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ABSTRACT
◥

Purpose: Systems biology approaches can identify critical
targets in complex cancer signaling networks to inform new
therapy combinations that may overcome conventional treat-
ment resistance.

Experimental Design:Weperformed integrated analysis of 1,046
childhood B-ALL cases and developed a data-driven network con-
trollability-based approach to identify synergistic key regulator targets
in Philadelphia chromosome–like B-acute lymphoblastic leukemia
(Ph-like B-ALL), a common high-risk leukemia subtype associated
with hyperactive signal transduction and chemoresistance.

Results:We identified 14 dysregulated network nodes in Ph-like
ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis
pathways and other critical processes. Genetic cotargeting of the
synergistic key regulator pair STAT5B and BCL2-associated atha-
nogene 1 (BAG1) significantly reduced leukemia cell viability

in vitro. Pharmacologic inhibition with dual small molecule inhib-
itor therapy targeting this pair of key nodes further demonstrated
enhanced antileukemia efficacy of combining the BCL-2 inhib-
itor venetoclax with the tyrosine kinase inhibitors ruxolitinib or
dasatinib in vitro in human Ph-like ALL cell lines and in vivo in
multiple childhood Ph-like ALL patient-derived xenograft mod-
els. Consistent with network controllability theory, co-inhibitor
treatment also shifted the transcriptomic state of Ph-like ALL
cells to become less like kinase-activated BCR-ABL1–rearranged
(Phþ) B-ALL and more similar to prognostically favorable child-
hood B-ALL subtypes.

Conclusions:Our study represents a powerful conceptual frame-
work for combinatorial drug discovery based on systematic inter-
rogation of synergistic vulnerability pathways with pharmacologic
inhibitor validation in preclinical human leukemia models.

Introduction
Cancer cells exploit multiple deregulated pathways to evade the

selective pressure of single-agent drugs, promoting therapeutic resis-
tance and clinical relapse. However, combination therapy regimens for
cancer have traditionally been nonspecific with broad toxicity profiles

and developed in an ad hoc manner. More rational identification of
new targets in human cancers for combination drug regimens is an
essential next step. There is growing interest in identifying synergistic
genetic interactions as targets for combination therapy (1), but large-
scale experimental screening for genetic interactions has been tech-
nically challenging and expensive given the large number of candidate
gene pairs one has to screen. As a result, existing RNA-interference and
CRISPR-based screenings have been limited to only a few hundred
genes (2, 3), far from saturating the search space of all possible
(�4�108) pairwise interactions in the human genome. Given the
above challenges, we developed a systems biology approach that
enables efficient in silico genetic screening and prioritization of co-
targetable pathways for combinatorial therapeutics followed by rig-
orous in vitro and in vivo pharmacologic validation in a difficult-to-
cure subtype of leukemia.

Philadelphia chromosome–like acute lymphoblastic leukemia
(Ph-like ALL) comprises 15% to 30% of high-risk B-ALL cases in
children and adolescents/young adults (AYA) and 20% to 40% in older
adults (4–6), and is associated with high rates of conventional chemo-
therapy resistance and poor clinical outcomes (6, 7). Ph-like ALL is
defined by a kinase-activated transcriptomic signature resembling that
of Philadelphia chromosome-positive (Phþ) ALL, but lacks the BCR-
ABL1 rearrangement (8). Ph-like ALL is instead driven by alternative
genetic alterations in two major subclasses: (i) JAK/STAT pathway
alterations involving CRLF2, JAK2, EPOR, IL7R, or SH2B3 rearrange-
ments or indels and (ii)ABL-class kinase fusions involvingABL1,ABL2,
CSF1R, or PDGFRB rearrangements (7). Preclinical studies of tyrosine
kinase inhibitor (TKI) monotherapy in Ph-like ALL models have
expectedly demonstrated incomplete anti-leukemia activity (9–12)
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likely via compensatory signaling mechanisms, emphasizing the need
for more rationally-designed combination therapy approaches to
achieve cure. In the present studies, we hypothesized that an unbiased
systems biology approach could effectively elucidate optimal target
pairings. Our network-based analysis is optimal to address the unique
challenges of Ph-like ALL given its known dysregulation of multiple
intracellular pathways that maintain a high degree of crosstalk.

A main goal of effective multiagent therapy is identifying drug
combinations with synergistic efficacies, but not synergistic toxicities.
We recently reported our Optimal Control algorithm (OptiCon) (13)
that is capable of discovering novel disease-specific synergistic regula-
tors by integrating a molecular interaction network with large-scale
patient genomic and transcriptomic data. OptiCon is based on the
theory of network controllability, a mathematically validated frame-
work for identifying a set of driver nodes in a complex network that can
guide the system from an initial state to any desired final state (14).
OptiCon integrates clinical, genomic and expression data, as well as a
gene regulatory network to identify critical network nodes termed
optimal control nodes (OCN) that control a maximal number of
deregulated genes (for optimal therapeutic efficacy) and a minimal
number of unperturbed genes (for toxicity minimization). Synergistic
regulators (OCN pairs) are then nominated on the basis of the synergy
score, which quantifies the degree of crosstalk between pathways
downstream of the two OCNs and the amount of enrichment for
deregulated andmutated genes in the optimal control regions (OCR) of
the two OCNs (13). In the current study, we leveraged this powerful
computational tool to identify key oncogenic dependencies in Ph-like
ALL and to prioritize pathways for pharmacologic targeting in vitro and
in vivo using human cell lines and various preclinical patient-derived
xenograft (PDX) models of CRLF2-R or ABL-class Ph-like ALL.

Materials and Methods
Data and code availability

The results published here are in part based upon data generated
by the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) initiative (https://ocg.cancer.gov/programs/tar
get). Whole genome sequencing (WGS), whole exome sequencing
(WES), and microarray expression data were downloaded from dbGaP
with study identifier phs000218 (including phs000463, phs000464).
The data used for these analyses are available at https://portal.gdc.
cancer.gov/projects. Transcriptomic datasets of childhood B-ALL

samples were downloaded from publicly available databases as spec-
ified in “Source Details” of Supplementary Table S1. The drug/gene
databases were downloaded from the Therapeutic Target Database
(TTD; ref. 15), DrugBank (16), and DGIdb (17). The RNA sequenc-
ing data of untreated human B-ALL cell lines (except TVA-1) were
downloaded from the Broad Institute Cancer Cell Line Encyclope-
dia (CCLE) available at https://portals.broadinstitute.org/ccle. The
RNA sequencing data generated in this study is deposited at Gene
Expression Ominbus (GEO) under the accession number
GSE161939. All software supporting the analysis in this study can
be found in public repositories. Software package implementing the
OptiCon algorithm has been deposited at GitHub (https://github.
com/tanlabcode/OptiCon).

