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Abstract

Developing deep learning models to analyze histology images has been computationally 

challenging, as the massive size of the images causes excessive strain on all parts of the 

computing pipeline. This paper proposes a novel deep learning-based methodology for improving 

the computational efficiency of histology image classification. The proposed approach is robust 

when used with images that have reduced input resolution, and it can be trained effectively with 

limited labeled data. Moreover, our approach operates at either the tissue- or slide-level, removing 

the need for laborious patch-level labeling. Our method uses knowledge distillation to transfer 

knowledge from a teacher model pre-trained at high resolution to a student model trained on 

the same images at a considerably lower resolution. Also, to address the lack of large-scale 

labeled histology image datasets, we perform the knowledge distillation in a self-supervised 

fashion. We evaluate our approach on three distinct histology image datasets associated with celiac 

disease, lung adenocarcinoma, and renal cell carcinoma. Our results on these datasets demonstrate 

that a combination of knowledge distillation and self-supervision allows the student model to 

approach and, in some cases, surpass the teacher model’s classification accuracy while being much 

more computationally efficient. Additionally, we observe an increase in student classification 

performance as the size of the unlabeled dataset increases, indicating that there is potential for this 
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method to scale further with additional unlabeled data. Our model outperforms the high-resolution 

teacher model for celiac disease in accuracy, F1-score, precision, and recall while requiring 

4 times fewer computations. For lung adenocarcinoma, our results at 1.25x magnification are 

within 1.5% of the results for the teacher model at 10x magnification, with a reduction in 

computational cost by a factor of 64. Our model on renal cell carcinoma at 1.25x magnification 

performs within 1% of the teacher model at 5x magnification while requiring 16 times fewer 

computations. Furthermore, our celiac disease outcomes benefit from additional performance 

scaling with the use of more unlabeled data. In the case of 0.625x magnification, using unlabeled 

data improves accuracy by 4% over the tissue-level baseline. Therefore, our approach can improve 

the feasibility of deep learning solutions for digital pathology on standard computational hardware 

and infrastructures.
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1. INTRODUCTION

Digital pathology was introduced over 20 years ago to facilitate viewing and examining 

high-resolution scans of histology slides. A digital scanning process produces whole-slide 

images (WSIs), which can then be analyzed with computational tools [1,2]. While digital 

scans circumvent traditional microscope use, they introduce new computational challenges. 

The resulting WSIs can be as large as 150,000×150,000 pixels in size and require a 

large-scale computational infrastructure, including storage capacity, network bandwidth, 

computing power, and graphics processing unit (GPU) memory.

In recent years, computer vision-based deep learning methods have been developed for 

digital pathology [3–7]; however, their application and scope have been limited due to the 

massive size of WSIs. Figure 1 illustrates the magnitude of a sample histology image. Even 

with the most recent computational advancements, deep learning models for analyzing WSIs 

are still not feasible to run on all except the most expensive hardware and GPUs. These 

computational constraints for analyzing high-resolution WSIs have limited the adoption of 

deep learning solutions in digital pathology.

This paper addresses this computational bottleneck by implementing a deep learning 

approach designed to operate accurately on lower-resolution versions of WSIs. This 

approach aims to lower the resolution of the input image while minimizing its effect on 

the classification performance. By operating on WSIs with a lower resolution, our approach 

potentially allows for slides to be scanned at a lower resolution, reducing scanning time and 

computational hardware and infrastructure strain.

Our proposed methodology is a novel approach to make high-resolution histology image 

analysis more efficient and feasible on standard hardware and infrastructure. We seek to 

prioritize minimizing the computational cost while ensuring that the classification accuracy 

is still acceptable. Specifically, we propose a knowledge distillation-based method where a 

teacher model works at a high resolution and a student model operates at a low resolution. 
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We aim to distill the teacher model’s learned representation knowledge into the student 

model trained at a much lower resolution. The knowledge distillation is performed in 

a self-supervised fashion on a larger unlabeled dataset from the same domain. Large, 

labeled datasets are hard to find in the medical field, leading us to adopt a self-supervised 

approach to account for the lack of access to sizeable, labeled histology image datasets. This 

knowledge distillation method can increase the model’s performance on lower-resolution 

images while simultaneously saving significant amounts of memory and computation.

2. RELATED WORK

2.1 Histology Image Classification

Previously, several methods have been proposed to solve the WSI classification problem. 

Some approaches work by tiling the WSI into more reasonably sized patches and learning 

to classify at the patch level [3–6,8–10]. In some recent works, the patch-level predictions 

are aggregated using simple heuristic rules to produce a slide-level prediction [3,4,6,8,9]. 

