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Abstract
Background and Aim: The emergence of antibiotic-resistant bacterial pathogens has been increasingly reported, which has 
resulted in a decreasing ability to treat bacterial infections. Therefore, this study investigated the presence of Aeromonas 
spp., including its antibiotic resistance in various fish samples, Oreochromis spp., Clarias gariepinus, and Pangasius 
hypophthalmus, obtained from Kelantan and Terengganu, Malaysia.

Materials and Methods: In this study, 221 fish samples, of which 108 (Oreochromis spp., n=38; C. gariepinus, n=35; and 
P. hypophthalmus, n=35) were from Kelantan and 113 (Oreochromis spp., n=38; C. gariepinus, n=35; and P. hypophthalmus, 
n=40) were from Terengganu, were caught using cast nets. Then, samples from their kidneys were cultured on a Rimler Shott agar 
to isolate Aeromonas spp. Polymerase chain reaction (PCR) was used to confirm this isolation using specific gene primers for 
species identification. Subsequently, the isolates were tested for their sensitivity to 14 antibiotics using the Kirby–Bauer method, 
after which the PCR was conducted again to detect resistance genes: sul1, strA-strB, aadA, blaTEM, blaSHV, tetA-tetE, and tetM.

Results: From the results, 61 isolates were identified as being from the genus Aeromonas using PCR, of which 28 were 
Aeromonas jandaei, 19 were Aeromonas veronii, seven were Aeromonas hydrophila, and seven were Aeromonas sobria. 
Moreover, 8, 12, and 8 of A. jandaei; 4, 3, and 12 of A. veronii; 6, 0, and 1 of A. hydrophila; and 3, 3, and 1 of A. sobria 
were obtained from Oreochromis spp., C. gariepinus, and P. hypophthalmus, respectively. In addition, the isolates showed 
the highest level of resistance to ampicillin (100%), followed by streptomycin (59.0%), each kanamycin and nalidixic 
acid (41.0%), neomycin (36.1%), tetracycline (19.7%), sulfamethoxazole (14.8%), and oxytetracycline (13.1%). Resistance 
to gentamicin and ciprofloxacin both had the same percentage (9.8%), whereas isolates showed the lowest resistance to 
norfloxacin (8.2%) and doxycycline (1.6%). Notably, all Aeromonas isolates were susceptible to chloramphenicol and 
nitrofurantoin. Results also revealed that the multiple antibiotic resistances index of the isolates ranged from 0.07 to 0.64, 
suggesting that the farmed fish in these areas were introduced to the logged antibiotics indiscriminately and constantly 
during their cultivation stages. Results also revealed that the sul1 gene was detected in 19.7% of the Aeromonas isolates, 
whereas the tetracycline resistance genes, tetA and tetE, were detected in 27.9% and 4.9% of the isolates, respectively. 
However, β-lactam resistance genes, blaTEM and blaSHV, were found in 44.3% and 13.1% of Aeromonas isolates, respectively, 
whereas strA-strB and aadA genes were found in 3.3% and 13.1% of the isolates, respectively.

Conclusion: This study, therefore, calls for continuous surveillance of antibiotic-resistant Aeromonas spp. in cultured 
freshwater fish to aid disease management and better understand their implications to public health.
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Introduction

Aquaculture plays an important role in the 
food supply of Malaysia. Under the Economic 
Transformation Program, the Malaysian government 
established aquaculture as one of the key thrust areas 

for the agro-food industry [1]. In 2014, Malaysia’s 
annual per capita fish intake was one of the highest in 
Asia at 56.5  kg, with tilapia (Oreochromis spp.) and 
African catfish (Clarias gariepinus) being the favored 
farmed fish. Interestingly, in freshwater aquaculture, 
the African (C. gariepinus) and Pangasius (Pangasius 
hypophthalmus) catfishes being produced are leading 
because of a higher local demand, followed by tilapia 
(Oreochromis spp.), which is small in terms of produc-
tion and was valued at RM223,000 (USD 58,000) [1].

