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Abstract

Purinergic signaling is a fundamental mechanism used by all cells to control their internal 

activities and interact with the environment. As a key component of the purinergic system, the 

enzyme ecto-5′-nucleotidase (CD73) catalyzes the last step in the extracellular metabolism of 

adenosine triphosphate (ATP) to form adenosine. Efforts to harness the therapeutic potential of 

endogenous adenosine in cancer have culminated in the ongoing clinical development of multiple 

CD73-targeting antibodies and small-molecule inhibitors. However, recent studies are painting 

an increasingly complex picture of CD73 mRNA and protein regulation and function in cellular 

homeostasis, physiological adaptation, and disease development. This review discusses the latest 

conceptual and methodological advances helping to unravel the complexity of this important 

enzyme, identified nearly 90 years ago.
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CD73 is an integral component of the purinergic system

Cells produce and consume adenosine triphosphate (ATP) in a tightly regulated manner to 

ensure optimal organismal function. In addition to being used as fuel for essential activities 

within the cell, ATP is also released outside of the cell, where the sequential removal of its 

phosphate groups results in the formation of the nucleoside adenosine. Extracellular ATP 

and adenosine, together with the associated synthetic and catabolic enzymes, receptors, and 

transporters are part of the evolutionarily conserved purinergic system, which links cellular 

metabolism to a myriad of other processes, including proliferation, differentiation, and cell 

death [1].

Extracellular ATP is rapidly metabolized by a number of enzymes collectively known 

as ectonucleotidases, which include members of the ecto-nucleoside triphosphate 
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diphosphohydrolase (ENTPD) and ecto-nucleotide pyrophosphatase/phosphodiesterase 

(ENPP) protein families [2]. ENTPD1 (CD39) and ENPP1 generate adenosine 

monophosphate (AMP) from ATP (Figure 1). Subsequent hydrolysis of AMP to adenosine 

is primarily, but not exclusively, carried out by the enzyme 5’-nucleotidase (CD73) [3] 

(Figure 1). Extracellular adenosine activates four G-protein coupled adenosine receptors 

(ARs), which have different affinities for adenosine (A1R>A2AR>A3R>>A2BR) and activate 

numerous signaling pathways to control oxygen supply/demand, inflammation, and other 

activities, dependent on the cell type and receptor expression pattern [4] (Figure 1). 

Adenosine can also be taken up via equilibrative nucleoside transporters (ENTs) and re­

phosphorylated to AMP inside the cell [5]. As the major enzymatic source of extracellular 

adenosine, CD73 is a key regulator of cellular homeostasis, stress responses, injury, and 

disease mechanisms across many tissues [6].

Currently, blocking the enzymatic activity of CD73 is regarded as an important avenue 

for cancer therapy because adenosine suppresses anti-tumor immunity [7]. Multiple CD73­

targeting antibodies and small molecule inhibitors are undergoing clinical testing (Figure 

1). However, the long-term safety of systemic interventions blocking CD73 is an important 

consideration, because adenosine is critical for normal physiology, and loss-of-function 

mutations in the CD73-encoding gene (NT5E) cause a rare vascular disease in humans [8]. 

Moreover, studies from the last 2–4 years have illuminated significant biological complexity 

in human CD73 regulation and function, which need to be taken into account as the field 

moves forward. The purpose of this review is to render the latest discoveries on CD73 

biology in a historical context and highlight CD73 functions that are important for normal 

cell biology and physiological homeostasis.

From 5’-NT to CD73: the evolution of CD73 biology and its links to human 

disease

CD73 is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein that functions as a 

dimer on the plasma membrane [9]. Discovered more than 80 years ago as 5′-nucleotidase 

(5′-NT), it received the designation ‘cluster of differentiation 73 (CD73)’ just prior to the 

cloning of its cDNA in 1990 [3, 6]. To distinguish it from functionally similar cytoplasmic 

enzymes [10], it is also called ecto-5′-nucleotidase, abbreviated eN or eNT. Currently, 

5′-NT, eN, eNT and CD73 are all used to refer to the protein product (P21589; NP_002517) 

of the same gene, which is NT5E (Gene ID: 4907). The name CD73 is most commonly 

used in the recent literature (last 10–15 years) and coincides with a shift in focus on immune 

functions, especially in the context of cancer. However, CD73 is ubiquitously expressed 

and involved in virtually every aspect of normal physiology and many disease-associated 

mechanisms [6]. Moreover, non-immune cells that normally express high levels of CD73, 

including fibroblasts, epithelial, and endothelial cells, are epigenetically primed to elicit 

tissue-specific immune responses [11]. This is an important consideration, but it is currently 

underappreciated.
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CD73-generated adenosine controls cellular stress adaptation

