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Morphological analysis of subcortical structures for assessment
of cognitive dysfunction in Parkinson’s disease using multi-atlas based
segmentation
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Abstract
Cognitive impairment in Parkinson’s Disease (PD) is the most prevalent non-motor symptom that requires analysis of

anatomical associations to cognitive decline in PD. The objective of this study is to analyse the morphological variations of

the subcortical structures to assess cognitive dysfunction in PD. In this study, T1 MR images of 58 Healthy Control (HC)

and 135 PD subjects categorised as 91 Cognitively normal PD (NC-PD), 25 PD with Mild Cognitive Impairment (PD-

MCI) and 19 PD with Dementia (PD-D) subjects, based on cognitive scores are utilised. The 132 anatomical regions are

segmented using spatially localized multi-atlas model and volumetric analysis is carried out. The morphological alterations

through textural features are captured to differentiate among the HC and PD subjects under different cognitive domains.

The volumetric differences in the segmented subcortical structures of accumbens, amygdala, caudate, putamen and tha-

lamus are able to predict cognitive impairment in PD. The volumetric distribution of the subcortical structures in PD-MCI

subjects exhibit an overlap with the HC group due to lack of spatial specificity in their atrophy levels. The 3D GLCM

features extracted from the significant subcortical structures could discriminate HC, NC-PD, PD-MCI and PD-D subjects

with better classification accuracies. The disease related atrophy levels of the subcortical structures captured through

morphological analysis provide sensitive evaluation of cognitive impairment in PD.

Keywords Magnetic resonance imaging � Parkinson’s disease � Cognitive impairment � Morphology � Multi-atlas

segmentation

Introduction

Parkinson’s disease (PD) is a chronic and severe neu-

rodegenerative disorder. PD is related to loss of dopamin-

ergic neurons in substantia nigra and other susceptible

regions of brain, though the etiology of the disease is not

clear (Poewe et al. 2017). This degeneration is charac-

terised by onset of cardinal motor symptoms such as slow

movements, tremor and muscular rigidity (Dauer and

Przedborski 2003). In addition, early stages of the disease

are often associated with non-motor symptoms including

cognitive deficits, anxiety, hallucinations, and olfactory

dysfunctions (Chaudhuri et al. 2006; Simuni et al. 2018).

Cognitive functional impairment is a significant clinical

manifestation in PD and is related to the cholinergic neu-

rons along with the dopaminergic neurons and other neu-

rotransmitter systems where the diffuse nerve degeneration

results in neuropathological changes (Aarsland 2016;

Dadar et al. 2018). Recent neuroimaging studies showed

prevalence of mild cognitive deficits in 40% of PD patients

at the time of initial diagnosis which eventually develops

into dementia (Wolters et al. 2020). Mild cognitive

impairment in early stage PD has an increased risk of

progressing to dementia at the later stages of the disease

(Aarsland 2016; Litvan et al. 2011). The cortical and limbic

Lewy body pathology is also reported to be causative for

cognitive decline in PD, but the hypothesis still remains

controversial (Chaudhuri et al. 2006). Clinical under-

standing of cognitive function in early stage PD may
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provide prognostic insight into its pathophysiology and

may aid in timely therapeutic intervention.

The cognitive functions are investigated in several

neurological studies through clinical assessments such as

Montreal Cognitive Assessment (MoCA) (Nasreddine et al.

2005), Mini Mental State Examination (MMSE) (Folstein

et al. 1975), Clinical Dementia Rating (CDR) (Hughes

et al. 1982) and the Geriatric Depression Scale (GDS)

(Yesavage et al. 1983). Mild cognitive impairment in PD is

initially connected to executive, attention and visuospatial

functions. MoCA consistently shows stronger sensitivity

for assessment of executive functions involving reasoning

and planning. The Parkinson Study Group Cognitive/Psy-

chiatric working Group and Movement Disorder Society

has endorsed MoCA as global cognitive function assess-

ment method clinically (Chou et al. 2010) and as a level 1

diagnostic tool for MCI in PD (Kletzel et al. 2017; Litvan

et al. 2011). MoCA as a global cognition assessment

instrument shows an acceptable discriminating capability

in the detection of MCI in PD (Hoops et al. 2009).