Prediction of candidate combination therapeutic targets using
OptiCon

We used our recently developed computational algorithm, Opti-
Con (13), to nominate candidate combination therapeutic targets.
Inputs to the algorithm consists of a gene regulatory network, genetic
mutation data, and gene expression data. A high-quality gene regu-
latory network was generated by combining known expert-curated
pathway annotations from three public pathway databases: KEGG
(1,597 pathways; ref. 18), Reactome (195 pathways; ref. 19), and NCI
Pathway Interaction Database (PID; 745 pathways; Supplementary
Table S5; ref. 20). All pathways were downloaded in the Simple
Interaction Format from Pathway Commons 252. We also removed
undirected, redundant, and small-molecule-associated interactions to
generate a regulatory network comprising 5959 nodes (genes) and
108,281 directed edges (regulatory links). Mutation information used
included gene fusions (Supplementary Table S2), copy number varia-
tions, and missense or nonsense mutations, called using the pipeline
detailed in He and colleagues (21) to analyze TARGET and Pediatric
Cancer Genome Project (PCGP) WGS, WES, and microarray data, to
generate a list of recurrently mutated genes in B-ALL patients (Sup-
plementary Table S3). The third input includes differential gene
expression data (Supplementary Table S4). Patient gene expression
microarray datasets were downloaded from the TARGET project and
PCGP (Supplementary Table S1). Differential gene expression
between Ph-like ALL and favorable-risk genetic subtypes of B-ALL
samples [ETV6-RUNX1 (22), ERG-deleted (23), and hyperdip-
loid (24)] was performed using linear models for microarray data
(LIMMA). Default parameter setting of OptiCon was used and a
deregulation score (DScore)-weighted network was obtained. Synergy
score between two OCNs in the network is calculated and consists of
two parts: the enrichment of recurrently mutated cancer genes in the
OCR of each OCN and the interaction density between genes in the
OCRs of the two OCNs. Identification of OCR genes of each OCN and
calculation of DScore and synergy scores are defined as in the OptiCon
manuscript (13). To identify significantly synergistic OCN pairs, we
generated a null distribution of synergy scores based on 10 million
randomly selected gene pairs from the input regulatory network. The
OCN pairs with an empirical P value < 0.05 were predicted as
significantly synergistic. P values were adjusted for multiple testing
using the method of Benjamini–Hochberg.

Chemicals and reagents
Venetoclax, dasatinib, and ruxolitinib were purchased from LC

Laboratories (catalog nos. V-3579, D-3307, and R-6688, respectively)
and solubilized at 50 mmol/L stock in DMSO. For in vivo PDX model
treatment, dasatinib was dissolved in 10% citric acid in 80 mmol/L
sodium citrate (dasatinib vehicle), and venetoclaxwas dissolved in 60%

Translational Relevance

We performed unbiased integrated network analysis of large-
scale patient genomic and transcriptomic datasets to identify
previously unrecognized targetable synergistic regulators in human
Ph-like ALL. We then queried drug databases for clinically avail-
able drugs and discovered synergistic efficacy of cotargeting the
pair of top-ranked regulators BCL-2 and STAT5 with venetoclax
and ruxolitinib or dasatinib, respectively, in vitro in human Ph-like
ALL cell lines and in vivo in Ph-like ALL patient-derived xenograft
models. This dual inhibitor precision medicine strategy is immi-
nently translatable to the clinic given the established therapeutic
dosing of these drugs and the high rates of chemoresistance and
relapse in patients with Ph-like ALL. Our combinatorial genetic
target discovery and pharmacologic validation approach may be
broadly applicable to interrogation of other human cancers.
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phospho-polyethylene glycol 50, 30% polyethylene glycol 400, 10%
ethanol (venetoclax vehicle). Ruxolitinib 2 g/kg chow was kindly
provided by the Incyte Corporation. AnnexinV assayswere performed
usingAnnexin V-FITC and PI co-staining (BioSciences, #640914) on a
BD FACSVerse flow cytometer (Supplementary Fig. S5).

Cell culture of leukemia cell lines
The Ph-like B-ALL cell lines MUTZ5 (IGH-CRLF2 translocation

and JAK2 R683G) and MHH-cALL4 (IGH-CRLF2 translocation and
JAK2 I682F), and the non-Ph-like B-ALL cell lines REH (ETV6-
RUNX1 translocation) and NALM6 (ETV6-PDGFRB translocation)
were obtained from the Deutsche Sammlung von Mikroorganismen
und Zellkulturen (DSMZ; https://www.dsmz.de/) cell biorepository.
TVA-1 cells with ETV6-ABL1 fusion were immortalized in vitro as a
cell line from a PDX model established by the laboratory of Dr. David
Fruman at the University of California, Irvine (25). Cells were cultured
in RPMI1640 (31870–025; Invitrogen) supplemented with 20% FBS,
1% Glutamax, 1% HEPES, 1% NEAA, and 100 unit/ml penicillin/
streptomycin (MUTZ5 and MHH-cALL4) or RPMI supplemented
with 10%FBS and 100 unit/mL penicillin/streptomycin (TVA-1, REH,
and NALM6), and fresh cells were thawed for experiments every
3 months. MUTZ5, MHH-cALL-4, REH, and NALM6 cell lines were
validated by ATCC STR profiling. All cell lines were confirmed to be
Mycoplasma-free every 6 months.

CRISPR/cas9-mediated double knockout of predicted
gene pairs

Electroporation of guide RNA/Cas9 ribonucleoprotein complex
was performed according to IDT’s Alt-R CRISPR-Cas9 protocol.
sgRNA was mixed with recombinant Cas9 (TrueCut Cas9 Protein
v2; Thermo Fisher Scientific) in a 1:2 ratio to produce RNA ribonu-
cleoprotein (RNP) complexes. Individually complexed RNPs targeting
each gene of a pair were then combined for simultaneous targeting of a
gene pair (for a final ratio of 2.5 mg total gRNA and 5 mg Cas9 protein
per 1 million cells). For single gene targeting, RNP complexed to
sgRNA against a single gene was combined with RNP complexed to
nontargeting control (NTC) sgRNA. Leukemia cells underwent
nucleofection with RNP complexes using the Amaxa 4D-
Nucleofector system and pulse code EO-117. Cells electroporated
with RNP complexed to nontargeting control (NTC) gRNA was used
as the negative control. After recovery overnight, cells were replated in
triplicate for viability assays using theCell-TiterGlo assay, at 4 days and
9 days post-nucleofection. Gene editing efficiency for each reaction
was calculated using the Tracking of Indels by Decomposition (TIDE)
assay (26); Q5 DNA polymerase (NEB #M0492S) was used and TIDE
software is available at https://tide.nki.nl/. sgRNA guide sequences
were synthesized by IDT and are as follows: TAAGAGGTCAGACC-
GTCGTG (STAT5B), TGAACCAGTTGTCCAAGACC (BAG1),
CGTTAATCGCGTATAATACG (nontargeting control, IDT no.
1072544/Alt-R CRISPR Negative Control No. 1). Primer sequences
for Sanger sequencing-based TIDE assay are as follows: AAGTGAAA-
CAGTTCTCAGGG (STAT5B Forward), TTGAACAACTGCTGCGT
(STAT5B Reverse), GGCCATAAGGAAAAGCCGG (BAG1 Forward),
GAGTGACCTTGGGATGGACG (BAG1 Reverse).