Tissues with the highest level of NT5E expression include smooth muscle, the female 

reproductive system, liver, and gastrointestinal tract [6, 12]. In addition to its abundance 

on epithelial and endothelial cells, CD73 is also active on neurons, glia, myocytes, and 

fibroblasts [6]. Based on many studies in whole-body Nt5e−/− mice, CD73 activity is 

important for maintaining tissue integrity, especially endothelial and epithelial barrier 

functions, and for facilitating recovery following hypoxia, ischemia/reperfusion, and 

inflammatory injury in the brain, heart, lung, kidney, liver, and digestive tissues [13, 14]. A 

comprehensive description of the cell type- and tissue-specific functions of CD73 is beyond 

the scope of the current article, and we refer readers to previous reviews for more details [6, 

15]. Of note, there is existing evidence that CD73 also works non-enzymatically to regulate 

T-cell receptor activation, immune-endothelial interactions, apoptosis, intracellular kinase 

signaling and other cellular functions [6, 15]. Still, most studies to date have attributed the 

physiological functions of CD73 to its ability to control the extracellular ATP-adenosine 

balance.

The basal release of ATP triggers activation of purinergic signaling to control 

diverse cellular processes, including ion transport, cell volume regulation, intercellular 

communication, blood flow, and neuronal activity [16]. Adaptability in this pathway is 

achieved through altered expression and activity of enzymes and receptors and it is crucial 

for regaining homeostasis following exposure to stress, including mechanical, inflammatory, 

hypoxic, metabolic, and other types. For example, the mechanical stress-dependent release 

of ATP is particularly well documented across many cell types, such as erythrocytes [17], 

airway epithelial cells [18], vascular endothelial cells [19], astrocytes [20], and neurons [21]. 

Increased ATP release from stressed or dying cells represents a ‘danger’ pro-inflammatory 

signal, and is terminated upon ATP metabolism to the anti-inflammatory mediator adenosine 

in order to avoid excessive activation of tissue defense mechanisms [22, 23].

Adenosine performs life-preserving functions inside and outside of the cell

Adenosine has fascinated biologists for decades because it controls virtually every system 

in the body. It has been named a “retaliatory metabolite” because it enables target cells 

to respond to stress and adjust their energy supply, thereby retaliating against external 

stimuli that would otherwise promote the excessive breakdown of ATP [24]. External stimuli 

can be physiological or stress-related, and vary by cell and tissue type (e.g. altered blood 

flow or tissue oxygenation, exposure to hormones, neurotransmitters, and inflammatory 

mediators) [25]. More recently, adenosine has been called a “multi-signaling guardian 

angel” because it restores the oxygen supply-and-demand balance and exerts potent anti­

inflammatory effects to guard against cellular damage [26]. Adenosine is taken up into 

the cell and re-phosphorylated to replenish intracellular ATP stores, which is an important 

mechanism for purine salvage [27]. In addition, the transport-dependent adenosine uptake 

and phosphorylation by adenosine kinase promote increased levels of AMP and activation 

of the master metabolic regulator AMP-activated protein kinase (AMPK) [28], which is 

important for cellular and tissue homeostasis. For example, mice with a targeted deletion of 
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Nt5e in hepatocytes exhibit significant hypoactivation of AMPK and develop spontaneous 

hepatocyte degeneration and liver injury [29].

The four ubiquitously-expressed metabotropic adenosine receptors and their G protein­

coupled activities regulate cardiovascular, respiratory and immune functions, metabolism, 

neurological activity, gastrointestinal and liver biology [4]. Direct activation of adenosine 

receptors by small molecules with selective affinity for each receptor type represents an 

important avenue for drug development for cardiovascular diseases, pain, cancer, diabetes, 

liver disease and other disorders [30]. Recently, mice that lack all four adenosine receptors 

were generated and reported to have significantly shorter lifespan [31]. The decline in 

survival began at 15 weeks of age, reaching 50% by the time the mice were 30 weeks 

old [31]. While this mouse model reveals that baseline adenosine signaling via adenosine 

receptors collectively is critical for long-term organismal viability, the mechanisms leading 

to shortened life span are unknown. Going forward, this mouse model will be a useful 

tool to address the role of adenosine receptor signaling not only in homeostasis, but also 

in allostasis - the process by which regulatory systems adapt under stress in order to 

regain homeostasis [32]. Shifting away from whole-body to tissue-specific Nt5e−/− mice 

will provide additional clarity on where CD73 function fits with respect to homeostatic and 

allostatic adenosine receptor signaling across different tissues.