Studies have reported evidence of gray and white matter

changes associated with cognitive decline in PD (Amoroso

et al. 2018; Hopes et al. 2016; Salvatore et al. 2014). The

structural changes that reflect the neuropathology of PD are

well captured through neuroimaging techniques (Provost

et al 2015). The morphological changes that could predict

an increased risk of cognitive impairment in PD can be

obtained through Magnetic Resonance Imaging (MRI).

Morphological studies have shown that PD-MCI exhibited

a wider range of gray matter volume reductions in the

frontal lobe, temporal lobe structures such as the hip-

pocampus, amygdala and parahippocampal gyrus (Garg

et al. 2015; Rektorova et al. 2014). The pattern of gray

matter loss is more diverse in MCI; however, the pro-

gression of volume loss may be accelerated when dementia

begins (Babu et al. 2014). Cortical gray matter changes are

more pronounced and widespread in PD-Dementia com-

pared with non-demented PD-MCI patients. However, the

significant reductions in gray matter volume have not

consistently been found in PD-MCI (Hall and Lewis 2019).

The clinical heterogeneity of PD demands efficient meth-

ods to detect subtle changes in the brain structures and

their local anatomical variations through MR images at

voxel levels.

Whole brain segmentation is essential to capture volu-

metric alterations facilitating the quantitative analysis for

pathology characterization (Heckemann et al. 2006).

Automatic segmentation is one of the main challenges in

medical image analysis due to overlap in signal properties

among anatomically distinct structures. Atlas-based seg-

mentation is one of the most significant approaches that

utilize the spatial correspondence between reference atlas

and target images. A multi-atlas strategy, where each

available atlas is used to compute an estimate of the seg-

mentation of the target image is found to be robust.

However, multi-atlas segmentation requires large number

of atlases, which when compensated, results in local

anatomical variations. Patch based method is able to

overcome this limitation with the combination of multi-

atlas segmentation and label fusion.

Recently, deep neural networks have been utilized to

learn a multi atlas segmentation model which predicts the

class label of each voxel by providing a local region around

that voxel (Milletari et al. 2017). The image patches used

for the parcellation of tissues into anatomical units are

trained through convolutional neural networks to improve

the localization accuracy and spatial consistency in the MR

images. The learning task in whole brain segmentation is

simplified to localized sub-tasks using multiple networks,

with each network implemented to learn sub-space in a

standard MNI atlas space (Bermudez et al. 2019). The

extraction of volumetric features allows quantification of

structural variations of the subcortical regions and aid in

clinical investigation of PD.

The aim of this work is to investigate the morphological

changes in subcortical regions of PD subjects with mild

and severe cognitive impairment using spatially localized

multi atlas segmentation model with subsequent volumetric

analysis. Texture features obtained from the significant

regions are applied to an ensemble subspace k-nearest

neighbour (kNN) classifier to postulate a better classifica-

tion performance.

Methods

Subjects

The data utilised in this study is obtained from Parkinson’s

Progression Markers Initiative (PPMI) database. PPMI is a

multi-site longitudinal cohort study of de novo and drug-

naı̈ve PD subjects along with age matched healthy control

group (Marek et al. 2011). The tracking of disease pro-

gression is possible through the longitudinal data available

in PPMI study. The assessment of cognitive function in PD

subjects is implemented with MoCA scores. The T1 MR

images of 58 Healthy Control subjects taken at baseline

and 135 PD subjects prospectively followed up from

baseline to a year are used in this study. The selection

criterion based on MoCA scores (Chaudhary et al. 2020;

Chou et al. 2010; Hoops et al. 2009) includes 58 HC and 91

PD subjects with scores greater than 25 (represented as

NC-PD) and 44 PD subjects with scores less than 26. The

44 PD subjects are further categorised into 19 Parkinson’s

disease—Dementia subjects with MoCA scores of less than

24 and the remaining 25 subjects as Mild Cognitive
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Impairment Parkinson’s disease subjects. T1 MR images

with voxel spacing of 1 9 1 9 1 mm3 and matrix of

240 9 256 9 176 are selected. The demographic details of

the subject groups used in this study are given in Table 1.

