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Peripheral nerve injuries (PNIs) are some of the most common types of traumatic lesions affecting the nervous system.
Although the peripheral nervous system has a higher regenerative ability than the central nervous system, delayed
treatment is associated with disturbances in both distal sensory and functional abilities. Over the past decades, adult stem
cell-based therapies for peripheral nerve injuries have drawn attention from researchers. This is because various stem cells
can promote regeneration after peripheral nerve injuries by differentiating into neural-line cells, secreting various
neurotrophic factors, and regulating the activity of in situ Schwann cells (SCs). This article reviewed research from the
past 10 years on the role of stem cells in the repair of PNIs. We concluded that adult stem cell-based therapies promote
the regeneration of PNI in various ways.

1. Introduction

Peripheral nerve injuries (PNIs) are one of the most com-
mon types of traumatic lesions affecting the nervous system.
They have an incidence of between 13 and 23 per 100,000
persons per year in developed countries [1], although it has
a relatively higher impact in developing countries [2]. PNI
usually involves partial or total loss of motor, sensory, and
autonomic functions as well as neuropathic pain owing to
the loss of structure and function of peripheral nerves from
trauma, accidents, and other causes.

After PNI, a series of cellular and molecular events called
Wallerian degeneration initially occurs. This is a process that
clears debris from degeneration by degrading Schwann cells
(SCs) and inducing the infiltration of microphages [3, 4].
Meanwhile, protein metabolism is altered, resulting in the
activation of SCs [5]. These cells start forming structures
known as “bands of Büngner” in order to provide guidance
for axon regeneration. They also produce neurotrophic fac-
tors and extracellular matrix (ECM) molecules that promote

axonal regeneration [6]. Therefore, SCs play a crucial role in
peripheral nerve repair. Despite peripheral nerve axons pos-
sessing an intrinsic capability to generate and reconnect with
their targets, in crucial nerve gaps, it is difficult to achieve
complete functional and structural recovery [7]. This is
because of the slow rate of axonal regeneration (1mm/d)
[8] as well as Wallerian degeneration occurring in the distal
axon. Different therapeutic approaches have been investi-
gated for handling lesions that cause large nerve gap, ranging
from autologous nerve grafting, the gold standard treatment,
up to various designed nerve guidance conduits (NGCs)
combined with SC treatment [9]. The former is limited by
poor functional outcomes, caused by scarce tissue graft
availability and donor site morbidity. Furthermore, the latter
is limited by difficulties in the harvesting and expansion of
SCs. In this regard, researchers have begun to search for
stem cells from different cell lineages, which are able to
transform into SCs. We know that SCs are differentiated
from the ectoderm, thus, this article reviewed the role and
mechanisms of multifunctional adult stem cells from the
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ectoderm, as well as from the mesoderm and the neural crest
of the fourth germ layer in peripheral nerve regeneration
(Figures 1 and 2).

2. Adult Stem Cell-Based Therapies

Adult stem cells (ASCs), or somatic stem cells, are a collec-
tion of undifferentiated cells that are present in the postnatal
body. Owing to their considerable self-renewal and multipo-
tent ability, ASCs play an important role in PNIs. Recently,
the beneficial effects of ASCs in the treatment of PNIs have
been well studied, and comprehensive reports demonstrate
their multilineage differentiation potential, secretion of
neurotrophic factors, and immunomodulatory properties.
Herein, we discuss the characteristics and functions of meso-
derm-derived, surface ectoderm-derived, and fourth germ
layer-derived stem cell types.

2.1. Mesodermal Cells: Mesenchymal Stem Cells. After a
report in 1999 indicated that mesenchymal stem cells
(MSCs) could be induced to transdifferentiate exclusively
into adipocytic, chondrocytic, or osteocytic lineages [10],
MSCs have been considered a hot topic in regenerative med-
icine. MSCs belong to the mesodermal lineage, but they are
able to cross boundaries between mesodermal and ectoder-
mal lineages, which include neural lineages [11]. Recently,
MSCs are regarded as an important source of SCs because
they are easily harvested from either the patient or
donor-derived mesenchymal tissues, such as the bone mar-
row, adipose tissue, and umbilical cord. Furthermore, SCs
are the main supportive cells for peripheral nerve regener-
ation; however, the SC buildup causes new damage to
other peripheral nerve segments and also has several tech-
nical limitations regarding their cell-based therapy applica-
tion. Therefore, MSCs are satisfactory candidates for use
in PNI.