CD73-generated adenosine controls cancer progression

Persistent changes in the activation of purinergic signaling pathways can promote 

the development of diseases that are driven by metabolic perturbations and chronic 

inflammation, such as cancer [33]. Mechanical forces and other stress-related mechanisms 

are particularly relevant to growing tumors because they promote the release of ATP from 

cancer cells [34]. Pharmacologic or genetic ablation of CD73 in mice leads to decreased 

conversion of extracellular ATP to adenosine and promotes anti-tumor immunity [7]. 

The persistence of an immunosuppressive environment in the presence of active CD73 

is largely due to increased A2AR and, to a lesser extent, A2BR activation on multiple 

immune cell types, including natural killer (NK) cells, and effector and regulatory T 

(Treg) cells. Specifically, A2AR signaling inhibits effector T cell proliferation and cytotoxic 

function [35–37], enhances Treg expansion and immunosuppressive activity [38], and 

inhibits NK cell maturation and target cell killing [39, 40]. Signaling via A2BR facilitates 

expansion of myeloid derived suppressor cells (MDSC) [41], and CD73 activity on MDSCs 

inhibits T cells and NK cells [42]. Persistent hypoxia and inflammation within the tumor 

microenvironment boost immunosuppressive responses by elevating extracellular adenosine 

through modulation of adenosine-related genes [43, 44]. Currently there is a strong emphasis 

on understanding the functional role of CD73 as an immune checkpoint modulator [45–48], 

while simultaneously testing if CD73 inhibitors can provide benefit to cancer patients when 

used in combinatorial immunotherapy regimens [7].

Despite these efforts, we do not yet have a thorough understanding of all of the mechanisms 

by which CD73 controls tumor biology, especially in settings where its functions are 

tumor-suppressing. It is known that sustained expression of CD73 on epithelial cells is 

associated with favorable outcomes in endometrial and bladder cancer patients [49–51]. In 
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endometrial cancer, epithelial CD73-generated adenosine is necessary for A1R-dependent 

cortical actin polymerization and cell–cell adhesion, while CD73 loss is pro-tumorigenic 

because it compromises epithelial barrier function [51]. Therefore, future studies need to 

reconcile these opposing, cell type-specific roles of CD73 in cancer. Particular care should 

be exercised to avoid over-emphasis of CD73 function on immune cells over other cell 

types, given its ubiquitous expression.

Genetic deficiency of CD73 alters kinase signaling and gene regulation in a 

rare human disease

The critical role of CD73 in human biology is illustrated by the fact that loss-of-function 

mutations in NT5E cause the rare adult-onset vascular disease ‘calcification of joint 

and arteries’ (CALJA; OMIM: 211800) [52]. Also known as ‘arterial calcification due 

to deficiency of CD73’ (ACDC), the disease is characterized by painful calcifications 

that affect the lower and upper extremities [8, 53, 54] due to diminished CD73 activity 

on smooth muscle cells. The tissue-specific ACDC presentation is in line with recent 

quantitative profiling studies that reveal the highest NT5E/CD73 expression in human 

arteries, in a comparison of 32 normal tissues [55].

Mechanisms linking NT5E mutations to clinical presentations are not fully understood, 

partly because genetic mouse models of CD73 deficiency do not reflect the human 

phenotype [52]. To overcome this limitation, ACDC patient fibroblasts and induced 

pluripotent stem cell (iPSC)-derived mesenchymal stromal cells (MSCs) have been used 

to study signaling mechanisms altered in the absence of functional CD73 [56, 57]. These 

studies reveal that ACDC patient fibroblasts have dysregulated transcription factor Forkhead 

Box O1 Protein (FOXO1) activity [57]. Furthermore, ACDC patient MSCs display increased 

activation of AKT kinase, mechanistic target of rapamycin (mTOR), and the 70-kDa 

ribosomal protein S6 kinase (p70S6K) in the presence of osteogenic stimuli [56]. In the 

absence of functional CD73, there is increased phosphorylation of AKT, leading to FOXO1 

activation, which in turn promotes expression of TNAP. Increased TNAP activity is a known 

factor in promoting ectopic calcification in ACDC [56]. Moreover, decreased levels of 

intracellular adenosine due to elevated activity of adenosine kinase, which phosphorylates 

adenosine to AMP, exacerbate vascular inflammation in mice via epigenetic reprogramming 

of histone methylation [58]. This mechanism was shown to be dependent on the uptake of 

extracellular adenosine, further supporting the hypothesis that CD73 provides a key link 

between extracellular purinergic signaling and gene regulation.