Despite these interesting facts, bacterial infec-
tions are the most growing contagious concern in 
industrial fish farms and ornamental fish [2]. Studies 
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have shown that captive fish are susceptible to many 
pathogenic bacteria that can cause kidney disease, 
dropsy, enteric redmouth, tuberculosis, vibriosis, 
motile aeromonad septicemia, bacterial gill infection, 
mouth fungus, tail and fin rot, and columnaris [3-7]. 
Furthermore, one of the most emerging bacteria that 
cause infectious diseases in freshwater aquaculture 
worldwide is Aeromonas hydrophila and other aer-
omonads [8,9]. These Aeromonas species can also 
cause  motile aeromonads septicemia (MAS) in fish, 
with clinical symptoms, such as ulceration, ascitis, 
scale detachment, erosion, and exophthalmia being 
reported [10]. Apart from A. hydrophila, many dis-
ease-related aeromonads have been identified in tilapia 
as well, such as Aeromonas sobria [11], Aeromonas 
dhakensis (A. hydrophila subspecies dhakensis) [12], 
and Aeromonas veronii (synonyms of Aeromonas ich-
thiosmia, Aeromonas culicicola, and Aeromonas allo-
saccharophila) [13-16]. However, the occurrence of A. 
hydrophila infection was significantly higher in cul-
tured fish than in wild species, such as Nile tilapia [17].

Antimicrobials have progressively been used in 
animal farming for disease prevention and treatment 
over the past few years, including as growth pro-
moters [18]. However, their usage is based on modern 
medicine; the misuse of these antibiotics has increased 
the risk of emerging antimicrobial resistance cases 
in pathogenic and nonpathogenic bacteria. This has 
resulted in the lower treatment potency of commonly 
used antimicrobials in treating diseases, such as tuber-
culosis, pneumonia, and gastrointestinal infections, in 
humans [19]. In addition, during animal farming, anti-
microbial deposits have been discovered in terrestrial, 
freshwater, and marine habitats close to agriculture 
and aquaculture facilities [20,21]. Antimicrobials are 
also applied in the feed or directly to water in aquacul-
ture systems. Thus, they are proposed to subsequently 
be disposed into the environment by run-off water, 
sedimentation of feces, or uneaten feed pellets that can 
then be eaten by local fish or invertebrates [21-25]. The 
unconstrained use of antimicrobials in aquaculture can 
therefore transmit antibiotic-resistant bacteria, which 
are commonly transferred through R plasmids, with 
fish bacteria acting as intermediates [18,20,22,26-31].

 Therefore, this study investigated the presence 
of Aeromonas spp., including its antibiotic resistance 
in various fish samples, Oreochromis spp., Clarias 
gariepinus, and Pangasius hypophthalmus, obtained 
from Kelantan and Terengganu, Malaysia.
Materials and Methods
Ethical approval

The study was approved by the Institutional 
Animal Care and Use Committee (IACUC), Faculty 
of Veterinary Medicine, University Malaysia Kelantan 
(UMK/FPV/ACUE/PG/4/2019).
Study period and location

This study was conducted from February 2019 
to December 2019. Samples were taken from three 

freshwater fish farms, each in state of Kelantan and 
Terengganu. In Kelantan, the farms located in Tumpat, 
Kota Bharu and Bachok. In Terengganu, two farms 
located in Kuala Terengganu and one farm in Hulu 
Terengganu. All the samples were processed in situ 
with an aseptic technique. 
Sample collection

Here, 221 freshwater fish were collected, with 
108  samples from Kelantan and 113  samples from 
Terengganu. Of the 108 fish samples from Kelantan, 
38 were red hybrid tilapia (Oreochromis spp.), 35 were 
African catfish (C. gariepinus), and the remaining 35 
were Pangasius catfish (P. hypophthalmus). However, 
of the 113 fish samples collected from Terengganu, 38 
were Oreochromis spp., 35 were C. gariepinus, and 
40 were P. hypophthalmus. Next, a specimen of the 
kidneys was collected from these fish.
Bacterial isolation and identification

The specimen was inoculated on Rimler Shott 
agar (RSA) (HiMedia, India) supplemented with 
novobiocin antibiotics and incubated at 30°C for 24 h. 
Next, yellow colonies on RSA were chosen and further 
sub-cultured on Trypticase soy agar (TSA) (Oxoid, 
Hampshire, UK) for purity. Subsequently, morpho-
logical and biochemical tests were used to identify 
all isolates, such as Gram staining, oxidase, catalase, 
and motility tests, after which the biochemical charac-
teristics of Aeromonas spp. were examined using the 
analytical profile index 20E kit (bioMerieux, France) 
according to the manufacturer’s instructions. Finally, 
the strip was incubated at 30°C for 24 h.
Confirmation of Aeromonas spp. using polymerase 
chain reaction (PCR) assay