Segmentation

The proposed flow diagram for the analysis of cognitive

functions in PD is shown in Fig. 1. MR images of HC and

PD subjects are subjected to whole brain segmentation

using spatially localized atlas network tiles segmentation

method (Huo et al. 2019) and the features extracted from

selected subcortical regions of interest are subjected to

classification using ensemble classifier.

Prior to segmentation, all the input images are subjected

to pre-processing which includes registration, bias field

correction and intensity normalisation (Huo et al. 2018).

All the images are registered to MNI305 template using

affine transformation (Evans et al. 1993). The intensity

inhomogeneity correction of the registered images is per-

formed using N4 bias field correction (Tustison et al.

2010). The intensities of the corrected images are nor-

malised by regression based intensity normalisation. The

image intensities are subtracted with mean intensity and

normalized by standard deviation. 45 manually labelled T1

MR images from Open Access Series on Imaging Studies

dataset (Marcus et al. 2007) are used as the training data

atlases and 5111 multi-site scans are used as auxiliary

training data. A binary mask generated by thresholding the

average of brain tissue labels of 45 training atlases, is used

to eliminate the non-brain regions. The normalized volume

is obtained from the pre-trained regression model built

from mean sorted intensity vector of the atlases and the

brain regions of MR images.

The normalized volume mapped to a standard MNI atlas

space is subjected to whole brain segmentation using a set

of independent 3D U-Net networks by adopting an overlap-

tile strategy (Çiçek et al. 2016). The subspaces of the brain

volume are used as input to the 3D U-Net. Multiple net-

works are used to learn contextual information of patches

at different spatial locations. Each network tile overlapped

in the subspace learns from similar parts of the brain

regions with smaller spatial variations. The nth sub-net-

work covers the subspace wn with one coordinate

ðxn;yn; znÞ, where the size of every subspace ðdx;dy; dzÞ; n 2
1; 2; . . .kf g used in the network architecture is given as

wn ¼ xn : xn þ dxð Þ; yn yn þ dy
� �

; zn zn þ dzð Þ
� �

ð1Þ

The number of network tiles is determined by the factor

k = 3 9 3 9 3, thus covering the entire MNI space with 27

independent overlapped 3D U-Nets. The U-Net architec-

ture consists of a contracting path to capture context and a

symmetric expanding path that enables precise localiza-

tion. The contracting path consists of two 3 9 3 9 3

convolutions with a Rectified Linear Unit (ReLU) for each

layer, followed by 2 9 2 9 2 max pooling with strides of

two in each dimension. In the expansive path, each layer

consists of a stride two upconvolution of 2 9 2 9 2 in

each dimension, followed by two 3 9 3 9 3 convolutions

each with a ReLU. At the final layer, a 1 9 1 9 1 con-

volution is used to map each feature vector to the desired

anatomical labels.

Each training data set comprising 45 manual atlases and

5111 auxiliary atlases is accompanied by a set of neu-

roanatomical labels, where every voxel is coded as one of

133 anatomical structures. The output of each 3D U-Net is

made compatible to obtain the 133 output labels as given in

the manually segmented MR images utilised in training the

network. The multiple U-Nets corresponding to overlapped

subspaces provide more than one segmentation results for a

single voxel of a target image. Hence, majority vote label

fusion is used to combine 27 segmentations from network

tiles to yield the final segmentation in MNI space as

SMNI ið Þ ¼ arg min
l2 0;1...L�1f g

1

k

Xk

m¼1

pðljSm; iÞ ð2Þ

where l represents the possible labels for a given voxel.

