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Abstract
When humans visually explore an image, they typically tend to start exploring its left side. This phenomenon, so-called 
pseudoneglect, is well known, but its time-course has only sparsely been studied. Furthermore, it is unclear whether age 
influences pseudoneglect, and the relationship between visuo-spatial attentional asymmetries in a free visual exploration 
task and a classical line bisection task has not been established. To address these questions, 60 healthy participants, aged 
between 22 and 86, were assessed by means of a free visual exploration task with a series of naturalistic, colour photographs 
of everyday scenes, while their gaze was recorded by means of a contact-free eye-tracking system. Furthermore, a classical 
line bisection task was administered, and information concerning handedness and subjective alertness during the experiment 
was obtained. The results revealed a time-sensitive window during visual exploration, between 260 and 960 ms, in which age 
was a significant predictor of the leftward bias in gaze position, i.e., of pseudoneglect. Moreover, pseudoneglect as assessed 
by the line bisection task correlated with the average gaze position throughout a time-window of 300–1490 ms during the 
visual exploration task. These results suggest that age influences visual exploration and pseudoneglect in a time-sensitive 
fashion, and that the degree of pseudoneglect in the line bisection task correlates with the average gaze position during visual 
exploration in a time-sensitive manner.
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Introduction

Human visual exploration results from a complex inter-
play between saccadic eye movements and visual fixations. 
During the exploration of an image, saccades and fixations 
are typically not homogeneously distributed in space, but 
are driven by attention, saliency, and other cognitive fac-
tors. Healthy subjects may show a leftward bias in the ini-
tial phase of the visual exploration of an image (Dickinson 
and Intraub 2009; Foulsham 2013; Nuthmann and Mat-
thias 2014; Ossandon et al. 2014; Hartmann, 2019). This 
so-called pseudoneglect has been interpreted as a small, 
but reliable, asymmetry in the distribution of attention, 
in which attention is preferentially directed towards the 
left side (Bowers and Heilman 1980; Jewell and McCourt 
2000; Nicholls 2012; Thomas 2015). Pseudoneglect has 
been mainly reported in line bisection tasks and in visual 
exploration (Jewell and McCourt 2000; Foulsham et al. 
2013; Nuthmann and Matthias 2014). Age may influ-
ence performance in such tasks, but the effect of age on 
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pseudoneglect is still debated. While some studies reported 
a reduction or even a directional reversal of pseudoneglect 
in older healthy adults (Fujii 1995; Failla et al. 2003; Bar-
rett and Craver-Lemley 2008; Schmitz and Peigneux 2011; 
Benwell 2014), other studies reported no effect of age on 
this leftward bias; or even a stronger leftward bias with 
increasing age (De Agostini 1999; Varnava and Halligan 
2007; Brooks 2016; Friedrich et al. 2016). Furthermore, 
other factors such as alertness (Paladini 2017), gender 
(Friedrich et al. 2018), or handedness (Ossandon et al. 
2014) may influence pseudoneglect.

Previous literature indicated that the pseudoneglect 
arises due to a hemispherical asymmetry between the left 
hemisphere and the right hemisphere, with visuospatial 
attention being controlled by frontal–parietal networks. 
The asymmetry is biased towards the left visual field due 
to a higher activity of the right hemisphere (Heilman and 
Van Den Abell 1980; Mesulam 1999; Corbetta and Shul-
man 2002). Using imaging techniques, such as MRI, it has, 
furthermore, been shown that for cognitive domains the 
lateralization of the brain activity is reduced with age and 
in general more bilateral (Dolcos et al. 2002; Brooks et al. 
2016; Ng 2016). This can thus also lead to a reduction of 
the asymmetry with respect to visual attention between 
the hemispheres leading to changes of the pseudoneglect.