Genomic DNA was extracted using the Bacterial 
Genomic DNA kit (Geneaid, USA) following the 
manufacturer’s instructions. To determine the pres-
ence of Aeromonas spp., a PCR assay was then con-
ducted using 16S rRNA and a specific gene [32]. 
Next, PCR amplification was conducted using a 
Mastercycler gradient (Bio-Rad, USA). A final PCR 
volume of 25 μL containing 12.5 µL Go Taq® Green 
Master Mix (Promega, USA), 1 μL of each 10 ρmol 
forward and reverse primers, and 2 μL DNA template 
were used. The conditions for thermocycling were set 
as follows: 94°C for 3 min, 35 cycles of 94°C for 60 s, 
58°C for 60 s, 72°C for 1.5 min, and a final extension 
at 72°C for 3 min. Finally, amplified products were 
electrophoresed on 2.0 % agarose gels, after which 
the gels were visualized and captured using GelDoc 
(Bio-Rad).
Determination of antibiotic susceptibility and mul-
tiple antibiotic resistance (MAR) index of selected 
bacteria

The isolates were tested for sensitivity to 14 
antibiotics: Ampicillin (10 µg), gentamicin (10 µg), 
neomycin (30 µg), streptomycin (10 µg), kanamycin 
(30 µg), tetracycline (30 µg), oxytetracycline (30 µg), 
ciprofloxacin (5  µg), norfloxacin (10  µg), nalidixic 
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acid (30 µg), chloramphenicol (30 µg), sulfamethox-
azole (25 µg), doxycycline (30 µg), and nitrofurantoin 
(300 µg). Kirby–Bauer’s disc diffusion method was 
then used to assess the patterns of antibiotic sensitiv-
ity of the isolates. Inhibition zone results were subse-
quently interpreted as sensitive (S), intermediate (I), 
and resistant (R) according to the reference standard 
by the Clinical and Laboratory Standard Institute [33].

MAR index was calculated using the formula 
provided by Sarter et al. [34]:

X/(Y×Z)

Where, X=Total cases of antibiotic resistance; 
Y=Total number of isolates; Z=Total number of 
isolates

The MAR index value of equal to, or less than, 
0.2 was defined as antibiotics that were seldom or 
never used.
Detection of associated drug resistance genes

Resistance genes were detected using PCR 
amplification with the different primers as described 
in Table-1 [35-41]. Assays were then conducted in 
25 µL volume mixtures, according to the manufac-
turer’s protocol (Promega, USA). Next, all PCR reac-
tions were subjected to amplification according to the 
cycling parameter suggested by a previous researcher 
(Table-1). Finally, PCR products were run on 2.0% 
agarose, after which the gel was visualized and cap-
tured using Gel Doc (Bio-Rad).
Results

From the results, 61 isolates obtained from 
freshwater fish samples were identified as genus 
Aeromonas using PCR. Table-2 shows that from the 
61 Aeromonas spp. isolated, 22 isolates were from 

P. hypophthalmus, 19 from Oreochromis spp., and 20 
from C. gariepinus. Furthermore, Aeromonas species 
isolated from freshwater fish in Kelantan were higher 
(43 isolates) than those from Terengganu (18 isolates).

Figure-1 shows the confirmed identification using 
the PCR assay of Aeromonas spp. The positive isolates 
for the 16S rRNA gene were then sent for sequencing. 
Figure-2 shows the distribution of Aeromonas species 

Table-1: List of primers used for detection of antibiotic resistance genes.