2.1.1. Bone Marrow Mesenchymal Stem Cells. Bone marrow
mesenchymal stem cells (BMSCs) have abundant sources
and the potential to self-renew; however, they can also dif-
ferentiate into several different lineages, including neuronal
cell types such as SCs [12, 13]. Several studies have indicated
that undifferentiated bone marrow mesenchymal stem cell
(u-BMSC) transplantation promotes nerve regeneration in
different animal models [14, 15]; however, some reports
demonstrated that u-BMSCs failed to promote any signif-
icant changes in regeneration outcome [16, 17]. SC-like
differentiated bone marrow stem cells (d-BMSCs) have
been shown to be more effective at nerve functional and
histological recovery [18, 19]. This suggests that d-
BMSCs are functionally close to authentic SCs. The char-
acteristics of the mechanisms underlying the BMSC regen-
eration enhancement are thought to be directly related to
the release of axonal regeneration proteins such as
growth-associated protein 43 (GAP-43) [20] and neuro-
trophic factors such as nerve growth factors (NGF) and
brain-derived neurotrophic factors (BDNF) [21]. These
exert immunomodulatory effects by changing the inflam-
matory environment [22, 23], while protecting the injured

nerve area from fibrous tissue infiltration [24]. Other
research groups also reported vital improvements in the
regeneration of injured peripheral nerves following the
transplantation of neurotrophic factor-transfected BMSCs,
when compared to normal BMSCs. Therefore, gene-based
cell therapies have attracted the attention of many scien-
tists. Furthermore, Chen et al. [25] reported that the
Hippo, Wnt, transforming growth factor-beta, and hedge-
hog signaling pathways are potentially associated with
BMSC neural differentiation. Additionally, overexpression
of microRNA-124 promotes the neuronal differentiation
of BMSCs.

2.1.2. Adipose-Derived Mesenchymal Stem Cells. Within the
past decade, adipose-derived mesenchymal stem cells
(ADSCs) have attracted the attention of researchers and cli-
nicians in PNI repair. This is because they have the ability to
differentiate into Schwan cell-like cells (SCLCs), downregu-
lating inflammation [26]. Furthermore, they induce the
direct effect of paracrine growth factors including NGF,
BDNF, vascular endothelial growth factor (VEGF), hepato-
cyte growth factor (HGF), and insulin-like growth factor
(IGF) [27], which indirectly affect endogenous SC activity
[28–30]. It has been previously shown that ADSC-derived
exosomes promote peripheral nerve regeneration by provid-
ing NGFs, optimizing the function of SCs in situ and reduc-
ing SC apoptosis in vitro and in vivo [25]. Regarding these
functions, many experimental studies have been performed
to demonstrate the beneficial effects of ADSCs (Table 1).
Nevertheless, accumulating evidence indicates that differen-
tiated ADSCs (dADSCs) show better axonal regeneration
and functional recovery results than for undifferentiated-
ADSCs (uADSCs) [31]. Several studies have reported that
dADSCs express higher levels of neurotrophic factors,
including NFG, BNDNF, GDNF, and NT4 [32–35], angio-
genic factor (VEGF1), and ECM related protein (COL3A1)
[36, 37] when compared with uADSCs, thus, accelerating
axonal regeneration. Experimental studies in rat nerve injury
models have investigated the effects of dADSCs (Table 2).
However, because the dADSCs rapidly dedifferentiate in
the absence of a stimulating medium [38], the differentiation
process and method of cell transplantation to an injured
environment must be studied prior to the use of dADSCs
in PNI therapies. Thus, researchers applied ECM scaffolds
containing fibronectin or laminin to create a similar micro-
environment in order to maintain SC-like features for cell
survival [39]. Interestingly, there was no significant differ-
ence between ADSCs and BMSCs when used in rat sciatic
nerve injury. Both showed satisfactory results in terms of
histological and functional recovery [40]. Furthermore,
another study indicated that ADSCs successfully reduced
neuropathic pain in the PNI model when compared with
the BMSC group [41]. Recently, overexpressed neurotrophic
factor ADSCs, via lentivirus transfection, became a new
method to enhance PNI repair [42]. Without the donor site
morbidity limitations associated with the isolation of SCs or
BMSCs, ADSCs may provide a more effective cell popula-
tion, thus, translating into the clinic to enhance PNI repair
methods.
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2.1.3. Gingiva-Derived Mesenchymal Stem Cells. As an alter-
native and readily accessible source of stem cells for the
repair of nerve tissues, gingiva-derived mesenchymal stem
cells (GMSCs) have attracted the attention of researchers
in recent years. GMSCs can be directly induced to become
multipotent and expandable neural progenitor-like cell
(NPCs) through nongenetic approaches [43, 44]. NPCs
displayed better therapeutic effects on peripheral nerve
regeneration than their parental GMSC counterparts. A
study demonstrated that GMSCs and induced-NPCs pro-
mote peripheral nerve repair by promoting remyelination
regulators, c-JUN, and Krox-20/EGR2 [44]. Furthermore,
the same group suggested that the Yes-associated protein
(YAP) signaling plays an important role in orchestrating
the induction of NPCs from GMSCs [45]. Other researchers
have used exosomes from the supernatant of cultured
GMSCs for the treatment of PNI. Their results indicated that
GMSC-derived vesicles or exosomes preferentially promote
SC dedifferentiation and have the potential to activate the
repair phenotype of SCs by regulating the expression of
key transcription factors [46, 47]. These findings suggest that
the practical advantages of GMSCs make them applicable for
peripheral nerve injuries.