The final label fused segmentation is inversely registered to

the original space using affine registration.

The subcortical structures associated with the cognitive

dysfunctions in PD are selected from labelled brain regions

based on their Cohen’s d values and their volumetric

alterations are further analysed using Gray Level Co-oc-

currence Matrix (GLCM). The selected 10 subcortical

structures include: the accumbens area, amygdala, caudate,

putamen and thalamus proper of both the right and left

hemispheres. The textural features from the selected

regions of interest are subjected to classification using

ensemble of a subset of kNN classifiers.

Table 1 Demographic details

and group characteristics:
HC (n = 58) NC-PD (n = 91) PD-MCI (n = 25) PD-D (n = 19) p value

Gender (M:F) 36:22 57:34 17:8 16:3 0.304

Age (in years) 56.97 ± 11.29 58.71 ± 9.50 63.64 ± 7.08 65.58 ± 8.88 \ 0.001

MoCA 28.55 ± 1.22 28.14 ± 1.37 24.68 ± 0.47 20 ± 2.40 \ 0.001

UPDRS 0.87 ± 0.47 20.97 ± 9.18 26.72 ± 12.53 22.78 ± 13.08 0.047
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3D-GLCM features

Gray level co-occurrence matrix is calculated in different

directions to extract the spatial variations that may be

associated with PD related cognitive decline. The local

features are computed at each point to obtain latent infor-

mation from the brain regions. Haralick texture features are

calculated from 3D GLCM in 13 directions with 4 dis-

tances from the neighbourhood pixels (Liu et al. 2013). A

total of 10 Haralick GLCM features that include energy,

entropy, contrast, homogeneity, variance, sum mean,

cluster shade, cluster tendency, max probability, inverse

variance are extracted from the segmented subcortical

regions. The averaged 3D texture features in all the 13

directions are utilised for the analysis of PD subjects.

Classification

An ensemble of a subset of kNN classifiers is used to

differentiate HC and PD subjects with MCI and dementia.

Ensemble classifier utilises an n number of kNN classifiers

to improve the predictive performance of the classifier. A

random sample of features m are drawn without replace-

ment from the entire feature set d and a kNN classifier is

trained with those random predictors obtained from m (Gul

et al. 2018). The kNN classifiers, anchor n points for the

given classes and choose the centroids from the n points

based on the Euclidean distance measure. Each point in the

feature vector is mapped to the nearest centroid to form

clusters (Ho 1998). Thus each classifier is trained on an

iterative process until the highest accuracies are obtained

from the ensemble of classifier. The classifier employs

random subspace to ensemble the resultant values and

provide classification results with higher performance. A

tenfold cross validation scheme with 30 learners and 5

subspace dimensions has been used in this work. The

performance of the classifier is analysed through accuracy,

specificity and sensitivity metrics. A mean accuracy is

obtained from the proportions of true positive and true

negatives of the four classes to give the total number of

predictions that are correct. A weighted average sensitivity

is calculated from the proportion of true positives in each

class. Similarly the weighted average specificity is deter-

mined from the proportion of true negatives correctly

classified as negative.

Results

The T1 MR images of HC, PD disease subjects with and

without dementia are used to extract the volumetric alter-

ations of brain regions. The representative set of MR

images for each subject group, the corresponding pre-pro-

cessed and segmented images are shown in Fig. 2. The pre-

Fig. 1 Process flow diagram for the analysis of Parkinson’s disease
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processed MR slices that depict a clear view of the

anatomical structures are chosen for representation. The

variability in the brain regions appear reduced in the pre-

processed non-uniformity corrected images captured with

suitable parameters. An optimum coefficient of variation

bias filed correction was applied with respect to a con-

vergence threshold of 0.001, for 50 iterations with 0.15 full

width half maximum convolution kernel.