Primer Nucleotide sequence (5’–3’) Product size (bp) References

sul1-F CTTCGATGAGACCCGGCGGC 436 [35]
sul1-R GCAAGGCGGAAACCCGCGCC
aadA-F GAGAACATAGCGTTGCCTTGGTCG 198 [36]
aadA-R GCGCGATTTTGCCGGTTA
strA-strB-F TTGAATCGAACTAATAT 1640 [37]
strA-strB-R CTAGTATGACGTCTGTCG
blaTEM-F ATGAGTATTCAACATTTCCG 867 [38]
blaTEM-R CTGACAGTTACCAATGCTTA
blaSHV-F GGTTATGCGTTATATTCGCC 867 [38]
blaSHV-R TTAGCTTTGCCAGTGCTC
tetA-F GTAATTCTGAGCACTGTCGC 956 [39,40]
tetA-R CTGCCTGGACAACATTGCTT
tetB-F CTCAGTATTCCAAGCCTTTG 535 [39,40]
tetB-R CTAAGCACTTGTCTCCTGTT
tetC-F TCTAACAATGCGCTCATCGT 588 [39,40]
tetC-R GGTTGAAGGCTCTCAAGGGC
tetD-F ATTACACTGCTGGACGCGAT 1070 [39,40]
tetD-R CTGATCAGCAGACAGATTGC
tetE-F GTGATGATGGCACTGGTCAT 1198 [39,40]
tetE-R CTCTGCTGTACATCGCTCTT
tetM-F GTTAAATAGTGTTCTTGGAG 650 [41]
tetM-R CTAAGATATGGCTCTAACAA

Figure-1: Representative of polymerase chain reaction 
(PCR) positives for 16S rRNA of genus Aeromonas. Lane 
M: 1 Kbp DNA marker (Promega, USA); Lane N: negative 
control; Lane P: positive control; Lanes 1-8: Positive 
Aeromonas with 356 bp PCR products.
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according to each state in Kelantan and Terengganu. 
Four types of Aeromonas species were obtained during 
this study, with 28 isolates of Aeromonas jandaei, 19 
isolates of A. veronii, seven isolates of A. hydroph-
ila, and seven isolates of A. sobria. Furthermore, 
Aeromonas jandei and A. veronii were detected in 
both samples from Kelantan and Terengganu, whereas 
A. hydrophila and A. sobria were detected only in 
samples from Kelantan.

Figure-3 shows Aeromonas spp. colonies formed 
on TSA, which were creamy in color, round, and con-
vex, whereas Aeromonas colonies on RSA were yel-
low-green in color, round, and convex. The biochemi-
cal test results from Aeromonas spp. isolates revealed 
Gram-negative staining, rod-shaped, motile, fermen-
tative, oxidase-positive, catalase-positive, and indole 
negative characteristics.

In addition, all Aeromonas isolates displayed 
varying trends of resistance, where all isolates were 
ampicillin-resistant (100%), followed by streptomycin 
(59.0%), kanamycin and nalidixic acid with the same 
percentage (41.0%), neomycin (36.1%), tetracycline 
(19.7%), sulfamethoxazole (14.8%), and oxytetra-
cycline (13.1%). Gentamicin and ciprofloxacin both 
had the same percentage resistance (9.8%), whereas 
norfloxacin (8.2%) and doxycycline (1.6%) had the 
lowest (Figure-4). However, all Aeromonas isolates 
were sensitive to chloramphenicol and nitrofurantoin.

Figure-5 shows the presence of antibiotic resis-
tance genes in Aeromonas isolates. Results showed that 
the sul1 gene (related to sulfonamide resistance) was 
detected in 19.7% of the Aeromonas isolates. However, 
for tetracycline resistance genes, only tetA and tetE were 
detected in 27.9% and 4.9% of isolates, respectively. 
In addition, the β-lactam resistance genes, blaTEM and 
blaSHV, were found in 44.3% and 13.1% of Aeromonas 
isolates, respectively, whereas the strA-strB gene (related 
to streptomycin resistance) was found in 3.3% of the 
isolates, and the aadA gene (related to streptomycin 
and spectinomycin resistance) in 13.1% of the isolates. 
Table-3 shows the resistance phenotype and antibiotic 
resistance genes of all Aeromonas spp. isolates.
Discussion

H2S production is one of the features of 
Aeromonas spp. pathogenic piscine strains [42]. Shotts 
and Rimler [43] indicated that Aeromonas spp. grown 
on an RSA medium formed yellow colonies; however, 

Table-2: Prevalence of Aeromonas spp. isolated from 
freshwater fish.