2.1.4. Skin-Derived Stem Cells. Skin-derived stem cells
(SDSCs) are an accessible source of multipotent stem cells
extracted from the dermis. These cells were reported to gen-
erate both endothelial and neural derivatives in vitro and
in vivo [48, 49]. Furthermore, research has shown that
SDSCs can differentiate into SDSC-SCs by 95% in vitro as
well as survive, migrate, and maintain the expression of SC
markers, over long-term periods, when transplanted into
acellular isografts in vivo [50]. Several studies have reported
that SDSC-SC treatment provides PNIs with immediate
axon regeneration, myelination, and functional recovery.
They do this via secreting neurotrophic factors and promot-
ing proliferation of denervated host SCs or recruiting them
to the sites of injury [51]. Moreover, studies have suggested
the beneficial effects of SDSC-SCs in delayed PNI and in
enhancing muscle reinnervation [52, 53]. Regarding immu-
nomodulatory function, Stratton et al. [54] transplanted
SDSC-SCs into nerve-injury site. The results indicated that
SDSC-SCs enhanced debris clearance and inflammation
following injury by secreting cytokines such as IL-6. More-
over, another group proved that advanced debris clearance
implies a less inhibitory microenvironment, which in turn
contributes to axon regeneration [53]. Additionally,

Table 1: Effect of ADSCs in PNI animal models.

Stem cell
characteristics

Animal/nerve
Experimental

model
Delivery system Contribution to PNI regeneration Reference

ADSCs
Mice sciatic

nerve
5mm nerve

gap
Gelatin hydrogel tube

Promoted formation of myelin, restoration of
denervation muscle atrophy

[95]

hADSCs
Rabbit
peroneal

40mm nerve
gap

Vein conduit refilled with fibrin
Promoted myelination and axonal

regeneration
[96]

ADSCs
Rat sciatic
nerve

Nerve crush
model

Perineural transplantation by
cell injection

Gained better motor functional recovery and
early proregeneration

[97]

ADSCs
Mouse sciatic

nerve
Nerve crush

model
Intravenous administration of

ADSCs
Accelerated the functional recovery and

reduced inflammatory infiltrates
[26]

ADSCs
Dog facial
nerve

7mm nerve
gap

Core-Tex tube filled alginate
hydrogel

Promoted nerve diameter, nerve number, and
electrophysiological recovery

[39]