Further studies, however, have also shown that whether 
pseudoneglect can reliably be measured is also depend-
ent on the stimulus duration. Studies showing the stimuli 
only for a small duration (such as 150 ms or 1000 ms) 
have been able to reliably measure a pseudoneglect with 
a change in age, while in studies in which no temporal 
restriction have been given have not always been able to 
do so (Schmitz and Peigneux 2011; Benwell et al. 2014; 
Brooks et al. 2016).

By now, landmark task and line bisection were system-
atically investigated with respect to effects of aging. We 
add a more naturalistic free visual exploration task that 
resembles more closely everyday exploration and investi-
gate whether age modulates the asymmetries in free visual 
exploration.

The goals of the present study were threefold: (a) to 
assess the temporal dynamics of pseudoneglect during 
visual exploration of naturalistic everyday scenes; (b) to 
investigate the influence of age on pseudoneglect; and 
(c) to determine whether pseudoneglect, as assessed by a 
classical paper–pencil task, would correlate with pseudon-
eglect observed in a free visual exploration task. To this 
end, we tested 60 healthy participants, ranging from young 
adults to elderly (i.e., 22–86 years of age). Furthermore, 
we were interested in whether other factors such as gen-
der, handedness, and subjective alertness would modulate 
visual exploration patterns.

Methods

Participants

Sixty neurologically healthy adults participated in this study 
(age range 22–86 years, 31 women, see Table 1). Partici-
pants gave their written informed consent prior to participa-
tion. The study was carried out in accordance with the code 
of ethics of the World Medical Association (Declaration 
of Helsinki). All participants had normal or corrected-to-
normal visual acuity, and participants with a history of eye 
diseases were excluded from the study. None of the subjects 
reported any difficulties to clearly perceive the visual stimuli 
while performing the experimental tasks.

Stimuli and materials

Free visual exploration task

In the free visual exploration task, participants viewed a 
series of naturalistic, coloured photographs of everyday 
scenes (N = 120) in a dimly lit room, while their gaze was 
recorded by means of a contact-free eye-tracking system (see 
section Eye tracking below for further details). The images 
were selected from a free image database (pixabay.com), 
from the sub-categories “nature” and “architecture”. The 
selection of the images was based on their saliency maps, 
as assessed by a dedicated algorithm (Itti et al. 1998; Pala-
dini et al. 2017). This algorithm takes into account different 
characteristics of the features within an image, such as ori-
entation, colour, and intensity, which allow the computation 
of a map of salient regions within the image. This proce-
dure allowed to balance the overall saliency between the left 
(M = 31.6, SD = 7.37) and the right (M = 32.3, SD = 8.49) 
halves of the images (t(119) = − 0.945, p = 0.347). Please 
note that the raw values produced by the algorithm were 
multiplied by 100 to increase the readability of the results. 
Moreover, images containing humans or letterings were 
not included. Two examples of presented photographs are 
shown in Fig. 1 and the exhaustive choice of the experimen-
tal stimuli as well as the ratings produced by the saliency 

Table 1   Overview of demographic data of the 60 participants 
included in the study

Mean ± SD Range

Age (years) 43.05 ± 19.60 22–86
Education (years) 17.19 ± 2.99 8–22
Subjective alertness 7.36 ± 1.84 2–10
Handedness 88.3% (N = 53) right-handed
Gender 51.7% (N = 31) females
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algorithm (Itti et al. 1998) are available at the URL: https://​
osf.​io/​zd3qm/. To avoid fatigue and to allow for periodical 
calibration of the eye-tracking system, the photographs were 
distributed into six sets of 20 photographs each. Follow-
ing a nine-point calibration, the free visual exploration task 
proceeded by displaying the series of images, one at a time, 
in a random order. After each set (20 images), participants 
were allowed to take a short break and the calibration was 
repeated. Each trial began with a central fixation marker 
(1.5 s), followed by an image displayed for 7 s. Participants 
were instructed to freely explore the images, as if they were 
looking at photographs in a photo album