Host species Aeromonas 
spp. 

isolated (n)

Kelantan 
(n, %)

Terengganu 
(n, %)

Pangasius 
hypophthalmus

22 20 (90.9) 2 (9.1)

Oreochromis spp. 19 9 (47.4) 10 (52.6)
Clarias gariepinus 20 14 (70.0) 6 (30.0)
Total 61 43 (70.5) 18 (29.5)

the colonies with black centers had to be tested for 
oxidase production to exclude the probability of 
Citrobacter spp. or other species of bacteria. MAS 
is broad, which includes A. hydrophila and several 
species of Aeromonas that have been reported to be 
risks to freshwater fish in aquaculture [13,14,44,45]. 
Motile aeromonad infections are possibly the most 
significant bacterial infection in freshwater fish. They 
are also discovered regularly in the intestines and gills 
of freshwater fish. Therefore, in this study, bacteria of 
the genus Aeromonas were isolated from the kidneys 
of red hybrid tilapia (Oreochromis spp.), including 
African (C. gariepinus) and Pangasius (P. hypophthal-
mus) catfishes obtained from the states of Kelantan 
and Terengganu in Malaysia.
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Figure-3: Aeromonas veronii on; (a) Rimler Shott agar; 
(b) Trypticase Soy agar.
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No. Isolates Identification Fish species Location Resistance 
phenotype

Genes detected 
by PCR

MAR 
Index

1. K1K2 A. sobria C. gariepinus Kelantan Amp-N-S-K blaTEM, blaSHV 0.29
2. K1K3 A. sobria C. gariepinus Kelantan Amp-N-S-K-Na-Sxt sul1, tetA 0.43
3. K2K11 A. jandaei C. gariepinus Kelantan Amp-S-Na-Sxt-Ot - 0.36
4. K2K12 A. sobria C. gariepinus Kelantan Amp-N-S-K-Te-Cip-

Na-Ot
tetA 0.57

5. K2K15 A. jandaei C. gariepinus Kelantan Amp-N-S-K-Na blaTEM 0.36
6. K2K16 A. veronii C. gariepinus Kelantan Amp-N-S-K-Na-

Sxt-Ot
sul1, tetE, blaTEM 0.50

7. K3K22 A. veronii C. gariepinus Kelantan Amp-Te-Na-Ot blaTEM 0.29
8. K3K24 A. jandaei C. gariepinus Kelantan Amp-N-S blaTEM 0.21
9. K3K25 A. veronii C. gariepinus Kelantan Amp-Te-Na-Sxt-Ot sul1, tetA, blaTEM 0.36
10. K3K26 A. jandaei C. gariepinus Kelantan Amp-S blaTEM 0.14
11. K3K27 A. jandaei C. gariepinus Kelantan Amp blaTEM 0.07
12. K3K28 A. jandaei C. gariepinus Kelantan Amp - 0.07
13. K3K29 A. jandaei C. gariepinus Kelantan Amp-N-S-K-Na-Ot tetA, strA-strB, 

blaTEM

0.43

14. K3K30 A. jandaei C. gariepinus Kelantan Amp-S-Na tetA, blaTEM 0.21
15. K1P2 A. sobria P. hypopthalmus Kelantan Amp-N-S-K-Te-Na tetA, strA-strB, 

aadA
0.43

16. K1P5 A. veronii P. hypopthalmus Kelantan Amp - 0.07
17. K2P1 A. hydrophila P. hypopthalmus Kelantan Amp - 0.07
18. K2P2 A. jandaei P. hypopthalmus Kelantan Amp-Te tetE 0.14
19. K2P3 A. jandaei P. hypopthalmus Kelantan Amp-Na - 0.14
20. K2P4 A. veronii P. hypopthalmus Kelantan Amp-S - 0.14
21. K2P5 A. veronii P. hypopthalmus Kelantan Amp-S-K blaTEM 0.21
22. K2P6 (a) A. veronii P. hypopthalmus Kelantan Amp - 0.07
23. K2P6 (b) A. veronii P. hypopthalmus Kelantan Amp-N-K blaTEM 0.21
24. K2P7 A. jandaei P. hypopthalmus Kelantan Amp-S - 0.14
25. K2P8 (a) A. jandaei P. hypopthalmus Kelantan Amp-S-K blaTEM 0.21
26. K2P8 (b) A. jandaei P. hypopthalmus Kelantan Amp-N-S-K-Na blaTEM, blaSHV 0.36
27. K2P10 A. veronii P. hypopthalmus Kelantan Amp-S-K - 0.21
28. K3P4 A. jandaei P. hypopthalmus Kelantan Amp-S-K - 0.21
29. K3P5 (a) A. veronii P. hypopthalmus Kelantan Amp-S-K - 0.21
30 K3P5 (b) A. veronii P. hypopthalmus Kelantan Amp-S-K blaTEM 0.21
31. K3P6 (a) A. veronii P. hypopthalmus Kelantan Amp-N-S-K blaTEM, blaSHV 0.29
32. K3P6 (b) A. veronii P. hypopthalmus Kelantan Amp-S-K - 0.21
33. K3P9 (a) A. veronii P. hypopthalmus Kelantan Amp-S-K blaTEM 0.21
34. K3P9 (b) A. veronii P. hypopthalmus Kelantan Amp-S-K - 0.21
35. K1T2 (a) A. hydrophila Oreochromis spp. Kelantan Amp-Cn-N-S-K-Cip-