ADSCs
Rat sciatic
nerve

10mm nerve
gap

Collagen conduit filled with
fibrin-agarose hydrogels

Enhanced sensory and motor functional
recovery

[98]

ADSCs
Rat sciatic
nerve

10mm nerve
gap

Silicon rubber conduit
Augmented the functional recovery and

axonal regeneration
[99]

ADSCs
Rat sciatic
nerve

10mm nerve
gap

GGT (genipin-gelatin-
tricalcium phosphate) nerve

conduit

Promoted SFI and CMAPs (compound
muscle action potentials)

[100]

ADSCs
Rat sciatic
nerve

10mm nerve
gap

Acellular nerve tube
Increased walking behavior, nerve conduct

velocity, myelinated fiber density
[101]

ADSCs
Rat sciatic
nerve

10mm nerve
gap

Fibrin conduit
Enhanced axonal regeneration and

angiogenesis
[36]

ADSCs
Rat sciatic
nerve

10mm nerve
gap

3D-engineering of cellularized
conduits

Augmented functional and histological
assessment

[102]

ADSCs
Rabbit sciatic

nerve
20mm nerve

gap
Acellular allogenic nerve

Improved recovery of nerve function,
morphology, and tensile mechanical

properties.
[103]

ADSCs
Rat sciatic
nerve

Nerve
transection

Fibrin glue
Enhanced the process of nerve regeneration

and angiogenesis
[104]

ADSCs
Rat sciatic
nerve

Nerve
transection

Fibrin-hydrogel nerve conduits
(FNC)

Promoted early nerve regeneration [105]
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treatment of the SDSC-SCs sensory neurons [55] or moto-
neurons [52] could be significantly improved in PNI animal
models. In a clinical environment, patient-derived SDSCs
alongside a transplanted collagen artificial nerve graft pro-
moted motor and sensory functions of the median nerve
during the case follow-up period [56]. In addition, Branden-
burger and Kruse’s group [57] described a protocol in which
a coculture system of peripheral nerve cells with sweat
gland-derived stem cells promoted neurite outgrowth. Given
their ease of accessibility, ability to differentiate, and their
capacity to enhance axon regeneration, SDSCs are a strong
candidate for therapeutic PNI.

2.1.5. Muscle-Derived Mesenchymal Stem Cells. Under cer-
tain conditions, muscle-derived mesenchymal stem cells
(MDSCs) can not only differentiate into mesoderm cells,
including myocytes, adipocytes [58], and cartilage [59], but
they can also differentiate into ectoderm cells such as neu-
rocytes [60, 61] in vitro. Moreover, in vivo, some studies
indicated that MDSCs could ameliorate critical-sized sci-
atic nerve injury in a murine model by differentiating into
myelin-producing SCs [62, 63]. Meanwhile, Kazuno et al.
[64] transplanted MDSCs into bioabsorbable polyglyconate
(PGA) in a recurrent laryngeal nerve (RLN) transected
mouse model and described good recovery of the RLN.
Furthermore, Tamaki et al.’s group also suggested that
MDSCs preferentially differentiate into perineurial/endo-
neurial cells, as well as SCs, in vivo [60]. They further
sorted MDSCs into CD34(-)/CD45(-)/CD29(+) (Sk-
DN/29(+)) and CD34(+)/CD45(-) (Sk-34) cells. This was
followed by their expansion and then cotransplantation;

it was reported that the latter type of MDSCs can differen-
tiate into vascular endothelial cells and pericytes in vivo
[65], which significantly improved functional recovery by
promoting axon growth and vascular formation [66]. Fur-
thermore, other studies also transplanted MDSCs with
overexpressed the neurotrophic factor and achieved high-
quality PNI healing [67]. Thus far, the main problem is
that more reliable MDSC expansion protocols are needed
for future clinical applications.

