Table 6.
Summary of Discrimination Statistics for All Models in the Validation Cohort
Population | Model | Harrell’s Ca |
Somers’ D | Time-Dependent AUCs (Including Ties) |
|||
---|---|---|---|---|---|---|---|
CI | CE | 1 mo | 3 mo | 6 mo | |||
General cancer cohort | |||||||
GCMM | 0.67 | 0.67 | 0.34 | 0.75 | 0.71 | 0.69 | |
LENT-D | 0.60 | 0.71 | 0.21 | 0.66 | 0.64 | 0.64 | |
P value | GCMM vs LENT-D | < .001 | ... | ... | < .001 | < .001 | .01 |
LENT-C | 0.65 | 0.65 | 0.29 | 0.72 | 0.68 | 0.69 | |
P value | GCMM vs LENT-C | .158 | ... | ... | .209 | .135 | .776 |
Lung cancer cohort | |||||||
DSM-lung | 0.70 | 0.70 | 0.38 | 0.75 | 0.75 | 0.74 | |
LENT-D | 0.64 | 0.78 | 0.33 | 0.72 | 0.72 | 0.72 | |
P value | DSM-lung vs LENT-D | .243 | ... | ... | .345 | .392 | .528 |
LENT-C | 0.72 | 0.72 | 0.43 | 0.79 | 0.77 | 0.78 | |
P value | DSM-lung vs LENT-C | .241 | ... | ... | .402 | .428 | .160 |
Breast cancer cohort | |||||||
DSM-breast | 0.72 | 0.72 | 0.41 | 0.83 | 0.74 | 0.72 | |
LENT-D | 0.59 | 0.77 | 0.19 | 0.66 | 0.61 | 0.72 | |
P value | DSM-breast vs LENT-D | < .001 | ... | ... | < .001 | < .001 | .005 |
LENT-C | 0.67 | 0.67 | 0.34 | 0.79 | 0.69 | 0.70 | |
P value | DSM-breast vs LENT-C | .156 | ... | ... | .469 | .127 | .580 |
Hematologic malignancies cohort | |||||||
DSM-hematologic | 0.62 | 0.62 | 0.21 | 0.68 | 0.64 | 0.61 | |
LENT-D | 0.58 | 0.74 | 0.17 | 0.61 | 0.62 | 0.60 | |
P value | DSM-hematologic vs LENT-D | .231 | ... | ... | .104 | .565 | .727 |
LENT-C | 0.59 | 0.59 | 0.20 | 0.64 | 0.62 | 0.60 | |
P value | DSM-hematologic vs LENT-C | .442 | ... | ... | .221 | .580 | .655 |
AUC = area under the receiver operating characteristic curve; CE = Harrell’s C-statistic excluding ties; CI = Harrell’s C-statistic including ties; DSM = disease-specific model; GCMM = general cancer multivariate model; LENT-C = continuous LENT model; LENT-D = discrete LENT model.
For continuous risk predictor models with a continuous outcome, no difference exists between CI and CE. When comparing models that make predictions on the same population, the CI statistics should be used.