Nor-Na-Sxt
sul1, tetA, blaTEM, 
blaSHV, aadA

0.64

36. K1T2 (b) A. sobria Oreochromis spp. Kelantan Amp-N-S-K-Te-Na-
Sxt

sul1, tetA, blaTEM 0.50

37. K2T3 (a) A. sobria Oreochromis spp. Kelantan Amp-Cn-N-S-K-Cip-
Nor-Na-Sxt

sul1, tetA, blaTEM, 
blaSHV, aadA

0.64

38. K2T3 (b) A. sobria Oreochromis spp. Kelantan Amp-N-S-Te-Na tetA, blaTEM, aadA 0.36
39. K2T6 (a) A. hydrophila Oreochromis spp. Kelantan Amp-N-S-Te-Na tetA, blaTEM, aadA 0.36
40. K2T6 (b) A. hydrophila Oreochromis spp. Kelantan Amp-Cn-N-S-K-Na-

Sxt
sul1, tetA, blaTEM 0.50

41. K3T8 A. hydrophila Oreochromis spp. Kelantan Amp-Cn-N-S-K-Te-
Cip-Nor-Na

tetA, blaTEM, blaSHV 0.64

42. K3T10 A. hydrophila Oreochromis spp. Kelantan Amp-Cn-N-S-K-Te-
Cip-Nor-Na

tetA, blaTEM, 
blaSHV, aadA

0.64

43. K3T11 A. hydrophila Oreochromis spp. Kelantan Amp-Cn-N-S-Cip-
Nor-Na-Sxt

sul1, tetA, blaTEM, 
blaSHV, aadA 

0.57

44. T2K5 A. jandaei C. gariepinus Terengganu Amp-Na tetE 0.14
45. T2K4 A. jandaei C. gariepinus Terengganu Amp - 0.07
46. T3K6 A. jandaei C. gariepinus Terengganu Amp-Te-Na-Do-Ot tetA 0.36
47. T3K8 A. jandaei C. gariepinus Terengganu Amp - 0.07
48. T1T7 A. jandaei Oreochromis spp. Terengganu Amp sul1 0.07
49. T1T10 (b) A. veronii Oreochromis spp. Terengganu Amp sul1, aadA 0.07
50. T1T4 (a) A. jandaei Oreochromis spp. Terengganu Amp sul1 0.07
51. T1K6 A. veronii Oreochromis spp. Terengganu Amp-N-Te-Sxt-Ot sul1, tetA 0.36
52. T1K7 A. veronii Oreochromis spp. Terengganu Amp-S - 0.14
53. T1T6 A. jandaei Oreochromis spp. Terengganu Amp-Na-S - 0.21
54. T1T9 A. veronii Oreochromis spp. Terengganu Amp - 0.07
55. T2T1 A. jandaei Oreochromis spp. Terengganu Amp - 0.07

Table-3: Resistance phenotype and presence of antibiotic resistance genes in Aeromonas spp. isolated from freshwater 
fish. 