2.1.6. Amniotic-Derived Mesenchymal Stem Cells. Amniotic-
derived mesenchymal stem cells (AMSCs) are a kind of mul-
tipotent stem cell with the capabilities of MSCs [68]. During
the early years, intravenous administration of AMSCs pro-
vided beneficial effect on PNI because they express stromal
cell-derived factor-1α (SDF-α) and its receptor chemokine
receptor type-4 (CXCR-4) to enhance nerve regeneration
by recruiting progenitor cells [69]. And another study also
showed the therapy could alleviate the neuropathic pain
and suppress the inflammation response by expressing IL-
1β, TNF-α [70]. Furthermore, AMSCs produce a number
of neurotrophic factors such as GAP-43, NGF, BDNF, and
GDNF, which promote the nerve injury recovery in different
animal models [71]. Additionally, Li et al.’s group indicated
that AMSC transplantation display neurovascular tropism,
which could aid in the recovery of sciatic nerve injury [72].
Besides, when compared to traditional BMSCs, AMSCs
showed higher proliferative capacity and more efficiency
nerve growth factor secretion both in vivo and vitro [73].
Therefore, AMSCs are a promising alternation for therapy
of PNI.

Table 2: Effect of dADSCs in PNI animal models.

Stem cell
characteristics

Cell
markers

Animal/nerve
Experimental

model
Delivery system Contribution to PNI regeneration Reference

Neuronally
differentiated
ADSCs

βIII-tubulin
Rat sciatic
nerve

10mm nerve
gap

Aligned PBHV
nanofiber nerve

scaffold

Improved motor functional and histological
recovery

[106]

ADSCs-SC-
like cells

GFAP, S100
Rat sciatic
nerve

10mm nerve
gap

Acellular nerve
allograft

Enhanced walking-track and
electrophysiological result

[42]

Differentiated
ADSCs

GFAP, S100
Rat sciatic
nerve

15mm nerve
gap

Acellular nerve
Augmented histological and
electrophysiological recovery

[107]

ADSCs-SC-
like cells

S100,
NGFR p75

Rat sciatic
nerve

10mm nerve
gap

Biodegradable
chitin conduit

Promoted motor functional and histological
recovery

[108]

Differentiated
ADSCs

S100,
GFAP, p75

Rat sciatic
nerve injury

15mm nerve
gap

NeuraWrap™
filled with EngNT-
dADSC sheets

Supported neuronal regeneration in regard
to myelination thickness and number of

axons
[109]

Differentiated
ADSCs

GFAP, S100
Rat sciatic
nerve injury

15mm nerve
gap

PGA-c tube
Improved myelin formation and functional

recovery
[110]

Differentiated
ADSCs

GFAP, S100
Rat sciatic
nerve injury

10mm nerve
gap

GGT nerve
conduit

Promoted SFI, electrophysiological recovery,
and gained equally result with autologous in

histological analysis
[111]

Differentiated
ADSCs

GFAP, βIII-
tubulin

Rat facial
nerve

8mm
Decellularized
allogeneic artery

conduits

Promoted nerve regeneration and functional
restoration.

[112]

Differentiated
ADSCs

GFAP,
S100, p75

Rat sciatic
nerve injury

10mm nerve
gap

PHB tube filled
with fibrin glue

Increased axon myelination and functional
recovery

[113]
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2.1.7. Umbilical Cord-Derived Mesenchymal Stem Cells.
Umbilical cord-derived mesenchymal stem cells (UCMSCs)
are able to give rise to multiple cell types of neural lineage
both in vivo and vitro [74]. Recent studies have showed that
UCMSCs can be effectively used for peripheral nerve regen-
eration due to its paracrine [75], immunomodulatory, anti-
oxidative [76], as well as inflammation modulatory
characteristics [77]. Those properties could supply a favor-
able microenvironment for nerve regeneration. Further-
more, when combined with the biomaterial nerve conduit,
UCMSCs exhibit beneficial effect in PNI. Cui et al. utilized
the collagen conduit loaded with UCMSCs to the sciatic
nerve defect in dogs and suggested that the therapy
improved functional and histological recovery [78]. Another
study indicated that associating a hybrid chitosan membrane
with UCMSCs enhanced the motor and sensory functional
recovery in rat model by stimulating the UCMSC differenti-
ation in to SCLCs [79]. With regarding clinical application,
one study reported radial nerve injury patients treated with
UCMSC-loaded amniotic membrane displayed obvious
improvement in muscular strength after 12 weeks when
compared with control patients [80]. However, even though
the UCMSCs are easy to harvest and purify, the main disad-
vantage is that it is hard to collect enough UCMSCs to trans-
plant an adult.

