effect on re-
nal function as assessed from serum creatinine and creatinine clearance at doses up to
100 mg administered every 8 h for 14 days. Although remaining well within normal lim-
its, slight changes in a single subject in serum creatinine and calculated creatinine
clearance on the last day of dosing (day 7) in the highest dose group of 150 mg q8h
may indicate a mild decline in renal function caused by SPR206. Further study in crit-
ically ill patients with severe infections due to resistant bacteria are needed to fully
assess the impact of SPR206 on renal function. In addition, SPR206 had no effect on
the ECG and no clinically significant effect on liver function.

SPR206 exhibited a dose-proportional PK profile over the range of doses studied in
both SAD and MAD phases. Minimal accumulation of SPR206 occurred during the
MAD phase as evidenced by low accumulation ratios for C,,, (1.1 to 1.3) and AUC,_;
(1.3 to 1.8). Intersubject variability in exposure was low, ranging from 10% to 25%
across dose cohorts. Half-life ranged from 2.4 to 4.1 h, which supports g8h dosing.
Trough concentrations (C,,q4n) Oof SPR206 indicated that the steady state was achieved
by day 2 with repeat dosing. Urinary excretion of unchanged SPR206 was dose de-
pendent across single- and multiple-ascending-dose cohorts, and approximately 50%
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FIG 6 Mean (standard deviation) plasma SPR206 plasma concentrations following multiple ascending
doses on day 1, day 7, and day 14 (PK population).

of the dose was excreted as SPR206. These data will be useful for determining dose
and regimen for future studies of SPR206.

Aminoglycosides and polymyxins often are reserved for treating patients with seri-
ous infections due to MDR Gram-negative bacteria; however, a major limitation of
these drugs is the increased risk for renal toxicity (34-36). The use of aminoglycosides
requires regular therapeutic drug monitoring to assess drug concentrations and to
adjust dosages as necessary to maintain plasma concentrations within a narrow thera-
peutic window and to avoid toxicity (37, 38). SPR206 is a novel polymyxin B (PMB) ana-
logue with a B-branched aminobutyrate N terminus, bearing an aryl substituent that
has been shown to possess lower kidney cell cytotoxicity and lower exposure in the
kidney of rats than PMB (31, 32). The discovery of SPR206 was the culmination of an
extensive medicinal chemistry effort focused on significantly improving the nephrotox-
icity profile compared to current polymyxins (31), while retaining potent in vitro and in
vivo activity against MDR Gram-negative pathogens. The first-in-human phase 1 study
of SPR206 presented here demonstrates SPR206 to be devoid of nephrotoxicity at
doses up to and including 100 mg g8h for 14 days in healthy subjects, whereas it is
documented that colistin use at the recommended dosing regimen is associated with
up to 60% incidence of acute kidney injury (38). As such, SPR206 has the potential to
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TABLE 4 Arithmetic mean for PK parameters for SPR206 after multiple ascending doses on day 1 and day 7 or day 14 (PK population)

Day and parameter

SPR206 (mean = SD)

Day 1

25mg q8h x 7 days

50 mg g8h x 7 days

100mg g8h x 7 days

(n=6) (n=6) (n=6)
Coax (Ng/ml) 1,410 =+ 241 2,525 =413 5,433 = 678
Tinax (N)? 1.1(1.0,1.3) 1.1(1.1,1.3) 1.1(1.0,1.1)
AUC, ¢ (h-ng/ml) 4,391 + 740 7,955 + 951 16,544 + 2,337
AUC, ,(h-ng/ml) 5,197 + 945 9,243 + 1,417 19,171 + 2,874
Half-life (h) 27+02 27*03 27+02
CL (liters/h) 49+09 55+0.8 53+0.8
V, (liters) 189+26 215+1.8 20.8+29

Day 7 or day 14

25mg g8h x 7 days

50 mg g8h x 7 days

100 mg gq8h x 7 days

150mg q8h x 7 days
(n=6)

8,990 + 1,056

1.1(1.0,1.1)

27,492 * 3,452

30,981 + 4,189

24*0.2

49+06

17121

150 mg g8h x 7 days

100 mg q8h x 14 days
(n=6)

5,065 + 1,003

1.1(1.0,1.3)

15,573 £1,765

18,184 £ 1,244

25*0.2

55*+04

19.9*3.0

100 mg q8h x 14 days

(n=6) (n=6) (n=6) (n=6) (n=6)
Conax (NG/m) 1,607 + 300 2,897 270 6,345 + 1099 11,518 = 1,901 6,423 * 841
T, (h)? 1.1(1.0,1.3) 1.1(1.0,1.2) 1.1(1.0,1.1) 1.101.1,1.0) 1.1(1.0,1.1)
AUC,, (h-ng/ml)  5881=1,166 10,050 = 1,050 21,340 + 2,857 41,475 = 6,083 22,277 + 2,574
AUC, 4 (h-ng/ml) 7,681+ 1,726 12,435 + 1,796 27,531+ 4,610 55,505 + 7,838 29,828 + 5,112
AUC, ¢ (h-ng/ml) 7,690 = 1,732 12,443 = 1,802 27,671+ 4,762 56,007 = 7,874 30,412 + 5,699
AUC,. (h-ng/ml)  10.0=45 69+25 1.9+04 0.9 =0.1 3314
Half-life (h) 40+06 35+09 53+ 14 59+03 9.6+ 8.1
CL (liters/h) 44+09 50+05 48+06 37+05 45+05
v, (liters) 213+36 21.5+22 225+35 19.6 +3.2 23.9+40

Median (range).

offer a spectrum of activity similar or superior to current polymyxins against MDR
pathogens causing serious infections but with a meaningful improvement in safety
profile and clinical outcome.