It will be important to assess additional stress response mechanisms in ACDC model 

systems, as CD73 regulates stress recovery of bone marrow stromal cells [59]. Specifically, 

it was shown that depletion of CD73 from stromal cells impairs early hematopoietic 

cell regeneration following irradiation in mice. Understanding the detailed mechanisms 

behind these observations will be important in oncology settings, as systemic use of CD73 

inhibitors could affect the ability of cancer patients to recover from cytotoxic stress due 

to chemotherapy or radiation. As the natural history of ACDC becomes defined, patient­
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derived cellular tools to model aspects of the disease will enable further refinement of the 

cell biological consequences of CD73 genetic inactivation or inhibition.

CD73 is zonally expressed on subsets of cells within epithelial tissues

Despite the noted species differences, animal models will continue to play an important role 

in advancing CD73 biology because we are also beginning to recognize the importance of 

zonal distribution of CD73 on subsets of cells within a given tissue, in particular digestive 

epithelia (Figure 2). Advances in single cell sequencing technologies are revealing how 

spatial dynamics may play a role in the physiological homeostatic functions of CD73, 

particularly in response to tissue oxygenation. Under homeostasis, CD73 defines populations 

of cells residing in low-oxygen areas, such as the villus tip enterocytes of the small intestine 

[60], the pericentral hepatocytes in the liver [61], and erythropoietin-producing interstitial 

cells of the kidney [62]. The zonal distribution of CD73 is consistent with earlier findings 

that its expression is strongly responsive to hypoxia because of the presence of hypoxia 

response element - 1 (HIF-1) binding sites in the NT5E promoter [63]. This regulatory 

mechanism is similar between human and mouse. Nt5e−/− mice display vascular leakage in 

response to normobaric hypoxia in multiple tissues (lung, liver, gut, muscle, heart, kidney, 

brain) [13]. Furthermore, Nt5e−/− mice have increased susceptibility to cardiovascular, 

respiratory, gastrointestinal (GI) and liver injury, in large part because they lack the adaptive 

mechanisms afforded by extracellular adenosine in response to hypoxia stress [13, 64–67]. 

Therefore, expression of CD73 in low oxygen environments provides a physiological benefit 

that is suited to the architecture of the particular tissue type.

One reason for the preferential localization of CD73 at the villus tip enterocytes is 

to counteract the ATP released by bacteria in the intestinal lumen and thereby control 

inappropriate immune activation by the host microbiome. Other potential functions may 

include the metabolism of cyclic dinucleotides to regulate host defense mechanisms at 

mucosal surfaces and serve as a source of antimicrobial adenosine to prevent bacterial 

colonization and infection [68]. CD73 distribution on pericentral hepatocytes in the 

mammalian liver likely enables the cells to calibrate their metabolic activities under 

physiologically low oxygen conditions, since genetic deletion of hepatocyte CD73 results 

in metabolic and inflammatory liver injury [29]. Since pericentral hepatocytes are involved 

in the homeostatic renewal of the liver in response to Wnt ligands [69], it will be of interest 

to examine in the future whether CD73 modulates these pathways as part of liver mass 

maintenance.

Given these observations, it will be important to examine how purinergic intermediates in 

the gut, liver, and systemic circulation are affected by anti-CD73 interventions, as this may 

affect patients’ response to, and effects from, immunotherapy. It was shown recently that the 

nucleoside inosine significantly potentiates the anti-cancer effects of checkpoint inhibitors 

[70]. Inosine is derived metabolically from the gut microbiome [70] and it can also be 

produced extracellularly from adenosine by cell surface-localized adenosine deaminase 

(ADA) [71]. It was observed that inosine translocates from the gut lumen to the systemic 

circulation and activates T cell–specific A2AR signaling to promote anti-tumor TH1 cell 

activation [70]. This raises a potential concern that co-administration of CD73 inhibitors 
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(e.g. oleclumab) and checkpoint inhibitors (e.g. the PD-1 inhibitor durvalumab), as it is 

being done in clinical trials, may reduce treatment efficacy by lowering inosine levels. 