2.2. Ectodermal Cells. The fact that embryonic origin is
shared with the peripheral nervous system allows us to argue
that ectodermal cells are much closer to nerve cells than
mesodermal MSCs. In this section, two types of ectodermal
cells, the surface ectoderm and neural crest ectoderm, are
discussed. The latter is regarded as the fourth germ layer
because of its multipotency, long-range migration through-
out the embryo, and its capacity to generate a prodigious
number of differentiated cell types. In the following subsec-
tions, we review the contribution of ectodermal cells origi-
nating from various adult tissue types for PNI regeneration.

2.2.1. Hair Follicle-Associated-Pluripotent Stem Cells. Hair
follicle-associated pluripotent stem cells (HAPSCs) are a
typical source of surface ectodermal cells. In 2004,
researchers showed that neural crest cells (NCCs) grew out
when the hair follicle bulge was explanted, resulting in dif-
ferentiation into a variety of cell types, including neurons,
smooth muscle cells, rare SCs, and melanocytes [81].
Furthermore, Amoh et al. (2005, 2010, 2012) proved that
HAPSCs could differentiate into glial fibrillary acidic
protein-positive SCs in vivo and form a myelin sheath sur-
rounding axons while the severed sciatic nerve regrew in
mice [82, 83]. Furthermore, this same group implanted
mouse green fluorescent protein- (GFP-) expressing HAPSC
spheres, encapsulated in polyvinylidene fluoride- (PVDF-)
membrane cylinders, into the severed sciatic nerve of
immunocompetent and immunocompromised (nude) mice.
Eight weeks after treatment, the transplanted group showed
greater improvement both in hematoxylin and eosin (H&E)
staining and quantitative walking analysis than with the
transplantation of empty cylinders. These findings suggest

that HAPSCs provide a potentially accessible, autologous
source of stem cells for PNI regeneration therapy.

2.2.2. Olfactory Stem Cells. Olfactory stem cells (OSCs) are a
type of neural crest cell in mammals, including humans.
During the past decade, OSCs have attracted considerable
interest due to their self-renewal ability, as well as their abil-
ity to express different glial markers [84] and myelin constit-
uents in adult mammals [85], thereby providing paracrine
factors and a favorable microenvironment for neurogenesis
[86]. Their therapeutic potential has been successfully tested
in various PNI animal models (Table 3). One study con-
firmed that stem cells from the olfactory mucosa produce
various growth factors and cytokines such as Galectin-1,
growth arrest-specific 1 (GAS1), insulin-like growth factor-
binding proteins 2 and 3 (IGF-BP2 and IGF-BP3), soluble
tumor necrosis factor receptor I (sTNF-RI), and tumor
necrosis factor-related weak inducer of apoptosis receptor
(TWEAKR), all of which accelerate functional recovery after
facial nerve injury in mice [87]. Additionally, when com-
bined with biodegradation nerve conduits, olfactory ectome-
senchymal stem cells (OE-MSCs) are also regarded as a good
option. Salehi et al. (2019) utilized an alginate/chitosan
hydrogel saturated with OSCs to treat sciatic nerve defects.
They found that the therapy enhanced regeneration when
compared to both the control and hydrogel without cells
groups [88]. Furthermore, OSCs can be easily obtained from
olfactory mucosa biopsies with limited risk, making it possi-
ble to envisage autologous cell transplantation strategies in
future clinical work.