Line bisection task

In a classical line bisection task, participants were presented 
with twenty horizontal lines of different lengths, printed on 
a landscape A4 paper sheet; the actual centre of each line 
varying along the horizontal dimension (Schenkenberg 
et al. 1980). The centre of the paper sheet was aligned with 
the participant’s midsagittal plane, and participants were 
instructed to bisect all lines as quickly as possible using 
their dominant hand. The uppermost and the lowermost lines 
were used as practice trials. For the remaining 18 lines, the 
deviation of the bisection mark from the actual centre of the 
line was measured in cm. This value was further divided by 
the actual midline (in cm) of the respective lines, and then 
multiplied by 100, thus yielding a percent deviation; thereby, 
negative values indicated a left-sided deviation, and positive 
values a right-sided deviation.

Subjective alertness assessment

The subjective level of alertness was assessed by means of a 
visual analogue scale (VAS). On a 10 cm long vertical line, 
ranging from “very alert” to “not at all alert”, participants 
were instructed to draw a horizontal mark to indicate how 
alert they felt. The distance between the lower extreme of 
the vertical line and the participants’ mark was measured in 
mm, with lower values indicating a subjective lower level 
of alertness.

Handedness

Handedness was assessed by the Edinburgh Handedness 
Inventory (EHI; Oldfield 1971), measuring hand preference 
by asking participants to choose which hand(s) is used for 
a range of 10 everyday tasks. The EHI scores range from 
− 100 to 100, with negative scores indicating a tendency to 
left-handedness, and a positive score indicating a tendency 
to right-handedness.

Eye tracking

In the visual exploration task, participants viewed a series 
of images that were presented full-screen on a 22″ computer 
display (Dell, Dell Inc.), with a refresh rate of 60 Hz, a col-
our-depth of 32 bit, a resolution of 1680 × 1050 pixels, and 
subtending a visual angle of approximately 37.48° × 23.80°. 
The screen was placed at the eye level, in line with the par-
ticipants’ midsagittal plane and participants were seated 
approx. 65 cm from the screen. A contact-free eye-tracking 
system, equipped with automatic head-movement compen-
sation, was used to record eye movement data (RED 250, 
SensoMotoric Instruments GmbH). The eye position was 
sampled at 250 Hz, with a spatial resolution of 0.03° and 
an average gaze accuracy of 0.4°. Stimulus presentation 
was controlled by the Experiment Center software (Sen-
soMotoric Instruments GmbH), and the iViewX software 
(SensoMotoric Instruments GmbH) was used for eye move-
ment data acquisition. Raw data were parsed into fixations 
and saccades using the default parameters of the manufac-
turer’s analysis software (BeGaze™, SensoMotoric Instru-
ments GmbH). The results were exported in an open format 
(.txt) and were analyzed using R (Version 3.5.0) and Matlab 
2019b (The MathWorks Inc., Natick 2019).

Data analysis

To ensure that all scan paths would indeed start from the 
middle of the images, as enforced by the central fixation 
cross presented before each image, an offline drift correc-
tion was performed. For this purpose, a pixel band of 184 
pixels, corresponding to 2° visual angle, around the vertical 

Fig. 1   Example of stimuli used 
in the free visual exploration 
task

https://osf.io/zd3qm/
https://osf.io/zd3qm/
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midline of the image was defined. Images in which the initial 
fixations started outside of this pixel band were excluded 
from further analysis (i.e., 472 out of 7159 images). For the 
remaining fixations, an offline drift correction was applied. 
To this end, the horizontal deviation from the midline on the 
x axis was calculated for the last fixation taking place on the 
fixation cross. Afterwards, all the x values of the fixations 
of the following trial were shifted by this offset. At last the 
mean number of fixations as well as the mean fixation dura-
tion, were calculated.