Drug synergy testing in cell lines
Human ALL cell lines were incubated at drug concentrations

ranging between 1 nmol/L and 50 mmol/L for 72 hours, and cell
viability was assessed by Cell-Titer Glo viability assays (Promega).
Cells were plated in triplicate in 96-well plates at 50,000 cells/well and
treated with drug at the indicated concentrations individually or in

combination. Percent cell growth was calculated relative to 0.1% DMSO
vehicle treated cells and normalized (using values of vehicle-treated cells
set to 100% and medium alone without viable cells set to 0%) and
displayed graphically in Prism. IC50 values were determined using
GraphPad Prism and Compusyn software. Combination index (CI)
values were calculated using Compusyn software (27). Each monother-
apy andcombinationdrug assaywas repeatedat least three times for each
studied cell line.

RNA sequencing of drug-treated cells
MUTZ5, MHH-cALL-4, and TVA-1 cells were cultured in medium

containing vehicle, TKI alone, venetoclax alone, or in combination at
indicated concentrations for 72 hours. Total RNA was extracted using
RNeasyMicro Kit (Qiagen) and treated with DNAse, and SMART-seq
v4 Ultra Low Input RNA Kit (Takara) and Nextera XT DNA Library
Prep Kit (Illumina) were used for library preparation using 10 ng of
total RNA as input. Paired-end sequencing was performed using the
Illumina NovaSeq 6000 platform with a 150-bp read length at the
Children’s Hospital of Philadelphia. Sequencing reads were aligned to
the human genome hg38 reference sequence using STAR v3.5.3a.
Samples all had >70% reads mapped to exonic regions and no 30-bias.
Gene-based FPKM and read count matrices were performed with
Cufflinks v2.2.1 and featureCounts v1.3.6.

Transcriptome analysis methods
Differential gene expression analysis

In the Ph-like ALL cell line studies, differentially expressed genes
(DEG) between drug treatment conditions were identified using
LIMMA-voom after filtering to include protein-coding genes with at
least five reads in greater than or equal to 50% of samples. DEGs were
identified using a cutoff of FDR <0.1 and absolute log2 fold change > 1.
Adjusted P values were computed using the Benjamini–Hochberg
method.

Gene ontology analysis
Genes from OCR of each OCN were input into DAVID (28) for

enrichment analysis. The top three most significant biological process
(ranked by FDR) terms for each OCR set were combined and
redundant terms were merged.

Dimensionality reduction
To generate a co-embedding between microarray expression pro-

files of publicly-available primary childhood B-ALL specimens (TAR-
GET and PCGP datasets) and our Ph-like ALL cell line RNA-Seq data,
we first performed quantile normalization on combined gene expres-
sion matrices consisting of the microarray-based primary patient
specimen expression profiles and log-transformed FPKMgene expres-
sion values from the RNA-seq. ComBat was used to account for
technical variation between technologies, treating the microarray and
RNA-seq technologies as a batch covariate. Principal component
analysis (PCA) was performed on the microarray component of the
jointly normalized expression matrix. UniformManifold Approxima-
tion and Projection (UMAP) was performed with 20 neighbors on
principal components 2 to 20, which we found to clearly separate
expression profiles by B-ALL subtype. Cell line RNA-seq data were
projected onto principal component space using the loadings matrix
and subsequently projected onto the UMAP embedding.

Gene signature scores for B-ALL subtypes
Gene signature scores were developed for each B-ALL subtype in

comparison to Phþ/Ph-like B-ALL. To define the gene signatures for
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each subtype, we performed LIMMA-voom on TARGET and PCGP
patient specimen microarray expression profiles using B-ALL subtype
as a covariate with the combined Phþ/Ph-like subtypes as baseline. For
the ETV6-RUNX1, hyperdiploidy, TCF3-PBX1, and KMT2A-rear-
ranged subtypes, gene signatures were defined as the top 500 signif-
icantly DEGs compared with the Phþ/Ph-like subtypes, with FDR <
0.05 and log-fold change greater than 0. Using these gene signatures,
we performed single-sample gene set enrichment analysis (29) on the
cell-line RNA-seq data, which is a rank-based procedure that produces
a single-sample score for each B-ALL subtype. Statistical significance
between gene signature scores for pairs of drug treatment groups was
assessed with Welch t test.

Immunoblotting
Protein and phosphoprotein levels were measured by Western blot

analysis. Whole cell protein lysates were extracted using RIPA buffer
supplemented with protease and phosphatase inhibitor cocktail (Santa
Cruz Biotechnology), and protein concentrations were determined
using BCA protein assay reagent (Bio-Rad). Primary unconjugated
antibodies for immunoblotting were obtained from Cell Signaling
Technology (CST), including anti-pSTAT5 Y694 (CST-9351), total
STAT5 (CST-94205), pERK T202/Y204 (CST-4370), total ERK (CST-
9102), pJNK T183/Y185 (CST-4668), total JNK (CST-9252), BCL-2
(CST-4223), MCL-1 (CST-94296), BCL-xL (CST-2762), BIM (CST-
2933), b-actin (rabbit; CST-8457), b-tubulin (CST-5346), and
GAPDH (CST-5174). Antibodies against BAG1 and b-actin (mouse)
were obtained from Santa Cruz Biotechnology (sc-56003) and from
Millipore (MAB1501), respectively. Primary antibodies were used in
combination with anti-rabbit or anti-mouse HRP-linked secondary
antibodies (Cell Signaling Technology) and SuperSignal West Pico
PLUS ECL detection reagent (Thermo Fisher Scientific). Immunoblot
signals were quantified by densitometry using ImageStudio software.
Target protein densitometry signals were normalized to its individual
lane b-actin or b-tubulin or GAPDH loading controls, and displayed
graphically relative to 0.1% DMSO control. Apoptosis protein arrays
were also performed on treated cell lysates using theHumanApoptosis
Array Kit according to the manufacturer’s protocol (R&D Systems,
#ARY009).

PDX modeling and in vivo drug combination trials
PDXmodels of childhoodPh-likeALLwere established as described

previously (9, 10, 30). Briefly, viably cryopreserved diagnostic bone
marrowALL cells (informedwritten consent obtained frompatients or
guardians on IRB-approved Children’s Oncology Group or Children’s
Hospital of Philadelphia biobanking research protocols in accordance
with the Declaration of Helsinki) were engrafted into NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Murine peripheral blood was
monitored for engraftment of human ALL cells by flow cytometry
using antibodies (CD10-PE Cy7 Invitrogen #25-0106-2, CD19-PE
Invitrogen #12-0199-42, CD45-APC Invitrogen #17-9459-42). Once
≥1% human ALL was detected in murine peripheral blood, PDXmice
were randomized to receive either vehicle (see “Chemicals and
Reagents” above), single agent treatment with TKI alone, venetoclax
(50 or 100 mg/kg once daily oral gavage 5 days a week) alone, or both
drugs at indicated doses as specified in figure legends. Dosing for
dasatinib, ruxolitinib, and venetoclax was selected based upon prior
studies by our group or others in leukemia PDX models (10, 31, 32).
PDX models with CRLF2/JAK2 alterations (UP_ALL4988, ALL4364,
JH331, ALL2128) received ruxolitinib, whereasABL1-rearranged PDX
models (TVA-1, NH011) were treated with dasatinib. Ruxolitinib
dosing was administered as a 2 g/kg rodent chow orally ad libitum.