(Contd...)
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No. Isolates Identification Fish species Location Resistance 
phenotype

Genes detected 
by PCR

MAR 
Index

56. T2T3 A. jandaei Oreochromis spp. Terengganu Amp blaTEM 0.07
57. T2T5 (a) A. jandaei Oreochromis spp. Terengganu Amp - 0.07
58. T2T6 A. jandaei Oreochromis spp. Terengganu Amp-S - 0.14
59. T2T7 A. jandaei Oreochromis spp. Terengganu Amp-Na-S - 0.21
60. T1P8 A. jandaei P. hypopthalmus Terengganu Amp - 0.07
61. T2P3 A. jandaei P. hypopthalmus Terengganu Amp - 0.07

Amp=Ampicillin (10 μg), Cn=Gentamicin (10 μg), N=Neomycin (30 μg), S=Streptomycin (10 μg), K=Kanamycin 
(30 μg), Te=Tetracycline (30 μg), Cip=Ciprofloxacin (5 μg), Nor=Norfloxacin (10 μg), Na=Nalidixic acid (30 μg), 
Sxt=Sulfamethoxazole (25 μg), C=Chloramphenicol (30 μg), Do=Doxycycline (30 μg), F=Nitrofurantoin (300 μg), 
Ot=Oxytetracycline (30 μg). MAR=Multiple antibiotic resistance, PCR=Polymerase chain reaction, A. sobria=Aeromonas 
sobria, C. gariepinus=Clarias gariepinus, A. jandaei=Aeromonas jandaei, A. veronii=Aeromonas veronii,  
P. hypopthalmus=Pangasiusr hypopthalmus, A. hydrophila=Aeromonas hydrophila

Table-3: (Continued)

Furthermore, among the 61 isolates from the genus 
Aeromonas isolated, 28 isolates were A. jandaei, 19 
were A. veronii, and seven isolates were A. hydrophila 
and A. sobria, respectively. These results are in agree-
ment with those observed in earlier studies by Radu  
et al. [46] that found A. veronii, A. sobria, A. hydrophila, 
and A. caviae in the market fish samples from Selangor 
state in Malaysia. In India, A. hydrophila has also been 
isolated from fish obtained from retail shops [47]. In 
addition, Ashiru et al. [48] isolated A. hydrophila, 
A. caviae, and A. sobria in catfish (Clarias betrachus) 
and tilapia fish (Tilapia nilotica) obtained from the 
Makoko market in Nigeria. The authors reported that 
A. caviae was predominant in tilapia fish, whereas 
A. hydrophila and A. sobria were predominant in cat-
fish. Other studies have also reported that A. jandaei 
is pathogenic to aquaculture fish, such as European 
eels (Anguilla anguilla) [49] and Pangasius cat-
fish (P. hypophthalmus) [50]. Besides, other studies 
have shown that A. veronii infected high numbers of 
fish, such as Chinese long snout catfish (Leiocassis 
longirostris) [51], loach (Misgurnus anguillicauda-
tus) [45], Oscar (Astronotus ocellatus) [52], and tilapia 
(Oreochromis spp.) [13,14,44]. This bacterial genus 
attacks catfish, which is among the main freshwater 
resources, and infects all sizes of fish as well, which 
can lead to death and result in big losses of freshwater 
fish production [53].

Aeromonas genus generates single or MARs rap-
idly, indicating that this genus is an effective marker 
of antimicrobial resistance in the freshwater aquacul-
ture system [54]. The MAR index varying from 0.07 
to 0.64 with 60% (37/61) of the isolates have MAR 
indices of more than 0.2 (high-risk source of con-
tamination), suggesting that the Aeromonas spp. in 
these farmed fish have been exposed to a high level 
of antibiotics during the cultivation processes, which 
can result in the development of antibiotic resistance 
among the bacteria isolates. Results from this study 
prove this fact, which revealed a high level of multi-
drug resistance (MDR) among the isolates tested 
(Table-3). However, the percentage of MAR index of 
more than 0.2 in this study (60%) was much lower 
than that obtained from the study by Odeyemi and 

Ahmad [55] in Aeromonas spp., isolated from 53 
aquatic samples in Melaka, Malaysia (100%). This 
result indicates that the indiscriminate use of antibi-
otics in West Coast Malaysia (Melaka) is higher than 
in East Coast Malaysia (Kelantan and Terengganu). 
High resistance of MDR due to Aeromonas spp. has 
also been reported as serious public health pathogens 
that cause gastroenteritis, septicemia, and skin infec-
tions in humans, which enter the human body through 
contaminated food and water consumption, including 
skin lesions [56].