Moreover, combining CD73 inhibitors with checkpoint inhibitors, which are known to cause 

acute hepatitis [72], may lower the threshold for liver injury and result in poor outcomes in 

the long-term [73], especially in patients with other predisposing factors for liver disease, 

such as genetic makeup, age, and biological sex.

Sex and age are important variables in CD73 biology

An important question moving forward is how biological sex will impact the safety and 

effectiveness of CD73-targeted cancer immunotherapies. Although there is some evidence 

based on meta-analyses [74] and multi-omics datasets [75] to support sex differences, this 

is still a highly debated issue and it remains an open question. At the basic science level, 

most in vivo studies on CD73 have been done only in male mice, or biological sex was 

not explicitly considered as a potential variable. However, an emerging concept in the field 

is that there are critical hormonal influences, particularly estrogen-derived, in how males 

and females metabolize extracellular adenosine and cope with deficiency of CD73. Sex 

differences in adenosine signaling play a role in neuromodulation within the hippocampus, 

which has a high frequency of spontaneous transient adenosine events that regulate synaptic 

transmission, glia-neuron interactions, and other important functions [76]. Female Nt5e−/− 

mice have dramatically lower numbers of spontaneous transient adenosine events compared 

to WT mice, whereas male WT and Nt5e−/− mice have similar frequencies because of 

compensatory upregulation in TNAP in the latter [76]. Thus, female mice appear to be 

more reliant on CD73 for spontaneous adenosine transients, which is in line with earlier 

observations that CD73 expression and activity in the hippocampus are positively regulated 

by estrogen receptors (ER) α and β [77, 78].

ERβ-mediated signaling impacts CD73 biology in the GI tract via Tregs, which rely 

on CD73-generated adenosine for their immunosuppressive functions [79]. Specifically, 

estrogen mediates the differentiation of peripheral Tregs in an ERβ-dependent mechanism, 

and deletion of ERβ reduces the numbers of CD39/CD73-positive Tregs in female, but not 

in male mice affected by chronic intestinal inflammation [80]. This finding has potential 

implications for the management of female versus male patients with inflammatory GI 

conditions because ERβ expression is selectively downregulated in the intestinal mucosa 

and circulating T cells of female Crohn’s disease patients [80]. In the liver, hepatocyte­

specific genetic deletion of CD73 leads to spontaneous injury characterized by metabolic 

dysfunction, hepatocyte swelling and ballooning, steatosis, and inflammation in middle-aged 

male mice [29]. Female mice lacking hepatocyte CD73 are relatively protected, potentially 

via compensatory upregulation of Entpd1 and all four adenosine receptors [29]. Thus sex­

dependent differences in vulnerability versus resilience in coping with CD73 deficiency 

appear to be highly tissue-specific, and this will need to be resolved in future work.

Age and aging-related stress responses will be other important considerations for future 

studies, given recent findings that CD73 activity can be beneficial or harmful in 

atherosclerosis settings, depending on the age of mice [81] and that CD73 expression levels 

change throughout the human lifespan [82].
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CD73 expression and activity are regulated at multiple levels

While many studies report that CD73 is altered in stress, chronic diseases and cancer, a few 

address the full spectrum of changes at the mRNA level, protein expression and localization, 

or enzymatic activity (Figure 3). The specific mechanism by which CD73 is affected 

in stress and disease is an important consideration because upregulation at the mRNA 

level does not necessarily result in increased protein expression, while increased protein 

expression does not always correlate with increased enzymatic activity [83]. Moreover, the 

possibility that NT5E mRNA upregulation in cancer, as it is frequently reported, could act 

independently of CD73 activity has not been fully explored. Aside from HIF-1, several 

other transcription factors are known to induce CD73 expression, including SP1, SMAD and 

c-Jun/AP-1 [84, 85].