The other inhibitors were administered at either full dose (100 mg/kg/
day venetoclax, 10 mg/kg/day dasatinib) or half dose (50 mg/kg/day
venetoclax, 5 mg/kg/dose dasatinib) once daily via oral gavage for
5 days per week to assess for potential dose-dependent combinatorial
effects. For non–luciferase-expressing PDX models, human ALL cells
were enumerated weekly by quantitative flow cytometric analysis of
retro-orbitalmurine venous blood samples as above. Total humanALL
burden was quantified in spleens of sacrificed animals after 21 to
28 days of treatment. For the luciferase-expressing TVA-1 PDXmodel,
micewere followed byweekly bioluminescent imaging to quantify total
humanALL burden as described previously (33) and shown in Fig. 5F.
All PDX studies were performed on protocols approved by the
Institutional Animal Care and Use Committee (IACUC) of The
Children’sHospital of Philadelphia in accordancewithNIH standards.
Flow cytometry data were analyzed using Cytobank. Statistical analysis
via ANOVA (two-way for blood analyses, one-way for spleen analyses)
with Dunnett’s post-test for multiple comparisons were performed
with GraphPad Prism.

Results
Network-controllability analysis of patient omics datasets
identifies targetable synergistic regulators in the Ph-like ALL
gene network

We applied our unbiased OptiCon algorithm (13) to the study of
Ph-like ALL with an overarching goal of identifying synergistic target
pairings for biologically-rational combination therapy (Fig. 1A). To
this end, we analyzed whole genome sequencing, whole exome
sequencing, and gene expression microarray data from 1,046 primary
childhood/AYA B-ALL specimens (of which 289 were Ph-like) gen-
erated by the NIH-sponsored Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) project (34) and the
Pediatric Cancer Genome Project (PCGP; Materials and Methods;
Supplementary Table S1; ref. 4). We identified structural variants,
small indels, and point mutations (Supplementary Tables S2 and S3)
and DEGs (Supplementary Table S4) in Ph-like B-ALL as compared
with prognostically-favorable B-ALL subtypes that are highly curable
with conventional chemotherapy, including the ETV6-RUNX1 (22),
high hyperdiploidy (24), and DUX4-rearranged/ERG-dysregulated
subtypes (23), to elucidate the key genetic dependencies that may
render Ph-likeALL less sensitive to conventional chemotherapy.Using
these data and a high-quality curated gene regulatory network
(Supplementary Table S5) as inputs, OptiCon analysis predicted 81
key regulator gene pairs to be significantly synergistic in Ph-like ALL
(synergy score P-values <0.05; Supplementary Table S6), which rep-
resent specific pairings of 14OCNs (Table 1; Supplementary Fig. S1B).

Pathway enrichment analysis of these Ph-like ALL-specific OCNs
and their respective OCR genes showed enrichment in multiple kinase
signaling pathways, in regulation of transcription and apoptosis, and
in metabolic processes such as glycolysis and nucleoside metabolism
(Fig. 1B). Importantly, OptiCon identified STAT5B and CISH (cyto-
kine-inducible SH2-containing protein, a known negative regulator of
STAT5B) as OCNs, supporting the robustness of our methodology
because STAT5B is a major known effector in Ph-like ALL (4, 35).
Relatedly, PI3K and SRC family kinases (LYN, LCK, SRC) were also
identified in the downstream OCRs of several predicted OCNs in
Ph-like ALL (Fig. 1C; Supplementary Table S7). These findings
collectively serve as unbiased support for our and others’ prior
pharmacologic studies that demonstrated effective targeting of JAK/
STAT, PI3K, and SRC kinase pathway signaling in primary Ph-like
ALL cells and preclinical models (12, 25, 30). Importantly, OptiCon
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identified novel OCNs not previously known to be targets in Ph-like
ALL, including BAG1 (BCL2-associated athanogene 1), DUSP3 (dual
specificity phosphatase 3), CD38, andNEK6 (never inmitosis gene A-
related kinase 6); these genes have all been implicated in other

leukemias or in tumorigenesis (36–39). We further identified several
anti- and pro-apoptotic genes, including BCL2, BCL2L11, BAD, BAX,
and BCL2L1, in the OCRs of several OCNs in Ph-like ALL (Supple-
mentary Table S7).
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Figure 1.

A systems biology approach to discovery and testing of synergistic therapeutic targets. A, Overview of the Optimal Control (OptiCon) network-based approach
toward identifying and validating synergistic drug targets in Ph-like B-ALL. OptiCon input data include a high-quality human gene regulatory network integrating
expert-curated pathway annotations from three public pathway databases (KEGG, Reactome, and NCI-Nature Pathway Interaction Database), patient genetic
mutation data, and gene expression data from TARGET and PCGP consortia (details in Materials and Methods). Output of OptiCon identifies synergistic OCN pairs.
Druggable pathways definedbyOCNs and their respectiveOCRs are then validated in vitro in Ph-like ALL cell lines and in vivo inmurine PDXmodels.B,Enriched gene
ontology (GO) terms among predicted OCRs. Each color represents the OCR of a predicted OCN. Thickness of bars varies since certain terms were enriched among
multiple OCRs. C, Synergistic OCN pair STAT5B and BAG1 predicted for Ph-like ALL. Gene crosstalk links between their specific OCRs are shown in yellow. Shade of a
node represents the deregulation score (DScore) of the corresponding gene. Red, up-regulated in Ph-like ALL; green, down-regulated in Ph-like ALL. D, Baseline
protein expression of BAG1 and the anti-apoptotic BCL2-family proteins BCL2, BCL-xL, and MCL1 in several B-ALL and Ph-like ALL cell lines and Ph-like PDXs.
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Next, we queried the drug databases therapeutic target database
(TTD) (15), DrugBank (16), DGIdb (17), and NIH PubChem to
identify known drugs or new chemical compounds that could be
used for potential pharmacologic targeting of predicted nodes. Nine
of our identified 14 OCNs matched with drug compounds (Table 1).
Some agents have only preclinical testing data available in human
cancer, such as the recently-described NEK6 inhibitor (40). Others
are more advanced, including the anti-CD38 mAb daratumu-
mab (37) that is FDA-approved for adults with multiple myeloma
and under current phase 1/2 clinical study in children with
relapsed/refractory leukemias. Amongst the 81 OCN gene pairs
predicted to be significantly synergistic, 32 (40%) were found to
have known drugs for both members of the pair (hypergeometric
test P-value < 0.0001, Supplementary Table S6). In addition, 559 of
the 973 predicted OCR genes (57%) were found to be targets of
known drugs or experimental compounds (hypergeometric test
P-value < 0.0001). Taken together, these results suggest that com-
putationally predicted synergistic regulators and their target
pathways in a disease-specific network are valuable sources for
identifying novel drug targets.