These rules are modeled after how pathologists classify WSIs in clinical practice. In another 

work, a simple maximum function was used on patch-based slide heat maps for whole-slide 

predictions [5]. In [10], the authors use a random forest regression model to combine the 

patch-level predictions and produce the final classification. While these methods achieved 

reasonable overall performance, their analyses are fragmented, and they do not incorporate 

the relevant spatial information into the training process. We aim to avoid patch-based 

processing since it introduces additional computational overhead that can be bypassed with 

tissue- or slide-based analysis methods.

Multiple-instance learning (MIL) has been proposed to address the slide-level labeling 

problem [11–16]. MIL is a supervised learning scheme where data-points, or instances, are 

grouped into bags. Each bag is labeled with the class by the instance count of that particular 

class. MIL is well-suited towards histology slide classification, as it is designed to operate 

on weakly-labeled data. MIL-based methods better account for the weakly-labeled nature of 

patches, but they still tend to miss the holistic slide information.

Recent work has shown that operating at the slide-level is possible by splitting up the 

computation into discrete units that can be run on commodity hardware [17,18]. The overall 

calculation is equivalent to the one performed at the slide-level due to the invariance of 

most layers in a convolutional neural network. This method analyzes WSIs at the original 

high-resolution level to avoid losing larger context and fine details. Although this approach 

helps run large neural networks, it still requires considerable computational resources to 

analyze WSIs at a high resolution.

Attention-based processes have also been suggested for WSI analysis. Attention-based 

mechanisms divide the high-resolution image into large tiles and simultaneously learn 

the most critical regions of WSIs for each class and their labels [19–21]. Although these 

methods achieve high classification performance, they demand substantial computational 

resources to operate on high-resolution images.
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2.2 Self-Supervised Learning

Self-supervised learning is a machine learning scheme that allows models to learn without 

explicit labels. Large, unlabeled datasets are readily accessible in most domains, and self­

supervised methods can assist in improving classification performance without requiring 

resource-intensive, manually labeled data. In this scheme, learning occurs using a pre-text 

task on an inherent attribute of the data. As the pre-text task operates on an existing data 

feature, it requires no manual intervention and can be easily scaled. Proposed pre-text tasks 

include colorization [22,23], rotation [24,25], jigsaw puzzle [26], and counting [27]. Recent 

studies have explored the invariance of histology images to affine transformations, but none 

use self-supervised learning [28,29]. Several other works have proposed self-supervised 

techniques for histology images exploiting domain-specific pre-text tasks, including slide 

magnification prediction [30], nuclei segmentation [31], and spatial continuity [32]. In 

contrast, our work introduces a new pre-text task designed to transfer the knowledge present 

in models trained on high-resolution WSIs to ones operating on low-resolution WSIs.

2.3 Knowledge Distillation

Knowledge distillation has proven to be a valuable technique for transferring learned 

information between distinct models with different capacities [33,34]. As models and 

datasets exponentially increase in size, it is critical to adapt our methods accordingly to 

support less powerful devices [35]. Knowledge distillation has been beneficial to many 

areas of computer vision such as semantic segmentation [36], facial recognition [37,38], 

object detection [39], and classification [40]. Although some prior work has used knowledge 

distillation for chest X-rays in the medical domain [41], knowledge distillation has not been 

widely used for histology image analysis.

Initial knowledge distillation studies used neural network output activations, called logits, 

to transfer the learned knowledge from a teacher model to a student model [33–35]. 

FitNet built upon this knowledge distillation paradigm by suggesting that while the logits 

are important, the intermediate activations also encode the model’s knowledge [42]. This 

method proposed adding a regression term to the knowledge distillation objective to improve 

the overall performance of the student model while reducing the number of parameters. 

In this paper, we model our architecture after the FitNet approach to maintain the spatial 

correspondence between teacher and student models, as it represents clinically relevant 

information. Of note, in contrast to our approach, previous work in this domain does not 

include self-supervision [43]. As we show later in this paper, self-supervision proves to be a 

deciding factor in increasing overall classification performance for histology images.

3. TECHNICAL APPROACH

3.1 Overview

There are two main phases and one optional phase to our approach as follows:

1. Train-a-teacher model at high magnification on the labeled dataset, as explained 

in Section 3.2.
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2. Train-the-knowledge distillation model on the unlabeled dataset at a high to a 

lower magnification, explained in Section 3.3 and shown in Figure 2.

3. (Optional) Fine-tune-the-student model using the labeled dataset at a lower 

magnification, as explained in Section 3.3.

All implementation details are provided in Appendix B of the Supplementary Material for 

reproducibility.