To analyse the time course of attentional asymmetries 
(Nuthmann and Matthias 2014), the average gaze position 
deviation was computed over 10 ms bins, i.e., N = 700 for 
7 s (Hartmann et al. 2019). In brief, the horizontal devia-
tion from the centre of the image, i.e., the difference 
between × coordinates of the corresponding fixations and 
the midline, was calculated for every fixation falling within 
a given 10 ms bin; the values were then averaged within the 
corresponding bin. This served as a measurement of atten-
tional asymmetries (Hartmann et al. 2019). Thus, negative 
values indicate a leftward bias, and positive values a right-
ward bias. Deviation values were computed for each partici-
pant and every time bin. The nonparametric random permu-
tation procedure proposed by Maris and Oostenveld (2007) 
was implemented to account for the problem of multiple 
comparisons. With this approach, time bins during which 
the gaze position could be predicted by the age or the per-
formance in the line bisection task, were defined and tested 
for significance. Specifically, it was tested for each 10 ms 
bin whether age or the performance in line bisection was a 
significant predictor for the horizontal gaze position. Adja-
cent 10 ms bins for which a significant predictor (p < 0.05) 
was found formed a cluster, and Fisher’s F values of all bins 
within a cluster were summed up, resulting in “cluster mass 
values”. These values were then compared to a “random 
distribution” of mass values that was obtained by comput-
ing the highest “by chance significant” cluster mass value 
from randomly permutated bins for 5000 times. The p value 
of each initial cluster was then obtained from the position 
of the cluster mass value within this “random distribution” 
(see Hartmann et al. 2019). In a next step, the horizontal 
gaze position was averaged for the time period of signifi-
cant clusters and correlated with other variables of interest 
(Spearman’s correlations are reported). The permutations, as 
well as the corresponding p values, were obtained using the 
R-package “permuco” (Frossard and Renaud 2018).

Moreover, to test whether additional factors such as 
gender or subjective alertness would influence the visual 
exploration behaviour, a linear mixed model with factors 
age, performance in the line bisection, handedness, gender 
and subjective alertness was calculated. For this analysis, the 
average gaze position over the whole presentation time was 
considered, irrespective of its time-course.

Results

Free visual exploration pattern

Participants produced on average 21.41 fixations per image 
(M = 21.41, SD = 4.37), with an average gaze fixation dura-
tion of 250 ms (M = 250.41 SD = 43.65). Overall, during 
the initial stages of the exploration, there was a tendency 
to deviate towards the left side of the image. This initial 
leftward bias lasted for about 1.5 s, after which the explora-
tion pattern shifted towards the right side of the image. It is 
worth to note that the maximal deviation from the midline 
was more pronounced for the left than for the right part of 
the images, even though overall, participants spent more 
time on the right than on the left side of the images (Fig. 2).

The effect of age on spatio‑temporal asymmetries 
in the free visual exploration task

The nonparametric random permutations indicated a sig-
nificant time cluster at 260–960 ms (cluster mass = 632.6, 

Fig. 2   Time-course of the exploration pattern, averaged across all 
images and all participants. The grey area around the smoothed red 
line represents the standard error of the mean of the averaged gaze 
position. The blue box represents the time-window during which age 
was a significant predictor for the average gaze position
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p = 0.0272, see Fig. 2). During this early phase of visual 
exploration, age modulated the exploration behaviour in a 
way that, with increasing age, the initial leftward bias was 
attenuated (rS(60) = 0.38, p = 0.003, see also Fig. 3).

Visuo‑spatial asymmetries in the line bisection task

We further investigated whether spatial asymmetries in a 
more naturalistic free visual exploration task would corre-
late with the performance in a classical test of visuo-spatial 
attentional bias, namely, the line bisection task.

Overall, the performance in the line bisection task indi-
cated a small leftward bias (relative deviation from the 
middle: M = − 0.27%; 95% CI [− 0.97, 0.43]; SD = 2.69%, 
range − 6.33–5.71%). The nonparametric random permuta-
tions indicated a significant time interval between 300 and 
1490 ms (cluster mass = 795.87, p = 0.0218), in which the 
performance in the line bisection task was positively corre-
lated with the average gaze position (rS(60) = 0.27, p = 0.034, 
see Fig. 4). As such, performance in the line bisection task 
was predictive of the mean gaze position in the visual explo-
ration task during the initial phase of exploration.