In this study, all Aeromonas isolates were highly 
ampicillin-resistant. A  previous study reported that 
these Aeromonas species acquired β-lactams resis-
tance through the expression of chromosomal lac-
tamases [57]. This finding is also proposed to be 
due to a high intrinsic β-lactam resistance, which is 
enhanced by an active efflux mechanism or coop-
eration through external membrane impermeabil-
ity or secondary resistance mechanisms known as 
β-lactamases or antibiotic efflux pumps [54,57,58]. 
Furthermore, resistance rates to tetracycline, oxytet-
racycline, streptomycin, kanamycin, nalidixic acid, 
neomycin, sulfamethoxazole, ciprofloxacin, and gen-
tamicin have also been recorded, which is suggested 
to be due to the extensive consumption of such anti-
microbials in the ornamental fishery [59,60]. All iso-
lates were also susceptible to chloramphenicol and 
nitrofurantoin.  This observation is due to that these 
antibiotics were banned in Malaysia for use in treat-
ing aquatic animal diseases [61]. Several antibiotics 
were completely banned as well for food animals and 
aquaculture in Malaysia because of serious toxicity 
and the development of antibiotic-resistant bacterial 
strains, such as avoparcin, chloramphenicol, nitrofu-
rans (i.e., nitrofurantoin, nitrofurazone, furazolidone, 
and furaltadone), teicoplanin, vancomycin, and nor-
floxacin [61,62].

Furthermore, in this study, no trends of signifi-
cant antibiotic resistance specific to the fish species 
were observed. The current findings follow other 
research on MDR occurrence from aquatic habitats 
and seafood samples in Aeromonas spp. [63,64]. These 
classes of antibiotics are broadly used worldwide as 
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well, particularly in developing countries in Asia, 
because of their low cost and diverse-spectrum anti-
microbial activity, which increases the chances for 
any bacterial species to develop resistance to these 
antibiotics [65,66].

The presence of resistance genes was also 
detected in several of the isolates during this study, 
including those encoding resistance to ampicillin 
(blaTEM and blaSHV), streptomycin (aadA and strA-
strB), and tetracyclines (tetA and tetE). The present 
findings agree with earlier studies where tetA genes 
were the most significant determinants of tetracy-
cline resistance and have commonly been observed 
in Aeromonas spp. [39,67]. Increased resistance to 
β-lactam antimicrobials (penicillins and derivatives, 
cephalosporins, carbapenems, and monobactams) 
through the existence of genes that code for the for-
mation of β-lactamase has also been reported [68]. 
In addition, Jones-Dias et al. [69] mentioned that in 
Aeromonas spp., three main β-lactamases were iden-
tified: Metallo-β-lactamase Class B, cephalosporinase 
Class C, and penicillinase Class D. Fosse et al. [70] 
have also categorized the β-lactamases into five (i*v) 
groups of Aeromonas species: (i) The A. hydrophila 
complex strains exhibiting Classes B, C, and D β-lact-
amases; (ii) the A. caviae strains exhibiting Classes C 
and D β-lactamases; (iii) the A. veronii strains iden-
tifying Classes B and D lactamases; (iv) the Allium 
schubertii strains recognizing Class D lactamases; and 
(v) the Aeromonas trota strains containing Class  C 
β-lactamases. It is also suggested that several iso-
lates of A. veronii biovar sobria do contain a class C 
cephalosporinase [58]. Therefore, because of the pres-
ence of β-lactamase genes, increased resistance to 
β-lactam antibiotics was reported in the Aeromonas 
genus [4,68,71,72].
Conclusion

This study has identified several Aeromonas 
spp. that are resistant to several types of antibiotics in 
freshwater fish from Kelantan and Terengganu states, 
with 60% (37/61) of the isolates having a MAR index 
of more than 0.2. The result suggests that aquaculture 
waste deposited into the aquatic ecosystems is one of 
the factors that enhance the incidence of aeromonad 
MDR in the river water. The presence of Aeromonas 
species in freshwater fish can thus be a major problem 
if the fish is not cooked properly. This drug resistance 
has become a major public health concern since these 
fish species (Oreochromis spp., C. gariepinus, and P. 
hypophthalmus) are important sources of aquatic pro-
teins consumed in Malaysia. Therefore, regular sur-
veillance for antibiotic resistance of Aeromonas spp. 
should be conducted among freshwater fish. Finally, 
more intensive studies should discover the specific 
existence of antibiotic resistance in Aeromonas spp., 
including the levels of antibiotics that affect their 
resistance profile.
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