Recently, a novel tumor-promoting non-coding circular RNA with oncogenic activity called 

circNT5E was discovered in glioblastoma [86] and non-small cell lung cancer [87] (Figure 

3). The circNT5E mRNA arose from exon 3–9 region of NT5E through the activity of 

the double-stranded RNA-specific editase B2 (ADARB2). The pro-tumorigenic activity 

of circNT5E due to its ability to act as a sponge, or sink, for tumor suppressor micro 

RNAs (miRNAs), including miR-422a [86]. Adding to that complexity, miR-442a, miR-30a, 

miR-30b, miR-30a-5p, and miR-340 directly target and inhibit NT5E expression in head 

and neck, colorectal, gallbladder, glioma, lung, and pancreas cancer [88–90]. Other ways 

in which NT5E is dysregulated in cancer is via alternative splicing of exon 7 to produce 

a shorter enzymatically-inactive intracellular protein isoform (CD73S), which acts as a 

dominant negative to the canonical form [91] (Figure 3). CD73S is a human-specific 

isoform and its exact functions remain to be determined. Unravelling these transcriptional 

mechanisms may open possibilities for selectivity in targeting the pro-tumorigenic effects of 

NT5E without interfering with the normal enzymatic functions of CD73.

At the protein level, canonical CD73 undergoes a number of post-translational modifications 

(PTMs) that can significantly impact its localization and activity, including cleavage from 

the membrane to form a soluble enzyme [92–94] (Figure 3). This is a key consideration 

in studies that involve tissue digestion, since that removes the membrane-bound form 

of CD73, as previously shown to occur immediately following hepatocyte isolation [83]. 

Another important consideration is that CD73 is N-glycosylated at four different residues 

(N53, N311, N333 and N403) and site-specific changes in the abundance and composition 

of glycans alter its sub-cellular localization and enzymatic activity [94]. Aside from 

human cirrhosis and liver cancer, presently little is known about how alternative splicing 

and glycosylation impact CD73 expression, localization, and activity in other chronic 

diseases and in different cancer types. Importantly, the transcriptional and post-translational 

regulation mechanisms of CD73 under homeostatic conditions are not well defined, but it is 

likely that they exert important effects on its function.

Development of CD73 inhibitors and other tools to support further research

Active efforts to block the adenosine-producing CD73 activity for therapeutic purposes of 

limiting cancer growth and metastasis include monoclonal antibodies and small molecule 
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inhibitors [95]. The initial proof-of-concept pre-clinical study using an inhibitory antibody 

against CD73 was done 11 years ago [96] and there are now at least five different anti-CD73 

antibodies (BMS-986179, CPI-006, MEDI9447, NZV930 and TJ004309) and two small 

molecule inhibitors (AB122 and LY3475070) undergoing Phase I/II clinical trials [95]. 

Many similar agents are in early stage discovery and pre-clinical development [95, 97–102]. 

Somewhat surprisingly, some anti-CD73 antibodies are already being tested for COVID-19 

therapy [103, 104], despite evidence of clinical benefits of CD73 and adenosine in lung 

injury [105], and benefit of adenosine in pneumonia associated with COVID-19 [106]. CD73 

activity on immune cells versus other types of cells (endothelial, epithelial) need to be 

carefully considered in order to advance safe and effective treatments for COVID-19.

Elevating, rather than suppressing, the function of CD73 is going to be beneficial in 

many situations where tissue inflammation needs to be reduced. To that end, bi-functional 

proteins were engineered by fusing the extracellular domains of CD39 and CD73 [107]. 

The fusion proteins exhibited high phosphohydrolysis activity towards extracellular ATP 

and anti-platelet activity in vitro, suggesting they could potentially be developed to 

treat inflammatory diseases [107]. In addition, extracellular ATP release can be directly 

visualized in live animals using a newly developed optical sensor (ATPOS) [108], which 

represents another important methodological advance toward understanding the dynamics of 

the purinergic signaling components in vivo.

Radiolabeled antibodies [109] and fluorescent probes [110] are among the latest tools that 

were developed to monitor CD73 distribution and regulation in various settings. An Nt5e 
reporter mouse was also generated, and it appears to be a useful tool for studying CD73 on 

multipotent stromal cells and sinusoidal endothelial cells [111]. The availability of multiple 

approaches to target, manipulate, and track CD73 will undoubtedly open new opportunities 

to understand its biology and regulation during physiological adaptation.