Furthermore, there was no significant correlation 
between age and the performance in the line bisection task 
(r(60) = 0.19, p = 0.136).

Influence of other individual factors 
on the performance in the free visual exploration 
task

A linear mixed model was calculated to test whether, in addi-
tion to age and performance in the line bisection task, other 

factors such as gender, handedness, and subjective alertness 
would influence the exploration behaviour, as measured by 
the average gaze position. In line with previous analyses, 
line bisection performance (p = 0.028) and age (p = 0.035) 
modulated the average gaze position in the visual explora-
tion task. Yet, none of the additional factors had a significant 
influence (p = 0.92 for gender, p = 0.38 for handedness, and 
p = 0.62 for subjective alertness).

Discussion

The aim of the present study was to investigate the spatial 
and temporal dynamics of free visual exploration of com-
plex naturalistic images. Furthermore, we were interested in 
assessing whether different individual factors such as age, 
gender, handedness, and subjective alertness would modu-
late these spatio-temporal dynamics. In agreement with 
previous studies (Nuthmann and Matthias 2014; Hartmann 
et al. 2019), we found a pseudoneglect, as manifested by 
a leftward bias during the initial phase of the free visual 
exploration of an image. Second, and more importantly, we 
found a significant influence of age during a critical time 
window in the early phase of exploration (between 260 
and 960 ms), i.e., this leftward bias was attenuated with 
increasing age. Thirdly, we found a significant correlation 
between the line bisection bias and the spatial bias in free 
visual exploration, indicating that a stronger leftward bias 
in the line bisection task correlated with a stronger leftward 

Fig. 3   Correlation between age and the average horizontal gaze devi-
ation in pixels between 260 and 960 ms, indicating attenuation of the 
leftward bias with increasing age

Fig. 4   Correlation between the bias in the line bisection task (per-
centage deviation from the actual midline) and the average horizontal 
fixation deviation in the free visual exploration task during the time 
interval between 300 and 1490  ms; this significant correlation indi-
cates that a stronger leftward bias in the line bisection task correlated 
with a stronger leftward deviation in the free visual exploration
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deviation in the visual exploration task. Finally, we found 
no significant effect of subjective alertness, handedness, or 
gender on spatio-temporal fixation dynamics during free 
visual exploration.

To the best of our knowledge, a critical time window dur-
ing which age-dependent differences in spatial biases are 
evident in free visual exploration has never been described 
before in the literature. A leftward bias in the visual explo-
ration behavior is reminiscent of the phenomenon of pseu-
doneglect. The so-called pseudoneglect is a slight leftward 
attentional bias, commonly observed, e.g., in the line bisec-
tion task. Several studies yielded evidence for an age-related 
reduction of pseudoneglect, i.e., from a strong attentional 
leftward bias in young adults to a suppressed or even 
reversed bias in the elderly, as in our study (see Schmitz 
and Peigneux 2011 for a review). However, the literature is 
not conclusive, i.e., several other studies failed to show such 
age-related changes in spatial biases (Beste et al. 2010; Hatin 
et al. 2012; Brooks et al. 2016). The results of our study 
suggest that time is a critical factor, i.e., an age-dependent 
modulation of spatial biases is only evident in a critical time 
window; this might explain, at least in part, the discrepancies 
in the earlier literature.

The null results between age and the line bisection under-
lie the fact that assessing leftward biases within specific time 
windows, in line with a characterization of dynamic behav-
iour with a high temporal resolution, is necessary.

Only few studies examined the influence of age on visual 
exploration behaviour. Urwyler and colleagues (Urwyler 
2015) analysed the influence of age on visual exploration 
during driving. They found an effect of age, showing that 
older participants had a narrowed visual exploration field. 
Furthermore, detection of targets in a visual search task 
decreased with age, especially for more peripheral targets 
(Gruber 2014). However, to the best of our knowledge, our 
study is the first to use a free visual exploration paradigm in 
participants of different ages.