The 132 anatomical regions are segmented from the MR

images using multi-atlas segmentation method, excluding

the background label obtained from segmentation. The

volumes of each segmented region are acquired to analyse

the structural variations in PD subjects. The segmented

volumes are normalised to derive the Total Intracranial

Volume (TIV) for the HC, PD-MCI and PD-D groups

(Fig. 3). Volumetric changes of the brain are observed to

be minimal in the subject groups based on the median TIV

range. The normalized TIV is found to be slightly lower for

PD-D group when compared with the HC subjects that

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) 

Fig. 2 Representative set of a–

c raw MR images of healthy

control, PD-MCI and PD-D

subjects, d–f pre-processed MR

images, g–i segmented MR

images

Fig. 3 Box graph representation of normalised TIV mean values of

HC, PD-MCI and PD-D subjects groups
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could be attributed to the atrophy levels in PD. The vari-

ation in TIV is not consistent with the PD-MCI subject

group.

The disease related atrophy of the segmented anatomical

regions is evaluated using absolute effect size index called

Cohen’s d value. The volumetric differences in the sub-

cortical regions of various subject groups are categorised as

small, medium and large effect sizes based on these indi-

ces. The regions that exhibit medium and large effect sizes

in the PD-D subject groups with HC are given in Table 2.

PD-MCI subjects show relatively lower volumetric dif-

ferences as evidenced by the Cohen’s d values with only a

mediocre effect size in the caudate region (p = 0.05). The

PD-D subject group shows volumetric differences with

greater significance (p = 0.001) in the Accumbens with

very large absolute effect size. Similarly, higher signifi-

cance with potential medium effect size is observed in

putamen (p = 0.004) and thalamus (p = 0.005). Amygdala

(p = 0.05) and caudate (p = 0.052) show considerable

effect size with comparatively lesser significance in the

PD-D subject group. The progression of disease from MCI

to PD-D is evidenced through mediocre effect size in

accumbens, amygdala and thalamus. The NC-PD subjects

show large effect size (p\ 0.05) in the significant sub-

cortical regions when compared with PD-D group and

small effect size with the HC group.

The volumetric estimates of the subcortical structures

with medium and large effect sizes, which include

accumbens, amygdala, caudate, putamen and thalamus of

both the hemispheres are obtained for HC, PD-MCI and

PD-D subjects (Fig. 4). Minimal change in the subcortical

volumes of the PD-MCI group is seen with an overlap in

the volumetric estimates of the HC subjects. An overall

reduction in the median range of the subcortical volumes is

found in PD-D subjects compared with the HC subjects.

The significant volumetric reduction in the subcortical

regions could be attributed to the disease progression in the

PD-D subjects.

The morphological alterations of the subcortical struc-

tures are further analysed using 3D GLCM. The mean

Haralick texture features obtained from the subcortical

regions are averaged for 13 directions for each class. Sig-

nificant differences (p\ 0.05) in the feature values are

found between any two class combination in the right

accumbens area, left accumbens area, right amygdala, right

caudate, left caudate, right putamen, left putamen, right

thalamus and left thalamus. Analysis of variance through

ANOVA over energy, entropy, homogeneity, max proba-

bility and inverse variance shows greater significance

(p\ 0.05) in differentiating the three classes.

The average values of 5 significant features for the 9

significant subcortical regions are shown in Fig. 5. Entropy

and inverse variance present a trend of increase in the first

5 significant subcortical regions and a decrease in the other

regions. The trend of increment and decrement reverses for

energy, homogeneity and max probability. This shows a

constant pattern of textural variations in the significant

subcortical regions. The ensemble subspace kNN classifier

is trained with all the features of the 9 significant subcor-

tical regions and the performance of the classifier is anal-

ysed for differentiating the three classes. The performance

of the classifier is analysed for each subject group as HC

versus PD-MCI, HC versus PD-D, NC-PD versus PD-D

and PD-MCI versus PD-D is shown in Table 3.