Conclusions and future perspectives

Decades of research breakthroughs on the release and metabolism of ATP to adenosine 

outside of the cell have revealed critical functions that are independent of the essential 

metabolic activities occurring within the cell. Adenosine controls numerous homeostatic 

processes and stress adaptation mechanisms, which would be rendered ineffective in 

the setting of chronic CD73 inhibition, an effort currently being undertaken in clinical 

research [7]. In order to successfully advance therapies around CD73, now is the time 

to take a step back and understand the fundamental biology behind this fascinating 

molecule (see Outstanding Questions). Priorities for future work include the generation 

of additional human-specific tools to study CD73 regulation – such as iPSC-derived cells 

and tissue organoids [52]. These tools can help resolve species-specific mechanisms, such 

as alternative splicing [91], and help streamline the process of translating pre-clinical 

discoveries to the clinic. It will be important for future studies to carefully consider the 

mechanism by which CD73 expression and activity are altered in disease, such as mRNA 

expression and processing, protein expression and localization, and enzymatic activity, as 

these are often discordant under pathological conditions. The current anti-CD73 targeting 

strategies rely on the presence of cell surface - expressed, enzymatically active form of 
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CD73 but do not address alternative splice isoforms and PTM variants that can affect 

localization and activity. Ideally, CD73 targeting in disease and cancer should be tailored to 

specific cell types to avoid untoward effects. The whole-body knockout mouse model has 

been instrumental in understanding CD73 function and for disease modeling [13], but given 

the ubiquitous expression and complex interplay between CD73 on different cell types [6], 

it is critical to move forward using tissue-specific knockout models, as has already been 

done in intestinal [112], kidney [113] and liver models [29]. All of these questions are 

addressable with the availability of new iPSC technologies, genetic mouse models, highly 

selective and potent inhibitors, and imaging probes, which are creating new opportunities 

to monitor, target and manipulate CD73 (Figure 4). Future studies aimed at unravelling the 

biological complexity of CD73 regulation and functions will help guide translational and 

clinical efforts for cancer and other human diseases.
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Outstanding Questions

• Which aspects of CD73 regulation and function are conserved across species 

and which ones are unique to humans?

• What are the influences of age and biological sex, including hormones, on 

CD73 function, regulation and roles in disease?

• What is the significance of CD73 metabolic zonation, and how does CD73 

mediate physiological adaptation in epithelial tissues?

• How are the transcriptional, post-transcriptional and post-translational 

mechanisms integrated to control CD73 expression and activity in normal 

cells? How are these mechanisms altered during stress and in disease 

conditions?

• What are the functions of the circNT5E mRNA in malignant neoplastic cells?

• Which RNA-binding proteins control NT5E expression and splicing in 

homeostasis and stress?

• How are kinase signaling pathways (e.g. AKT, mTOR, AMPK) altered in the 

absence of functional CD73?

• Does CD73 have adenosine-independent functions and, if so, how are they 

altered by CD73-targeting antibodies and small molecule inhibitors?
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Highlights

• The ecto-enzyme CD73, and its enzymatic product adenosine, control cellular 

homeostasis and allostasis by integrating extracellular purinergic signaling 

with intracellular kinase activities and gene transcription.

• CD73 is complex and coordinated at multiple levels, including transcriptional 

(by hypoxia and Hippo signaling), post-transcriptional (by production of an 

alternative splice isoform and circular mRNA), and post-translational (by 

N-glycosylation and shedding from the membrane to produce a soluble form).

• An oxygen gradient patterns zonal expression of CD73 to regulate the long­
term metabolic and immune stability of epithelial cells and tissues.

• Multiple CD73 inhibitors are undergoing clinical development for cancer. 

Given the complex regulation and homeostatic functions of CD73 and 

adenosine, caution around the long-term safety of systemic inhibition of 

CD73 is warranted.
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Figure 1. CD73 is an Essential Component of Purinergic Signaling and a Disease Target.
CD73 is a ubiquitously expressed ecto-nucleotidase of the purine metabolism pathway. 

As a glycosylphosphatidylinositol (GPI) -anchored glycoprotein on the plasma membrane, 

CD73 works in tandem with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), 

which breaks down adenosine triphosphate (ATP) to form adenosine 5’-monophosphate 

(AMP) in a two-step process. Alternatively, AMP can be generated via direct conversion 

from ATP by the enzyme ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). 