Because STAT5 signaling is known to be hyperactivated via both
JAK and ABL class kinases in Ph-like ALL (4, 12), OptiCon’s
nomination of STAT5B provided an attractive pathway for sub-
sequent validation efforts. Several clinical trials are currently
investigating the addition of the Janus kinase 1/2 inhibitor
(JAKi) ruxolitinib to treatment of Ph-like ALL patients with
CRLF2 rearrangements and other JAK/STAT pathway alterations
(NCT02723994) or the addition of the SRC/ABL kinase inhibitor
(ABLi) dasatinib to therapy for patients with ABL-class alterations
(NCT02883049). Given these ongoing trials incorporating
single-agent TKIs, we focused on other key regulons predicted to
be synergistic with STAT5B that may further optimize combination
therapy. One OCN pair that ranked as highly synergistic was
STAT5B and BAG1 (synergy score 0.023, adjusted P value ¼
0.016). The BAG1 protein is known to bind to and enhance
the anti-apoptotic effect of BCL-2, likely by preventing its
degradation (39, 41).

Genetic and pharmacologic cotargeting of STAT5 and BAG1/
BCL-2 has synergistic antileukemia efficacy in Ph-like ALL

We next validated our computational predictions in vitro in the two
known human CRLF2-rearranged Ph-like ALL cell lines MUTZ5
(IGH-CRLF2, JAK2 R683G) and MHH-cALL-4 (IGH-CRLF2, JAK2
I682F) and in a third cell line that we immortalized for in vitro studies
from a recently-establishedABL-class Ph-like ALL PDXmodel TVA-1
harboring an ETV6-ABL1 kinase fusion (25). PCA of gene expression
data from these cell lines and primary pediatric B-ALL patient speci-
mens included in the TARGET and PCGP datasets showed that these
Ph-like ALL cell lines clustered together with Ph-like and Phþ ALL
primary patient samples (Supplementary Fig. S1A) and separate from
the other B-ALL subtypes, recapitulating expression signatures of
primary Ph-like ALL samples used in the OptiCon analysis. We
investigated the baseline protein expression of BAG1 and anti-
apoptotic BCL-2 family members in Ph-like ALL cell lines and PDX
models (Supplementary Table S8) and detected high levels of BAG1,
BCL-2, BCL-xL, and/or MCL-1 in all tested Ph-like ALL cell lines and
PDX cells (Fig. 1D).

Genetic validation of our computational prediction via Cas9-
mediated double-knockout of STAT5B and BAG1 pair demon-
strated significant reduction in leukemia cell proliferation in both
the CRLF2-R MUTZ5 and the ABL1-R TVA-1 Ph-like cell lines
compared with single-gene knockouts or non-targeting control
(Fig. 2A; Supplementary Fig. S2). These results suggest that
cotargeting of these essential pathways could indeed be superior.
BAG1 is known to prevent apoptosis via preserving high BCL-2
levels, and our observed enrichment of several apoptosis-related
genes in the predicted OCRs highlights the potential importance of
cell death pathways in Ph-like ALL. However, the BAG1 protein
does not have a readily-available pharmacologic inhibitor. We
alternatively focused upon inhibition of BCL-2 as a more clini-
cally-relevant pharmacologic surrogate for BAG1 and investigated
the therapeutic efficacy of venetoclax, a potent and highly-selective
BCL-2 inhibitor approved by the FDA for treatment of adults with
relapsed/refractory chronic lymphocytic leukemia or acute mye-
loid leukemia (AML).

Table 1. OCNs predicted to be synergistic key regulators in Ph-like ALL and their known drugs or small molecule inhibitors.

OCN Name Drug/compound Source

ACVR2B Activin A receptor type 2B Bimagrumab DGIdb
BAG1 BCL2 associated athanogene 1 (2R,3R,4S,5R)-2-[6-amino-8-[(3,4-dichlorophenyl)methylamino]purin-

9-yl]-5-(hydroxymethyl)oxolane-3,4-diol
DrugBank

CD38 CD38 molecule Daratumumab, isatuximab, MOR-202, SAR-650984 DGIdb, TTD,
DrugBank

CISH Cytokine inducible SH2 containing protein Epoetin alfa DGIdb
CYLD CYLD lysine 63 deubiquitinase NA NA
DUSP3 Dual specificity phosphatase 3 NA NA
FRAT1 FRAT1, WNT signaling pathway regulator NA NA
GTF3A General transcription factor IIIA NA NA
INPP5B Inositol polyphosphate-5-phosphatase B D-myo-inositol-1,4-bisphosphate DrugBank
NEK6 NIMA-related kinase 6 8205, (5Z)-2-hydroxy-4-methyl-6-oxo-5-[(5-phenylfuran-2-yl)

methylidene]-5,6-dihydropyridine-3-carbonitrile
DGIdb, PubChem

S1PR3 Sphingosine-1-phosphate receptor 3 AFD(R), AUY954, EDD7H9, FTY720-phosphate, VPC03090-P,
VPC12249, VPC23019, VPC44116, compound 26

DGIdb, TTD

STAT1 Signal transducer and activator of
transcription 1

AVT-02 UE DGIdb,TTD

STAT5B Signal transducer and activator of
transcription 5B

Dasatinib, ruxolitinib DGIdb, DrugBank

UPRT Uracil phosphoribosyltransferase homolog NA NA
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Figure 2.

Genetic and pharmacologic cotargeting of BAG1 or BCL-2 and STAT5 signaling is synergistic in vitro in Ph-like ALL. A, Double knockout of STAT5B and BAG1 by
CRISPR/Cas9- enhances inhibition of cell viability asmeasured by CellTiter-Glo assay inMUTZ5 (left) and TVA-1 (right) ALL cells; x-axis represents days after sgRNA/
Cas9 RNP nucleofection; y-axis represents change in absolute luminescence; NTC, nontargeting control sgRNA. Experiments were repeated with two different
sgRNAs per target; representative data from a single experiment are shown for each cell line. Each data point represents themean of three technical replicates� SD.
Error bars not displayed when shorter than the size of the symbol. ���P ≤ 0.001 and ����P ≤ 0.0001 using one-way ANOVA and Dunnett posttest correction.
B–D, Individual dose response curves and IC50 values for ruxolitinib (rux) and venetoclax (ven) treatment of (B) MUTZ5 and (C) MHH-cALL4 cell lines and dasatinib
(das) and venetoclax treatment of (D) TVA-1 cells. Viability data are shown relative to 0.1% DMSO vehicle assayed at 72 hours using CellTiter-Glo absorbance assays.
Each data point represents the mean of six replicate measures � SD. E–G, Isobolograms for combination of TKIs with venetoclax at various dose combinations in
MUTZ5,MHH-cALL-4, andTVA-1 cell lines, respectively, alongwithCI values for eachdose combination thatwere generated usingCompusyn. CI valueswere less than
1.0 (synergistic effect) for all dose combinations tested. H, Effect sizes (percentage cell viability relative to DMSO control) of combination treatment using 1 mmol/L
ruxolitinib with 0.1 mmol/L venetoclax in REH, MUTZ5, and MHH-cALL-4 cells and of 0.5 nmol/L dasatinib combined with 50 nmol/L venetoclax in TVA-1 cells.
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To evaluate potential synergy in vitro, we treated Ph-like ALL cell
lines with venetoclax and ruxolitinib (MUTZ5, MHH-cALL-4) or
dasatinib (TVA-1) and measured cell viability. Figure 2B–D show
individual drug response curves for each cell line with corresponding
IC50 values. We confirmed high ruxolitinib IC50 values for MUTZ5
andMHH-cALL-4 (15 and 27 mmol/L, respectively) and low dasatinib
IC50 (2.7 nmol/L) for TVA-1 (25, 42). However, limited cell killing was
observed at up to 72 hours of drug incubation despite supratherapeutic
TKI dosing (Fig. 2B–D). In contrast, all three Ph-like ALL cell lines
showed sensitivity to venetoclax with IC50 values <800 nmol/L and
near-complete cell killing at 72 hours at higher drug doses, suggesting a
strong BCL-2 dependency.