3.2 Teacher Model

For the teacher model, we used a residual network (ResNet) [44]. ResNet was chosen due to 

its excellent empirical performance compared to other deep learning architectures. We used 

the built-in ResNet PyTorch implementation [45].

The teacher model input was high-resolution, annotated slides at 10x magnification (1 μm/

pixel) for celiac disease and lung adenocarcinoma and 5x magnification (2 μm/pixel) for 

renal cell carcinoma. While our slides were originally scanned at 20x or 40x magnification, 

we used either 5x or 10x magnification in the teacher model to reduce the runtime to a more 

reasonable period. We found that the performance gains above 5x or 10x magnification were 

marginal with an exponential increase in runtime. We performed online data augmentation 

consisting of random perturbations to the color brightness, contrast, hue, and saturation, 

horizontal and vertical flips, and rotations. Additionally, each input was standardized by the 

mean and standard deviation of the respective training set across each color channel.

3.3 Knowledge Distillation from High-Resolution Images

Knowledge distillation (also referred to as ‘KD’) is a machine learning method, where 

typically, a larger, more complex model “teaches” a smaller, simpler student model what 

to learn [33]. The learning occurs by optimizing over a desired commonality between the 

models. We opted to keep the student and teacher model architectures identical for our 

approach and instead modified the input resolution. As input data resolution is a significant 

factor for efficient and accurate histology image analysis, we decided that the teacher model 

should receive the original high-resolution image as input while the student model receives 

a low-resolution input image. For optimizing our knowledge distillation model, the total loss 

is the sum of (1) the soft loss and (2) the pixel map. These loss components are described 

below, and an overview of our knowledge distillation approach is shown in Figure 2.

Loss total = Loss soft + Loss pixel # (1)

To promote classification similarity between the teacher and student models, we utilized the 

Kullback-Leibler (KL) Divergence over the outputs of the teacher and student models as the 

loss function [33,46]. Additionally, the loss function is “softened” by adding a temperature 

T to the softmax computation. Intuitively, softening the loss function gives more weight to 

smaller outputs, thus transferring information that would have been overpowered by greater 

values. The soft loss is computed as follows:
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Losssoft = KL σ Fclass
t

T , σ Fclass
s

T ⋅ T 2 # (2)

where Fclass 
t , Fclass 

S , and σ(·) represent the teacher classifier outputs, student classifier 

outputs, and softmax function, respectively. Note that we multiply by T2since the gradients 

will scale inversely to this factor [33].

To ensure that the teacher and student models focus on similar areas, we compute the 

mean-squared error over the feature map outputs. We introduce g1(⋅) and g2(⋅) as the 

max-pooling and bicubic interpolation operations, respectively. We use max-pooling and 

bicubic interpolation for the pixel-wise loss because we found that these two functions 

provide the most consistent performance for the loss function when combined, as shown in 

the Supplementary Material, Appendix A. The pixel-wise loss is computed as follows:

Losspixel = 1
2 ⋅ ∑

k = 1

2
gk Ffe

t − Ffe
s 2

(3)

where Ffe
t  and Ffe

s  are the outputs of the feature extractor in the teacher and student models, 

respectively. We require the functions g1(⋅) and g2(⋅) since the size of the teacher feature 

map outputs are N2 times larger than the student ones, ignoring negligible differences due to 

rounded non-integer dimensions in some instances.

3.4 Fine-Tuning

After performing the knowledge distillation, we fine-tuned the student model weights on the 

lower resolution training dataset. The goal of fine-tuning the model is to make minor weight 

adjustments for maximal performance on the labeled data without undoing the learning 

in the previous layers. To this end, all weights were frozen except the ones in the fully 

connected layer. The weights were trained using the Adam optimization algorithm [47] 

until convergence. The data augmentations enumerated in Section 3.2 were applied to the 

input data. Similar to the teacher model training, we used the cross-entropy loss to learn 

ground-truth labels in this phase. We opted to skip this phase in experiments where the same 

training set was used across Phases I and II, as it resulted in lower classification performance 

on the validation set due to overfitting on the training set.

3.5 Gradient Accumulation

We used gradient accumulation to account for the large and variable sizes of the slides. 

Gradient accumulation computes the forward and backward pass changes for each input, but 

it does not update the model weights until all mini-batch backward passes are complete. 

While gradient accumulation does not affect most layers, batch normalization layers are 

affected, as they require operation on a mini-batch to work correctly. In our model, 

instead of batch normalization, we used group normalization, which has more consistent 

performance across varying mini-batch sizes [48] due to its independence from the mini­
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batch dimension. This modification allows the model to learn properly with gradient 

accumulation.