The origin of the age-related modulation of spatial biases 
is still debated. It has been suggested that healthy aging 
might be associated with a functional decline of the right 
hemisphere, coupled with a left-hemispheric compensation 
(Dolcos et al. 2002; Schmitz and Peigneux 2011). Indeed, an 
age-related reduction of the right-hemispheric lateralization 
has been shown in an EEG study applying a landmark task 
(Learmonth 2017). Such a relative hyperactivity of the left 
hemisphere would explain the rightward bias shift in older 
individuals. This phenomenon can be considered as a less 
pronounced form of the biased spatial dynamics that have 
been described in classical neglect models (e.g., Kortman 
and Nicholls 2016; Delazer 2018). An alternative explana-
tion may be a decline in corpus callosum function, which 
could impair interhemispheric connectivity. This could then 
reduce the inhibitory influence that the right hemisphere 

exhibits in elderly, which would then result in a stronger 
involvement of the left hemisphere (Schmitz and Peigneux 
2011). It has also been proposed that, in elderly individuals 
yielding comparable behavioural performances as younger 
adults, the age-related neuronal decline is counteracted by 
means of plastic reorganization mechanisms (Cabeza 2002). 
These plastic reorganization mechanisms seem not to take 
place in all (or at least not to the same extent) elderly indi-
viduals. This could, in turn, explain the age-related increase 
in variability of the free visual exploration pattern our study.

A possible explanation for the critical time window iden-
tified by our study, in which age-dependent differences in 
the visual exploration task were evident, stems from electro-
physiological studies. Störmer et al. (Störmer 2013) investi-
gated neural correlates of age-related differences in spatial 
attention using event-related potentials (ERPs). They found 
that healthy aging affects attentional selection (supporting 
the resolution of competition between visual information) 
at early stages of attentional modulation. To this end, they 
showed that older adults showed less pronounced selective 
attentional modulation in the early phase of the visual P1 
component (100–125 ms) than younger adults. However, 
with a 25 ms delay relative to younger adults, older adults 
showed distinct processing of targets (125–150 ms), i.e., 
a delayed yet intact attentional modulation. Moreover, the 
magnitude of the delayed attentional modulation was related 
to the behavioural performance in older adults. Further ERP 
studies on attention in young (Foxe et al. 2003; Longo 2015) 
and older adults (Learmonth et al. 2017) also indicated a 
critical time-window, starting as early as 139 ms after the 
stimulus presentation. This effect was observed until 400 ms 
after the stimulus onset. In addition, an age-dependent time 
window, ranging from 280 to 400 ms, has been reported 
(Learmonth et al. 2017), which also coincides with the start 
of the critical time-window in the present study.

In our study, other factors such as subjective alertness, 
handedness, or gender did not significantly influence the 
observed spatial bias. Contrary to the previously mentioned 
studies, subjects in our study were not specifically recruited 
to increase variability in the aforementioned factors, which 
led to a balanced cohort, with only a limited variance with 
regards to subjective alertness as well as handedness.

In conclusion, our study revealed that, during visual 
exploration of naturalistic everyday scenes, there is a criti-
cal time window within the first second of visual explora-
tion in which age is a predictor of the attenuation of this 
leftward bias. Furthermore, a significant correlation between 
line bisection bias and spatial bias during visual exploration 
was found, i.e., the stronger the leftward bias in line bisec-
tion, the stronger the leftward deviation during visual explo-
ration. Hence, our study concurs with previous research by 
providing evidence that free visual exploration of naturalistic 
scenes generally starts within the left side of an image, but 
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it extends it in two important ways. First, by providing a 
systematic and detailed time-course investigation of spatial 
asymmetries during naturalistic scene perception; second, 
by directly comparing the outcome of two attentional tasks 
of visuo-spatial nature (i.e., free visual exploration and line 
bisection task) in a sample of neurologically healthy subjects 
ranging from young adults to elderly.
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