On the basis of these initial monotherapy IC50 data, we then chose a
range of drug doses to test in combination and assessed potential drug
synergy. Figure 2E–G show the isobolograms and CI values of the
indicated venetoclax and ruxolitinib or dasatinib combinations; all
dosage combinations tested were determined to be significantly syn-
ergistic using the Chau–Talalay method (CI values < 1.0) in the three
Ph-like ALL cell lines. The percent reduction in cell viability (effect
size) for each drug combination exposure are shown in Supplementary
Fig. S3A. As a negative control, we tested ruxolitinib and venetoclax
alone and in combination in the non-Ph-like B-ALL cell line REH
(which harbors the clinically favorable ETV6-RUNX1 fusion) and
interestingly observed that most dose combinations were significantly
antagonistic (CI values >1.0; Supplementary Fig. S3D). Combined
treatment with subtherapeutic doses of 1 mmol/L ruxolitinib and
0.1 mmol/L venetoclax further significantly reduced cell viability in
MUTZ5 and MHH-cALL-4 cells with expectedly nominal effects on
REH cells (Fig. 2H). These findings support specificity of our predic-
tion and likely preferential activity of dual STAT5 and BCL-2 targeting
in Ph-like versus other B-ALL subtypes. In subsequent investigations
into mechanisms of drug synergy detailed below, we used 1 mmol/L
ruxolitinib with 0.1 mmol/L venetoclax in MUTZ5 and MHH-cALL-4
cell lines and 0.5 nmol/L dasatinib with 50 nmol/L venetoclax in the
TVA-1 cell line. These particular dose combinations were chosen
because they display high synergy (low CI values) in these Ph-like ALL
cell lines (Fig. 2E–G), are sublethal (effect sizes shown in Fig. 2H), and
are not expected to induce appreciable off-target kinase inhibition (43).

Combination inhibitor treatment shifts the transcriptome of Ph-
like cells away from kinase-activated chemoresistant subtypes
and toward more chemosensitive B-ALL subtypes

To elucidate the transcriptomic effects of targeted therapy on Ph-
like ALL cells, we performed RNA sequencing of the three Ph-like cell
lines treated with venetoclax, TKI, or both drugs at our optimized
dosing. Analysis of DEGs and PCA revealed that venetoclax mono-
therapy effect on the Ph-like ALL transcriptome was minimal
(DEGs ¼ 20 using FDR < 0.1, absolute log2FC > 1; Supplementary
Fig. S4A). In contrast, TKI monotherapy and combined TKI and
venetoclax exposure had a large, but similar, effect on the transcrip-
tome compared with DMSO control treatment (DEGs ¼ 9651 and
10378, respectively; Supplementary Fig. S4A).

We next compared transcriptomes of inhibitor-treated Ph-like ALL
cells to those of different B-ALL patient samples using UMAP to
project gene expression data to lower dimensions (Fig. 3A). We
observed that the transcriptomes of vehicle control-treated and vene-
toclax monotherapy-treated Ph-like ALL samples, as well as some TKI
monotherapy-treated ones, remained similar to those of untreated
Phþ and Ph-like ALL patient samples. Conversely, we found that
combined venetoclax and TKI treatment altered the transcriptomic
state of Ph-like ALL cells, causing them to cluster closer to B-ALL

leukemia subtypes with more favorable cytogenetic alterations. This
shift effectively made cells “less Ph-like” and more similar to subtypes
that are sensitive to conventional chemotherapy, thereby supporting
our network controllability theory (Fig. 3B). To quantify further this
transcriptome shift in treated Ph-like ALL cells, we developed com-
parator gene signature scores (Materials and Methods) for several
common B-ALL genetic subtypes. We observed that treating Ph-like
ALL cell lines with TKI monotherapy or simultaneous TKI and
venetoclax altered their transcriptomes to have higher ETV6-RUNX1,
hyperdiploidy, and TCF3-PBX1 gene signature scores (representing
favorable risk subtypes) and lower KMT2A-rearranged scores (a
prognostically-unfavorable subtype) in comparison to control-
treated cells (Fig. 3C). Therefore, both UMAP and gene signature
score analyses support the specific shift of transcriptomic state in Ph-
like ALL cells posttreatment.

The network controllability theory underlying OptiCon suggests
that cotargeting specific OCNs will lead to perturbation of their
corresponding OCRs. We thus hypothesized that expression of genes
within the identified OCRs of STAT5B and BAG1 would change after
combination treatment, but not after monotherapy. Indeed, we
observed that STAT5B and BAG1 OCRs were significantly enriched
for DEGs only with dual BCL-2 and STAT5 inhibition, but not with
single-drug treatment (Fig. 3D). On the contrary, none of the OCRs
were enriched for DEGs when comparing monotherapy versus con-
trol. Interestingly, the OCR of the OCN CISH (cytokine inducible SH2
containing protein, a known negative regulator of JAK/STAT signal-
ing) was also enriched for DEGs when comparing dual-inhibitor
versus single-agent treatment, although the other 11 OCN-
associated OCRs were not appreciably perturbed. Taken together,
these findings suggest that Ph-like ALL cells may be shifted towards a
transcriptomic state with potential prognostic significance by direct
pharmacologic perturbation of STAT5B and BAG1 and their down-
stream control regions (Fig. 3B).