2.2.3. Dental Ectomesenchymal Stem Cells. Dental ectome-
senchymal stem cells (DE-MSCs), which originate from
most craniofacial structures, such as the dental pulp, peri-
odontal ligament, and exfoliated deciduous teeth, have the
same origin as neural crest cells [89]. Over the past decade,
dental pulp stem cells (DPSCs) have been confirmed to be
capable of differentiating into functional oligodendrocytes
in vitro [90], which highlights their potential application
in PNI repair. Previous findings have shown that DPSCs
promote axonal regeneration by releasing growth factors,
including BDNF, GDNF, NGF, NTF3, ANGPT1, and
VEGFA [91]. Furthermore, Sanen et al. [92] applied differ-
entiated DPSCs in a rat sciatic nerve injury model and
reported the proangiogenic effects of differentiated human
DPSCs (d-hDPSCs) in PNI treatment. Recently, several
investigations have also proven that DPSCs combined with
different artificial nerves favor the peripheral nervous system
[93]. They highlighted that both customized 3D nanofibrous
scaffolds and chitosan-scaffolds support proliferation and
neural differentiation of DPSCs, thus, they could be utilized
for PNI repair. A few studies have also described the para-
crine activity and differentiation potential of stem cells from
exfoliated deciduous teeth (SHED) and periodontal liga-
ments (PDLSCs) [94]. Data from different studies (Table 4)
suggest that these DE-MSCs not only show pluripotent dif-
ferentiation potential but also have promising regenerative
potential.
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2.3. Endodermal Cell. Primary cells from endodermal organs
such as the liver, lung, pancreas, and digestive tract are often
difficult to grow in vitro, while the procurement of primary
tissue is often ethically questionable, especially from healthy
donors. Thus, nerve regenerative medicine applications are
currently limited by the lack of high-quality endodermal
adult stem cells.

3. Conclusions and Future Perspectives

Due to their multipotential, paracrine, and ethically friendly
properties, ASC therapies are gradually garnering more
attention as an efficient solution to healing PNIs. In this
review, we sorted ASCs based on the three germ layers. Ide-
ally, in this application, the ASCs should originate from

Table 4: Effect of different ED-MSCs types in PNI animal models.

ED-MSC type Surface marker expression in vitro Models of PNI Delivery system Contribution to PNI regeneration Reference

hDPSCs
P75NTR, GFAP, S100b, nestin,
SOX-10, STRO-1, c-Kit, CD34

6mm nerve gap
in a rat sciatic
nerve model

Collagen
scaffold

Differentiated into Schwan cells
in vitro, promoted myelin formation

and functional recovery in vivo
[91]

DPSCs,
PDLSC

CD73, CD90, CD105, CD146

10mm nerve
gap in a rat
sciatic nerve

model

Fibrin glue
conduit

Beneficial effects on neurite outgrowth
in vitro. Enhanced axonal regeneration

in vivo
[117]

d-DPSCs -

15mm nerve
gap in a rat
sciatic nerve

model

EngNT
Showed angiogenic properties in vitro

and positive effect in nerve
regeneration in vivo

[92]

DPSCs -
7mm nerve gap
in a rat facial
nerve model

PLGA tube Promoted histological recovery in vivo [118]

SHED

CD73, CD90, CD105, nestin,
doublecortin, β-III-tubulin,
NeuN, GFAP, S-100, A2B5,

CNPase

12mm nerve
gap in a rat
sciatic nerve

model

Silicon conduit
Stimulated angiogenesis and neurite
growth in vitro, enhanced functional
and histological recovery in vivo

[94]

SHED
CD29, CD73, CD90, CD105,

CD166, S100

5mm nerve gap
in a rat facial
nerve model

PGAt nerve
tube

Enhanced axonal regeneration and
functional recovery

[119]

PDLSCs POU4F2
Rat optic nerve
crush model

Cells were
injected into the

vitreous
chamber

Promoted neurite growth in vitro,
improved optic nerve regeneration

in vivo.
[120]

Table 3: Effect of OSCs in PNI animal models.