SPR206 is being developed for i.v. administration in the hospital settings to treat se-
rious infections of the lung, blood, and urinary tract caused by resistant Gram-negative
pathogens. SPR206 may offer an alternative to polymyxin- and aminoglycoside-based
therapy in hospitalized patients with serious infections.

MATERIALS AND METHODS

This study was conducted according to the principles of the Declaration of Helsinki and Guidance on
Good Clinical Practice. The study protocol, amendments, and informed consent forms were reviewed
and approved by an independent ethics committee. All subjects provided written informed consent
prior to participating in any study activities. This study was registered at ClinicalTrials.gov under identi-
fier NCT03792308.

Study design. This was a single-center, phase 1, randomized, double-blind, placebo-controlled, first-
in-human study to assess the safety, tolerability, and PK of SPR206 following SAD and MAD administra-
tions (Fig. 7). In the SAD phase, subjects received a single i.v. dose of SPR206, and in the MAD phase,
subjects received i.v. doses of SPR206 every 8 h (q8h) over a period of 7 to 14 days. SPR206 was adminis-
tered as a 1 h i.v. infusion.

In the SAD phase, healthy subjects were screened within 28 days prior to dosing and admitted to
the clinical facility on day —1. A single i.v. dose of SPR206 or placebo was administered on day 1.
Following completion of all safety assessments and sampling for PK analyses, subjects were discharged
on day 2. A follow-up visit occurred 5 to 7 days after day 1 dosing.

In the SAD phase, subjects were randomized to one of seven cohorts consisting of 10-, 25-, 50-, 100-,
200-, 300-, and 400-mg doses of SPR206. Within each cohort, two subjects received placebo and six sub-
jects received SPR206. Two subjects (sentinels) were dosed with SPR206 or placebo 48 h prior to the
remaining subjects. The remaining six subjects were only dosed after no safety concerns were identified
in the sentinel subjects. After each dose cohort had completed study drug dosing and safety evalua-
tions, a safety monitoring group (SMG) reviewed blinded cumulative safety data (including day 5 to 7
follow-up data) to confirm the safety and tolerability of SPR206. Blood and urine samples were collected
for assessment of PK parameters.

In the MAD phase, all subjects were admitted to the clinical facility on day —1. Dosing commenced
on the morning of day 1. Three doses were administered daily at approximately 8 (£0.5)-hour intervals
for a total of 7 consecutive days (cohorts 9 through 12) and 14 consecutive days (cohort 13). The last
dose was administered on the morning of day 14. Subjects were discharged on day 16 following com-
pletion of all PK sample collection and safety assessments, and a follow-up visit occurred 12 to 14 days
after the last dose.

The MAD phase began after completion of the SAD phase, and the appropriate starting dose level
was established. Two subjects received placebo, and six subjects received SPR206 doses of 25, 50, 100,
and 150mg qg8h for 7days and 100 mg g8h for 14days. In each cohort of the MAD, two subjects
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FIG 7 Mean (standard deviation) SPR206 trough concentrations following 7-day and 14-day
administration.

(sentinels) began dosing with SPR206 or placebo 72 h prior to the remaining subjects in this cohort. The
remaining six subjects were only dosed after no safety concerns were identified by the principal investi-
gator. After each MAD dose cohort had completed administration of study drug and all evaluations, the
safety monitoring group reviewed blinded cumulative safety data (including the day 19 to 21 follow-up
data) to confirm the safety and tolerability of the study drug. Blood and urine samples were collected to
measure SPR206 drug levels to determine SPR206 PK parameters.

Subject selection. Healthy adult subjects aged 18 to 55 years with a body mass index (BMI) of 18.5
to 29.9kg/m? inclusive and weight between 55 and 100kg were eligible. Subjects were medically
healthy with no clinically significant abnormalities based on physical examination, vital signs, ECG, and
clinical laboratory testing. Subjects were excluded for any clinically significant medical condition or labo-
ratory abnormality; presence or history of any clinically significant cardiac abnormalities including clini-
cally significant ECG abnormalities; history of seizure disorders; history of Clostridium difficile infection;
positive human immunodeficiency virus (HIV) antibody, hepatitis B surface antigen (HBsAg), or hepatitis
C antibody; positive urine drug/alcohol test or history of substance or alcohol abuse; documented
hypersensitivity or anaphylaxis to any medication; use of tobacco or nicotine-containing products within
30days; receipt of any investigational drug or participation in a clinical trial within 30 days; or use of any
prescription or over-the-counter medications within 7 days of randomization.