Effective in vitro cotargeting of apoptosis and cytokine
signaling pathways in Ph-like ALL cells

We next interrogated the transcriptional, translational, and func-
tional effects of inhibitor therapy on specific pathways nominated by
OptiCon. Interestingly, both BCL2 and STAT5B gene expression were
upregulated in combined venetoclax/TKI conditions as comparedwith
control (Fig. 3E), which we hypothesize could be due to negative
feedback mechanisms such as downregulation of PTPN6 following
TKI treatment. Conversely, other anti-apoptotic genes BAG1, MCL1,
and BCL2L1 (encoding BCL-xL) were significantly downregulated in
combination drug-treated cells versus vehicle control. We also
detected significant expression changes in several other genes involved
in the PI3K/Akt/mTOR, Ras/MAPK pathways, and intrinsic and
effector apoptosis mechanisms following in vitro inhibitor exposure
(Supplementary Fig. S4B).

On a posttranslational level, ruxolitinib or dasatinib treatment was
sufficient to completely abrogate activated pSTAT5 andMAPK targets
pERK and/or pJNK (Fig. 4A and B). Unexpectedly, BCL-2 expression
was observed to be highest in venetoclax-treated and combination
drug-treated conditions, which could potentially be interpreted as a
survival advantage of BCL-2 overexpressing leukemia cells and elim-
ination of low-BCL-2 cells, as has been reported inAML (44), although
other studies have shown that elevated BCL-2 expression is not a
reliable biomarker of venetoclax sensitivity or resistance (45). Con-
versely,MCL-1 is an anti-apoptotic BCL-2 family protein that is tightly
transcriptionally regulated and whose high expression is known to
mediate venetoclax resistance by binding to BIM (46). We thus noted
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Figure 3.

Combination treatment elicits specific and unique changes in the transcriptome of Ph-like cell lines. A, UMAP based on RNA-seq data from drug-treated Ph-like cell
lines and B-ALL patient microarray expression data show that combination treatment shifts transcriptome of Ph-like cells to resemble that of favorable-risk B-ALL
subtypes. Treatment with 1 mmol/L ruxolitinib and 0.1 mmol/L venetoclax was used for MUTZ5 and MHH-cALL-4, and 0.5 nmol/L dasatinib and 50 nmol/L venetoclax
was used for TVA-1. B, Network controllability theory posits that one can use control nodes in a gene network to guide a system from an initial state (in this case
relatively chemoresistant Ph-like ALL) to a final state (chemosensitive favorable-risk subtype B-ALL). C, Signature genes of non–Ph-like B-ALL subtypes (ETV6-
RUNX1, TCF3-PBX1, and hyperdiploidy subtypes) are enriched in Ph-like ALL cells treated with venetoclax and ruxolitinib or dasatinib. Enrichment scores were
computed using single-sample gene set enrichment analysis (ssGSEA). D, Predicted synergistic OCRs STAT5B and BAG1 were significantly perturbed only by
combination drug treatment, but not bymonotherapy. Thedegree of perturbationwasmeasuredby the overlapbetweengenes in theOCRof each specifiedOCNand
DEGs in the specifiedcomparison (TKI or venetoclaxmonotherapyversus control, or combination therapy versus either TKI or venetoclaxmonotherapy). Significance
of overlap was determined using hypergeometric test P values. Significant P values were observed for the STAT5B, BAG1, and CISH OCRs in dual inhibitor-treated
cells, but not with venetoclax or ruxolitinib monotherapy or in other OCRs. E, Gene expression changes during monotherapy or combination inhibitor therapy in
OptiCon-nominated OCNs and someOCR genes. P values were calculated using one-way ANOVA implemented in LIMMA software and adjusted for multiple testing
using the Benjamini–Hochberg method.
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Effects of combined kinase and BCL-2 inhibition on intracellular phosphosignaling, apoptosis proteins, and functional apoptosis. A, Immunoblot images and (B)
normalized immunoblotting signal intensities of phosphorylated (p) STAT5, pERK, and pJNK (along with total protein levels below their respective phosphoprotein
levels), and BAG1 and BCL-2 family proteins in Ph-like ALL cell lines treated in vitro with single-agent venetoclax, single-agent TKI (ruxolitinib for MUTZ5 and MHH-
cALL-4, dasatinib for TVA-1), or both drugs. Densitometry signals were first normalized to either b-actin, b-tubulin, or GAPDH loading controls (representative strips
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two-way ANOVA and Dunnett post-test correction.
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with interest that levels of the anti-apoptotic proteins MCL-1 and
BAG1 noticeably decreased after combination treatment, whereas
levels of the pro-apoptotic BH3-only protein BIM increased
(Fig. 4A and B).

We next hypothesized that the synergistic decrease in cell viability
seen with combined TKI and venetoclax treatment could be due to
augmentation of apoptosis.We thus determined the proportion of cells
undergoing early apoptosis (Annexin Vþ/PI�) and late apoptosis/
necrosis (Annexin Vþ/PIþ) and found that combining ruxolitinib or
dasatinib with venetoclax led to significantly greater apoptosis than
either monotherapy with effects detected within 4 to 24 hours of drug
exposure (Fig. 4C). Increased cleaved caspase-3 was detected in both
venetoclax and combination drug-treated cells, consistent with the
observed increase in apoptosis at 72 hours in these conditions (Fig. 4C;
Supplementary Fig. S5). Importantly, despite its strong effects on the
expression of apoptosis pathway targets, TKI monotherapy did not
appreciably increase apoptosis. Together, these data suggest that the
antileukemia effects observed from combination drug treatment may
be due to TKI-mediated effects of decreasing anti-apoptotic proteins
while increasing pro-apoptosis proteins in leukemia cells, thereby
resulting in enhanced apoptosis when combined with venetoclax.

Combined venetoclax and TKI treatment has potent in vivo
antileukemia activity in preclinical Ph-like ALL models

To validate pharmacologically our OptiCon-predicted pairing
in vivo, we next investigated the potential efficacy of combined
venetoclax and ruxolitinib or dasatinib treatment in six different
PDX Ph-like ALL models comprised of CRLF2-rearranged or
ABL1-rearranged genetic backgrounds (Supplementary Table S8).

Given that optimal inhibitor dosing for combination therapy may
differ from optimal monotherapy dosing, we tested two dose levels
(50% and 100%) of inhibitors in several PDX models to model
potential synergy and to assess if antileukemia benefit could be
achieved with lower dosing.

As hypothesized, we observed significant inhibition of leukemia
proliferation in peripheral blood and end-study spleens in most
CRLF2-rearranged and ABL1-rearranged Ph-like ALL PDX models
treated with combined venetoclax and ruxolitinib or dasatinib (Fig. 5).
Detected combination treatment effects were superior to TKI and/or
venetoclax monotherapy in several models with near-curative effects
of ruxolitinib and venetoclax or dasatinib and venetoclax detected in
end-study spleens of three PDX models (CRLF2-rearranged/JAK2-
mutant JH331, ABL1-rearranged NH011 and TVA1). Interestingly,
combined TKI and venetoclax at 50% “half-dosing” also had more
potent anti-leukemia effects than full monotherapy dosing of either
agent, suggesting enhanced STAT5 and BCL-2 cotargeting in these
leukemias. Although most models did not demonstrate appreciable
single-agent venetoclax activity, our surprisingly ruxolitinib-resistant
JAK-mutant JH331 PDX model was exquisitely sensitive to BCL-2
inhibition and further showed superior inhibition of leukemia pro-
liferation with dual ruxolitinib/venetoclax treatment, highlighting
potential for JAKi resensitization or resistance reversal. Other
CRLF2-rearranged models (ALL4364, ALL2128) demonstrated
marked sensitivity to ruxolitinib with >50% reduction of ALL burden
in end-study spleens, although combined treatment with venetoclax
did not further augment antileukemia response. Importantly, we also
observed excellent in vivo tolerability of dual inhibitor treatment for up
to 4 weeks in our PDXmodels with stability of murine physical health
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Figure 5.