Discussion

An early cognitive change in PD is one of the most

prevalent non-motor symptom and can even precede the

PD’s hallmark features. Early screening of cognitive

impairment with sensitive instruments is required to

Table 2 Absolute effect size (|Cohen’s d|) of subcortical regions

Region HC versus PD-D HC versus PD-MCI NC-PD versus PD-D PD-MCI versus PD-D

Right accumbens area 0.89 0.29 0.86 0.63

Left accumbens area 0.80 0.36 0.85 0.45

Right amygdala 0.48 0.07 0.51 0.46

Left amygdala 0.52 0.11 0.60 0.40

Right caudate 0.52 0.31 0.54 0.21

Left caudate 0.44 0.47 0.28 0.06

Right putamen 0.55 0.26 0.57 0.24

Left putamen 0.54 0.35 0.50 0.11

Right thalamus proper 0.55 0.28 0.80 0.90

Left thalamus proper 0.56 0.06 0.75 0.66
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diagnose the prevalence of dementia in PD and the con-

version rate from MCI to PD-D. The objective of this study

is to analyse the anatomical associations of the non-motor

symptoms specific to the cognitive domain. The catego-

rization of PD subjects under the distribution of various

levels of cognitive impairment is based on the MoCA

scores. Though MoCA is used as a global cognitive

assessment tool, it lacks the diagnostic uncertainty in

evaluating the progressive decline of nigrostriatal

dopaminergic system and its association with the mor-

phological changes (Delgado-Alvarado et al. 2016). The

initial insight into the relationship of neuroimaging and

subgrouping of PD subjects aid in early and objective

diagnosis of PD.

The volumetric analysis of neuroanatomical structures is

crucial in identifying the regional patterns of neurodegen-

eration underpinning cognitive dysfunction. Spatially

localized multi atlas segmentation model is used for par-

allel segmentation of clinically relevant cortical structures.

It has been proven that such approach involving automated

segmentation and volume quantification of subcortical

brain structures might be useful in both, research as well as

clinical routine, to increase confidence in the diagnosis of

neuro-degenerative disorders, such as Alzheimer’s disease,

Parkinson’s disease. Further, it has also been suggested that

utilization of more number of atlases helps in capturing

structure-specific variation thereby enhancing segmenta-

tion accuracy (Wenzel et al. 2018). These recommenda-

tions are validated in the present study by using 45 manual

atlases and 5111 auxiliary atlases accompanied by a set of

neuroanatomical labels.

Volumetric analysis has been attempted in this study to

describe the morphological variations related to PD. The

comparison of TIV estimated from the segmented volumes

illustrates only minimal volumetric changes and are not

consistent with the levels of cognition in PD. The absence

of changes in the gross measurement of the whole brain

volumes required analysis of the localized volumetric

alterations of subcortical structures across HC, PD-MCI

and PD-D groups. The present study could confirm that

disease-related atrophy can be found in a number of sub-

cortical structures. The labelled subcortical structures are

analysed to obtain the atrophy levels in the PD subjects

with and without dementia.

The prediction of cognitive dysfunction in PD is evi-

denced through Cohen’s d values of volumetric differences

in accumbens, amygdala, caudate, putamen and thalamus.

This observation is in line with the model based segmen-

tation study by Wenzel et al. (2018) where a number of

subcortical structures reflect neurodegenerative disease

related atrophy, with amygdala and hippocampus being

identified as the most relevant volumetric biomarkers. The

volumetric differences of the caudate and putamen exhib-

ited in this study play an important role in identification of

cognitive impairment of PD subjects. The atrophy in these

regions is also attributed to motor symptoms in the PD

subjects as reported in a previous study (Li et al. 2018).