4. EXPERIMENTAL SETUP

4.1 Datasets

We performed our experiments on three independent datasets. One dataset was collected 

from The Cancer Genome Atlas (TCGA) database [49], and the other two datasets 

were collected at Dartmouth-Hitchcock Medical Center (DHMC), a tertiary academic 

medical center in New Hampshire, USA. The slides from both TCGA and DHMC were 

hematoxylin-eosin stained formalin-fixed paraffin-embedded. All slides were digitized at 

either 20x or 40x magnification. Every downsampling was obtained directly from the 

original image to avoid any potential artifacts caused by a composition of downsamplings.

Additionally, we chose to leave the slides at their variable, native resolutions to avoid 

introducing bias through standardizing the sizes. To generate the required low-resolution 

WSIs, we used the Lanczos filter to create several downsampled versions of each image 

[50]. We use the notation nx magnification relative to the original magnification. For 

example, an originally 20x slide downsampled four times in both height and width 

dimensions would have n = 20/4 = 5 and be denoted 5x. We provide image dimension 

summary statistics for the celiac disease (CD), lung adenocarcinoma (LUAD), and renal cell 

carcinoma (RCC) datasets in Table 1.

This study and the use of human participant data in this project were approved by the 

Dartmouth-Hitchcock Health Institutional Review Board (IRB) with a waiver of informed 

consent. The conducted research reported in this article is in accordance with this approved 

Dartmouth-Hitchcock Health IRB protocol and the World Medical Association Declaration 

of Helsinki on Ethical Principles for Medical Research involving Human Subjects.

4.2 Celiac Disease Dataset

Celiac disease (CD) is a disorder that is estimated to impact 1% of the population 

worldwide [51,52]. Diagnosing and treating CD is clinically significant, as undiagnosed CD 

is associated with a higher risk of death [51,52]. A duodenal biopsy is considered the gold 

standard for CD diagnosis [53]. A pathologist examines these biopsies under a microscope 

to identify the histologic features associated with CD.

Our CD dataset comprises 1,364 patients distributed across the Normal, Non-specific 

Duodenitis, and Celiac Sprue classes. Each patient had one or more WSIs consisting of 

one or more tissues. A gastrointestinal pathologist diagnosed each slide as either Normal, 

Non-specific Duodenitis, or Celiac Sprue.

The CD slides contained significant amounts of white space background. Hence, as a pre­

processing step, we used the tissueloc [54] code repository to find approximate bounding 

boxes around the relevant regions of the slide using a combination of image morphological 

operations. This tissue finding process aids in reducing the computational burden while 

simultaneously removing the clinically unimportant background regions.
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We partitioned the dataset into a labeled set and an unlabeled auxiliary set. The auxiliary 

dataset (AD) is obtained by ignoring the labels. Our labeled dataset is comprised of 300 

patients distributed uniformly across the Normal, Non-specific Duodenitis, and Celiac Sprue 

classes. A 70% training, 15% validation, and 15% testing split was produced by randomly 

partitioning the patients. In Table 2, we show the tissue counts for all datasets.

We randomly sampled from the CD slides not used in any training, validation, or testing 

datasets for self-supervision. To explore the effects of unlabeled dataset size, we created 

two auxiliary datasets, ADv1 and ADv2, such that ADvl ⊂ ADv2 . ADv1 and ADv2 are 

comprised of 300 and 1,004 patients, respectively. Experimenting with two unlabeled 

datasets allowed us to demonstrate the efficacy of our method as the dataset size scales. We 

also sampled an additional 20 patients from each class to use as a proxy development dataset 

for hyperparameter tuning. The 60-patient development dataset was intended to validate the 

self-supervision process and remained independent from the test set used for evaluation. The 

distribution for these datasets for self-supervised learning is shown in Table 2.

4.3 Lung Adenocarcinoma Dataset

Lung cancer is the leading cause of cancer death in the United States [55]. Of all histologic 

subtypes, lung adenocarcinoma (LUAD) is the most common pattern [56], and its rates 

continue to increase [57]. The World Health Organization identifies five predominant 

histologic pattern subtypes: lepidic, acinar, papillary, micropapillary, and solid for lung 

adenocarcinoma [58]. The classification of lung adenocarcinoma subtypes on histology 

slides has proven to be particularly challenging, as over 80% of cases contain mixtures of 

multiple patterns [59,60].