Combined TKI and venetoclax treatment inhibits Ph-like ALL proliferation in vivo. A–D, CRLF2-rearranged (n¼ 4) and (E) ABL1-rearranged (n¼ 1) Ph-like ALL PDX
models were treated with vehicle or inhibitors (5 mice/cohort) as delineated above and followed by flow cytometric quantification of human CD10þ/CD19þ ALL in
murine peripheral blood (left) and in end-study spleens (middle and right). F, The luciferase-expressing ABL1-rearranged TVA-1 PDX model was followed by
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as in the other five models. TKI and venetoclax cotreatment significantly inhibited leukemia proliferation in vivo in most PDX models versus inhibitor monotherapy.
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parameters. In addition, the dual-inhibitor treated mice did not
experience more significant weight loss (>20% of entry weight)
compared with monotherapy arms (Supplementary Fig. S6).

Discussion
Omics analyses in the study of human cancers often generate large

candidate gene lists that can be difficult to prioritize for pharmacologic
targeting. We employed an innovative systems biology strategy for
unbiased identification of synergistic pathways as candidates for
combination therapy. This approach efficiently narrowed the search
space of relevant oncogenic pathways in these Ph-like ALL studies. In
our development of the OptiCon algorithm, we found that a high
proportion of the nominated gene pairs in three separate adult cancer
types has known synthetic lethal genetic interactions (13). Here we
applied our network-controllability approach to a clinically high-risk
leukemia subtype and identified 14 novel OCNs in Ph-like ALL. The
largest fraction of theOCNs is involved in kinase signaling, followed by
metabolism, transcriptional regulation, splicing, and apoptosis
(Fig. 1B), suggesting relative dependencies of Ph-like ALL on these
biological processes. We validated our prediction of the highly ranked
OCN pair STAT5B and BAG1 via CRISPR/Cas9-mediated double-
knockout and found enhanced antileukemia efficacy. To directly
translate our findings to the clinic, we focused further pharmacologic
validation studies upon STAT5B and BCL2 given the strong biologic
rationale for this Ph-like ALL-specific OCN pairing. Furthermore,
there is pragmatic translational potential for investigating combina-
tion therapy using the TKIs ruxolitinib or dasatinib and the BCL-2
inhibitor venetoclax given their clinical availability and established
adult and pediatric dosing. Venetoclax has not been extensively
investigated in Ph-like ALL, although several preclinical studies have
reported preliminary efficacy of combining BCL-2 inhibitors with
MCL1-inhibitors (47) or with TKIs in other high-risk ALL types, such
as BCR-ABL1–rearranged (Phþ) models (31) and IL7R-mutant
T-ALL models (48). OptiCon’s nomination of STAT5B and BCL2-
related pathways from integrative-omics analysis of primary Ph-like
ALL samples provides independent rationale for cotargeting these
specifically in the Ph-like ALL subtype.

Intriguingly, we demonstrated that “precision drugging” of the
STAT5B and BAG1 pair of synergistic regulators altered the tran-
scriptomic state of Ph-like ALL to become more similar to other
chemosensitive B-ALL subtypes. These results support the basis of
network controllability theory that successful identification of key
control nodes can shift cells from one transcriptomic state to another
desired one via specific perturbation. Although the transcriptomic
effects of joint BCL-2 and kinase inhibition appear to be driven in large
part by the TKI, the phenotypic effects of combined therapy in
enhancing cell death seem driven more by venetoclax. Our functional
assays of apoptosis and cell viability combinedwith transcriptional and
protein analyses suggest that TKI monotherapy may promote apo-
ptosis by altering the fine balance between pro-apoptotic and anti-
apoptotic protein expression, but is insufficient to achieve apoptosis on
its own.

OptiCon analysis also elucidated potential crosstalk pathways that
mediate synergy between the STAT5 signaling and BCL-2 pathways in
Ph-like ALL. We found that several MAPK pathway genes [e.g.,
MAPK8 (JNK1) andMAPK11 (p38)] participate in crosstalk between
the OptiCon-predicted OCNs STAT5B and BAG1. Although muta-
tions in MAPK pathway genes have been reported in Ph-like ALL (4),
the mechanistic relevance of deregulated MAPK signaling in Ph-like
ALL is not well-understood. JNKs are known to phosphorylate and

regulate BCL-2, BIM, and BAD with effects on apoptosis in a context
and cell-type dependent manner, and ERK1/2 activation has been
associated with anti-apoptotic effects (49, 50). Our identification of
their negative regulatorDUSP3 as anOCN and our surprising findings
that cotreatment with venetoclax and ruxolitinib or dasatinib also
decreased phosphorylated ERK1/2 and JNK levels suggest that MAP
kinases are involved in critical Ph-like ALL signaling crosstalk.

Our studies reveal in an unbiased manner that both CRLF2-rear-
ranged and ABL1-rearranged Ph-like ALL appear to have previously
unknown synergistic dependencies between STAT5 and BCL-2 path-
ways, among others. Our additional demonstration of superior in vivo
antileukemia effects of combining ruxolitinib or dasatinib and vene-
toclax in six PDX models comprised of various genetic backgrounds
provides strong preclinical rationale for bench-to-bedside develop-
ment of dual BCL-2 and kinase inhibition strategies in next-generation
clinical trials for patients with Ph-like ALL. Further elucidation of key
genetic and molecular factors that may contribute to the observed
heterogeneity of inhibitor treatment responses in our Ph-like ALL
PDX models will facilitate potential future clinical translation of
these findings. Importantly, we also observed effective combinato-
rial in vivo leukemia burden reduction when venetoclax and dasa-
tinib were administered at subtherapeutic dosing, suggesting the
ability to achieve effective antileukemia activity while potentially
reducing therapy-associated toxicity. This observation lends addi-
tional support for our network-based approach which takes path-
way crosstalk into account to spare unperturbed pathways to
minimize potential toxicity.

Collectively, our application of a systems biology framework to a
high-risk leukemia subtype provides critical new insights regarding
cancer gene network controllability and the ability to facilitate unbi-
ased discovery of novel target pairings. Although our results certainly
provide compelling rationale for clinical investigation of dual vene-
toclax and ruxolitinib or dasatinib strategies for patients with Ph-like
ALL, our network controllability-based methodology for inferring
synergistic gene regulatory nodes also provides an innovative para-
digm for rational design of combination therapy approaches that has
wide applicability to other human cancers and diseases.
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