The inverse association in the putamen and caudate with

increasing motor severity in this early cohort of PD patients

suggests early anterior striatal neurodegeneration. It has

also been observed in another recent study where PD

subjects with rapid eye movement sleep behaviour disorder

demonstrated volumetric changes in the caudal putamen

region (Kamps et al. 2019). In line with these findings,

histologic studies in PD have shown prominent depletion of

dopaminergic neurons in the caudal and lateral regions of

the substantia nigra pars compacta, called nigrosome-1

(Pyatigorskaya et al. 2018).

The progression of the disease from MCI to later stages

of cognitive decline is revealed through the volumetric

Fig. 4 Normalised volume of subcortical regions of HC, PD-MCI and PD-D subjects
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changes in the accumbens and thalamus with moderate and

higher effect sizes respectively. It is observed that thalamus

is largely affected in PD subjects with cognitive

dysfunction. This is consistent with the previous studies

demonstrating its association with depression in PD sub-

jects (Garg et al. 2015). The significant volume reduction

Fig. 5 Quantitative results of significant GLCM features a energy, b entropy, c homogeneity, d max probability, e inverse variance for the 9

significant regions subcortical regions
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of accumbens, amygdala, caudate, putamen and thalamus

in the PD-D could be utilized to predict cognitive dys-

function in PD.

Minimal change in the subcortical volumes of the PD-

MCI group is seen with an overlap in the volumetric esti-

mates of the HC subjects. Though the results of present

study proved to be able to discriminate PD-D patients from

control subjects, it is found that the subcortical volumes are

not the best parameters to characterize MCI in PD. Hence,

morphological analysis using 3D GLCM has been

attempted in this study. Similar results have been reported

by Nemmi et al. (2015), where the modifications occurring

in PD patients’ subcortical structures are subtle and shape

analysis techniques aiming at better identification of

localized areas of brain atrophy, might be more sensitive to

evidence such differences. It has also been reported by

Wenzel et al. (2018) that modelling the variability of

complex anatomies could better capture typical morpho-

logical variations of substructures that have different

degree of atrophy in different brain structures.

The GLCM Haralick features extracted from the sub-

cortical regions of the three subject groups exhibited vol-

umetric differences with higher significance. Difference of

significance in texture features from the co-occurrence

matrix is seen between the right and left hemispheres as

evidenced in the region of amygdala. This in line with the

study carried out by Xia et al. (2013) to show the differ-

ences in the hemispherical levels as the disease progresses

from mild to severe cognitive impairment. The region of

interest derived morphometric values of each structure aids

in discrimination among HC, NC-PD, PD-MCI and PD-D

groups due to specific spatial localization.

The features from significant subcortical regions sub-

mitted to ensemble subspace kNN classifier achieved a

comparable performance, in classifying the subjects as HC,

PD-MCI and PD-D groups. The non-informative textural

features of the entire data are handled by the ensemble

classifier to obtain minimum error on classification.

Specificity of 95.5 denotes the low probability of identi-

fying the HC subjects as PD-MCI and proves the better

discriminative capability of the classifier.

Conclusion

Cognitive impairment serves as significant clinical mani-

festation in PD. The cognitive impairment in PD subjects

through morphological variation of subcortical structures

has been analysed in this study. Multi-atlas based seg-

mentation is implemented by combining deep neural net-

works with the native medical image processing

techniques. The subcortical regions that exhibited medium

and large effect sizes were evaluated through Cohen’s d

and these volumetric features exhibited the differences in

structures of the three subject groups: HC, PD-MCI and

PD-D. The comprehensive analysis of morphological

alterations in the subcortical region could provide a sen-

sitive evaluation for the assessment of cognitive dysfunc-

tion in PD. The diagnosis of PD-MCI still remains

challenging, due to the overlap of subcortical volumes with

the HC subjects and forms a scope for future validation in

the early diagnosis of PD-MCI. The current study utilises

the MoCA scores for the categorisation of subjects under

the various cognitive levels. Inclusion of other neuropsy-

chological tests would yield better categorisation of PD to

access the early predictive capability of cognitive

impairment.
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