Study assessments. Safety assessments included clinical laboratory testing (hematology, coagula-
tion, serum chemistry, urinalysis), vital signs (blood pressure, heart rate, body temperature, respiratory
rate), physical examination, and triplicate 12-lead ECG to assess corrected QT interval by Fredericia
(QTcF). In the SAD phase, continuous cardiac monitoring was performed from 1 h predose through 24 h
postdose. Adverse events were recorded at each study visit.

In the MAD phase, 24-h creatinine clearance (CrCl) based on plasma and urine creatinine concentra-
tions was determined prior to any dosing and following the last dose on day 14. Serum creatinine con-
centrations were measured from the clinical laboratory tests performed on days —1 and 15. Urine creati-
nine concentration were measured using 24 h collections prior to the first dose on day 1 and over 24 to
48 h following the start of infusion of the last dose (day 14).

Pharmacokinetic analysis. Maximum plasma concentration (C,,.,), area under the concentration-
time curve from time zero to last measurable time point (AUC,_,), area under the concentration-time
curve from time zero to infinity (AUC,_,.o), area under the concentration-time curve from time zero to tau
(AUC,_,.), time to maximum concentration (T,,,,), terminal elimination rate constant (k,), terminal half-

max)s
life (t,,,), terminal clearance (CL), and volume of distribution (V,) were determined. In addition, area
under the concentration-time curve from 0 to 24 h after the start of infusion (AUC,_,,) was determined
for the SAD phase, and area under the concentration-time curve from time zero to 8 h from start of infu-
sion (AUC,_) on day 1 and 0 to 48h (AUC,_,) following the last dose on day 14 as well as predose
trough concentrations were determined for the MAD phase. Urine parameters included cumulative
amount of drug excreted in successive urine intervals (Ae), renal clearance (CLy), fraction of cumulative
fraction of dose recovered in urine as unchanged drug (Fe), and percentage fraction of cumulative frac-
tion of dose recovered in urine as unchanged drug (Fe%). PK parameters were determined by noncom-
partmental analysis using Phoenix WinNonlin 8.1.

For the SAD phase, blood samples were obtained predose and at 30, 60, 75, 90, 105, 120, and
150 min and at 3, 5, 8, 12, and 24 h following the start of infusion. Urine was collected for PK assessment
predose and over the intervals of 0 to 4 h, 4 to 8 h, 8 to 12 h, and 12 to 24 h after the start of infusion.

In the MAD phase, plasma samples for PK analysis were collected (i) on day 1—pre-dose and at 30,
60, 75, 90, 105, 120, and 150 min and at 3, 5, and 8 h following start of the first infusion; (ii) prior to the
morning dose (within 10 min) on days 2, 3, 5,7, 9, 11, and 13; and (iii) predose and 30, 75, 90, 105, 120,
and 150 min and 3, 5, 8, and 12 h (day 14), 24, 36 (day 15), and 48 h (day 16) following start of the last
infusion. Urine was collected for PK assessment on day 1 predose, over the intervals 0 to 4 h and 4 to 8 h
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after start of first infusion, and on days 14 and 15 over the intervals 0 to 4 h, 4 to 8 h, 8 to 12 h, and 12
to 24 h after start of day 14 infusion. Total 24-h urine for calculating CrCl was collected from the morning
of day —1 to predose on day 1 and on days 15 and 16 over the interval from 24 to 48 h after the start of
the day 14 infusion. Urine creatinine concentrations were measured using 24-h collections prior to the
first dose on day 1 and over the 24 to 48 h following start of infusion of the last dose (day 14). Plasma
and urine samples for SPR206 levels were analyzed using a validated liquid chromatography-tandem
mass spectrometry (LC-MS/MS) method. The assay range for SPR206 was 50 to 5,000 ng/ml in plasma
and 100 to 50,000 ng/ml in urine. In plasma, assay precision was 1.3 to 7.7%, accuracy was 1.2 to 9.5%,
stability was 194 h at 4°C, and reproducibility was 98.4%. In urine, assay precision was 1.7 to 7.5%, accu-

racy was —4.8 to 7.3%, stability was 147 h at 4°C, and reproducibility was 97.8%.

lated for AUC and C

Statistical analysis. Plasma and urine concentrations and PK parameters for SPR206 were summar-
ized for each treatment using descriptive statistics. In the SAD/MAD study, geometric means were calcu-

max*

Analyses using linear models were performed to assess dose proportionality

(both single dose and multiple dose), time dependence, accumulation, and attainment of steady state
after multiple doses. Dose-linearity of C,,, and AUC across the dose range was assessed by fitting the
power model and testing for 8 = 1 using a generalized linear model. Point estimates and 90% confi-
dence intervals (Cl) using the residual mean square error obtained from the analysis of variance
(ANOVA) were constructed for the comparisons between treatments. The point and Cl estimates were
back-transformed to give estimates of the ratios (%) of the geometric least square means (LSmeans) and
corresponding 90% Cl.
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