OSC origin
Surface marker expression

in vitro
Models of PNI Delivery system Contribution to PNI regeneration Reference

hOE-MSCs
CD13, CD44, CD90, CD166,
CD146, CD73, CD29, CD105

2mm facial nerve gap
in rats

Nerve stumps
Promoted the movement score and

electrophysiological results
[114]

OE-MSCs Nestin
20mm inferior

laryngeal nerve gap in
rats

Cells are injected
into nerve graft

Enhanced laryngeal mobility and
function score

[115]

OE-MSCs
CD73, CD90, CD105, nestin,

vimentin
Sciatic nerve crush in

rats

Alginate/
chitosan
hydrogel

Improved motor and sensory nerve
regeneration

[88]

OSCs β-tubulin, nestin, and GFAP
10mm sciatic nerve

gap in rats
Biphasic conduit

Contributed functional,
electrophysiological, and histological

recovery
[116]

OSCs
β-tubulin, GFAP, nestin,
OMP, Musashi-1, sox-2,

Nanog

Facial nerve crush
model in mice

Biodegradable
hydrogel

Accelerated the recovery from facial
palsy and enhanced nerve

regeneration
[87]
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Table 5: Summary of pros and cons for stem cells.

Pros Cons Reference

Mesodermal
cells

BMSCs

(i) Self-renew ability
(ii) Differentiate into
neural lineage
(iii) Produce neurotrophic
factors
(iv) Immunomodulatory
effects

(i) Require invasive surgical procedures
(ii) Donor site morbidity

[15, 18–21, 23, 121–126]

ADSCs

(i) Self-renew ability
(ii) Differentiate into
neural lineage
(iii) Produce neurotrophic
factors
(iv) Downregulating
inflammation
(v) Abundant source

(i) Require invasive surgical procedures
(ii) Rapidly dedifferentiated

[25, 36, 38, 95, 103, 110,
127–132]

GMSCs

(i) Self-renew ability
(ii) Differentiate into
neural lineage
(iii) Promote situ SC
dedifferentiation
(iv) Phenotypically stable
paracrine ability
(v) Less invasive
procedure

(i) Require invasive surgical procedures [43–47]

SDSCs

(i) Self-renew ability
(ii) Differentiate into
neural lineage
(iii) Promote situ SC
dedifferentiation
(iv) Immunomodulatory
effects

(i) Require invasive surgical procedures
(ii) Low efficiency of isolation

[48, 49, 52–54, 56, 133–137]

MDSCs

(i) Self-renew ability
(ii) Differentiate into
neural lineage
(iii) Promote vascular
formation
(iv) Produce neurotrophic
factors

(i) Require invasive surgical procedures
(ii) Donor site morbidity
(iii) Low efficiency of expansion

[60, 62, 63, 65, 67, 138]

AMSCs

(i) Self-renew ability
(ii) Differentiate into
neural lineage
(iii) Produce neurotrophic
factors
(iv) Promote vascular
formation
(v) Downregulating
inflammation

(i) Difficult to isolation
(ii) Unstable phenotype

[73, 139–144]

UCMSCs

(i) Self-renew ability
(ii) Differentiate into
neural lineage
(iii) Produce neurotrophic
factors
(iv) Downregulating
inflammation
(v) Easy to harvest and
purify

(i) Risk of tumorgenesis
(ii) Not abundance

[2, 75, 76, 78, 145–153]
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mesodermal tissue because they not only retain the charac-
teristics of mesodermal cells but can also differentiate into
neural lineage cells, which are beneficial for peripheral
regeneration. In addition to MSCs, ectoderm-derived stem
cells also enable nerve regeneration in preclinical treatments.
In particular, neural crest stem cells (NCDSs), which have
the same germ layer as neurocytes, can express nerve-
specific markers. Furthermore, with their multipotent abil-
ity, NCSCs expedite the development of ectodermal stem
cell-based therapies to treat PNI. Over the past decade, com-
bining ASCs with tissue-engineered nerve conduits has
accelerated the therapeutic effects of peripheral nerve repair.

Despite great promise in ASCs, some issues still exist
that affect the efficiency of ASC-based therapy (Table 5).
For instance, when ASCs are transplanted into PNI animal
models, the percentage of ASCs differentiating directly into
supportive cells and the ratio of surviving cells should be
noted. Furthermore, some data support that differentiated
cells rapidly dedifferentiated when there is a lack of stimula-
tion [38]. Thus, the stimulator, mobilization, homing, and
delivery system should be taken into consideration to
improve the quantity and quality of stem cells in therapeutic
environments.
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