CD73 is the major enzyme that dephosphorylates AMP to generate extracellular adenosine 

(Ado), but this reaction can also be carried out by tissue non-specific alkaline phosphatase 

(TNAP) or prostatic acid phosphatase (PAP). CD73-generated adenosine directly exerts 

tissue-specific functions by binding to four different types of G-coupled adenosine receptors 

(AdoR), which regulate oxygen supply/demand ratios, inflammation and angiogenesis in 

a receptor-dependent manner. Additionally, adenosine is transported into the cytoplasm 

through equilibrative and concentrative nucleoside transporters (ENTs and CNTs). Due to its 

role in inflammatory responses and tumor growth and metastasis, small molecule inhibitors 
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and monoclonal antibodies against CD73 are currently being tested in clinical trials for 

cancer immunotherapy and COVID-19 therapy.
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Figure 2. Zonal Expression of CD73 Supports Tissue-Specific Homeostasis.
A hypoxic environment induces CD73 expression in the apical membrane of different 

tissues. In the intestinal epithelia, for example, CD73 is present on villus tip enterocytes, 

which are subjected to low oxygen conditions. The villus tips face the intestinal lumen 

where anaerobic bacteria normally reside. Similarly, CD73 is zonally expressed in 

hepatocytes in the liver. In the hepatic lobule, periportal hepatocytes are located next to 

the portal triad on one side (encompassing the hepatic artery, vein, and bile duct), while 

pericentral hepatocytes reside adjacent to the central vein. This arrangement follows the 

oxygen gradient: highly oxygenated blood enters the liver via the hepatic artery from the 

portal triad, mixes with deoxygenated blood through the sinusoids between hepatocytes and 

is returned to the circulation via the central vein.
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Figure 3. Molecular Regulation of CD73.
The important functions of CD73 across cell- and tissue-types warrant different levels of 

molecular regulation. 1) At the transcriptional level, the expression of the CD73-encoding 

gene NT5E is upregulated by transcription factors (TF) such as HIF1α, SP1, SMAD, and 

AP1 and several micro RNAs (miRNAs), as noted in the text. In the context of cancer, 

NT5E mRNA undergoes 2) post-transcriptional splicing to generate an alternative NT5E-2 
transcript or the circular RNA circNT5E. Subsequently, NT5E-1 mRNA is translated into 

CD73 and NT5E-2 mRNA into CD73S, which is an intracellular enzymatically-inactive 

isoform that targets canonical CD73 for proteosomal degradation. The circNT5E transcript 

is oncogenic and expressed in glioma and lung cancer. 3) At the post-translational 

level, CD73 protein is modified by the addition of a glycosylphosphatidylinositol (GPI)­

anchor and by asparagine (N)-glycosylation in the endoplasmic reticulum (ER) and Golgi 
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apparatus. The mature CD73 protein dimerizes and is transported to the plasma membrane 

facing the extracellular space. CD73 can be cleaved by phospholipase C (PLC) or matrix 

metallopeptidase 9 (MMP9) to generate a soluble form of the protein.
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Figure 4. New Tools to Study CD73 Regulation and Function.
The ubiquitous nature of CD73 and the purinergic signaling complexity conceal important 

tissue-specific mechanisms, which warrants development of new tools to study this ecto­

enzyme. (Top Row) Recently synthesized fluorescent probes and small molecule inhibitors 

were designed based on the lead structure of the most common CD73 inhibitor, adenosine 

5’-(α,β-methylene)diphosphate or APCP. These newer probes exhibit higher potency while 

also enabling visualization and monitoring of CD73. Additionally, studies demonstrating 

pro-tumorigenic functions of CD73 led to the advent of new monoclonal antibodies tested in 

clinical trials. In contrast, promoting CD73 activity may alleviate inflammation and platelet 

aggregation. To that end, a CD39-CD73 fusion protein was shown to sequentially hydrolyze 

pro-inflammatory ATP to anti-inflammatory adenosine. (Middle Row) To interrogate 

relevant disease mechanisms, patient-derived induced pluripotent stem cells (iPSCs) have 

become a robust model system. For example, fibroblasts derived from patients with a rare 

genetic mutation of CD73 can be reprogrammed to generate iPSCs. These, in turn, can 

be differentiated into affected cell types to study pathological mechanisms the rare disease 

Arterial Calcification Due to Deficiency of CD73 (ACDC). (Bottom Row) To elucidate 

tissue-specific functions of proteins, reporter mouse lines and targeted gene deletion have 

been instrumental. A new reporter mouse line called CD73-EGFP enables tracking cell 

lineage and identification of CD73+ cells. Another useful model is the floxed CD73 

mouse line, which enables targeted deletion of CD73 in specific tissues when mated with 
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Cre recombinase mice. Specifically, deletion of CD73 in the liver, intestines, and kidney 

demonstrated tissue-specific protection under physiological and pathological conditions.
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