Our LUAD dataset was randomly split into two sets, with 235 slides for training and 34 

slides for testing. A thoracic pathologist annotated both the training and testing sets for 

predominant subtypes, where every annotated tissue region contains only one pattern. Each 

slide in the training and testing set consists of at least one annotated tissue region. Some 

training and testing slides contained benign lung tissue, which we excluded as it is not 

related to the cancer subtypes. Given the considerably smaller size of this dataset compared 

to the CD dataset, we did not perform any experiments on varying unlabeled dataset sizes 

and used the entire training set for all analyses. No hyperparameter tuning was performed 

for this model, and we used the same configuration as the CD equivalent. The distribution of 

the LUAD data is presented in Table 3 for both training and testing sets.

4.4 Renal Cell Carcinoma Dataset

Kidney cancer is one of the most common cancers worldwide [61]. Renal cell carcinoma 

(RCC) accounts for 90% of all kidney cancer diagnoses [61,62]. The major RCC subtypes 

are clear cell, papillary, and chromophobe in order of decreasing incidence [63]. It is critical 

to identify these histologic subtypes effectively as RCC incidence has been increasing over 

the past few decades and subtypes require different treatment strategies [64,65].

Our RCC dataset was randomly split into two sets, with 617 slides for training and 

265 slides for testing. Renal pathologists classified all slides into one of the subtypes. 
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Additionally, each slide may consist of more than one tissue. Like the CD dataset, we 

utilized the tissueloc [54] library to remove the significant white space background. We 

performed neither unlabeled dataset experimentation nor hyperparameter tuning and used 

the pre-determined hyperparameters from our CD experiments. The counts for all datasets 

and classes are shown in Table 4.

4.5 Implementation Details

We evaluated all models on the labeled test set corresponding to each training dataset. No 

data augmentation was applied to the test sets beyond standardizing the color channels by 

the mean and standard deviation of the respective labeled training sets. To evaluate our 

classification performance, we used accuracy, F1-score, precision, and recall. These metrics 

were computed in a one-vs.-rest fashion for each class. We computed the mean value 

for each metric by macro-averaging over all classes. The 95% confidence intervals (CIs) 

were produced using bootstrapping on the test set for 10,000 iterations. We calculate each 

model’s computational cost by counting the billions of floating-point operations (GFLOPS) 

for a forward pass of that model. Using the number of GFLOPS allows us to evaluate 

the performance gains while also considering the computational cost. All experiments were 

performed on either a single NVIDIA Titan RTX or Quadro RTX 8000 GPU.

Teacher Model.—We trained the teacher model on high-resolution input images at 10x 

magnification for CD and LUAD, and 5x for RCC. The He initialization scheme [66] 

was used to initialize the weights. We utilized the Adam optimization algorithm [47] for 

100 epochs of training with a learning rate of 0.001. The Adam optimizer minimized the 

cross-entropy loss function with respect to the ground-truth slide labels.

Baseline.—All baseline models were trained on a specified magnification from randomly 

initialized weights using the He initialization scheme [66]. We used the same ResNet 

architecture as the teacher model for these baselines.

KD.—Our knowledge distillation (KD) approach consists of a teacher model described 

above and a student model of the same ResNet architecture. We initialize the student model 

using the He initialization scheme [66] and the teacher model using the saved weights. The 

teacher model weights are frozen and only the student model weights are updated during this 

phase. In contrast to the standard ResNet architecture, we use both the final convolutional 

and fully connected layer outputs as our unlabeled hints and feature recognition knowledge, 

respectively. We use the labeled training and validation sets for the distillation and ignore 

the labels in the self-supervised part of our approach. As explained in Section 3.4, we do 

not apply fine-tuning for these experiments as it contributes to overfitting according to our 

validation set.

KD (AD).—The knowledge distillation approach using the auxiliary datasets in this paper is 

similar to stock distillation [33]. The main difference is that we utilized unlabeled auxiliary 

datasets for self-supervised learning instead of using a labeled dataset.
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5. RESULTS

In Table 5, we present the results of the teacher model trained from scratch at 10x 

magnification for the CD and LUAD test sets, and at 5x magnification for the RCC test 

set.

We present the results of our proposed approach for all tested magnifications in Tables 6, 

7, and 8. The performance and computational costs of our models are shown in Figure 

3. Additionally, we provide Grad-CAM++ visualizations in the Supplementary Material, 

Appendix C, to show that our method identifies clinically relevant features [67].

6. DISCUSSION

As presented in Table 6, our KD method outperforms the baseline metrics in all trials 

for celiac disease. The lung adenocarcinoma results in Table 7 show that our approach 

improves performance for 0.625x (16 μm/pixel), 1.25x (8 μm/pixel), and 2.5x (4 μm/pixel) 

and is equal to the baseline performance for 5x (2 μm/pixel) input images. This outcome is 

consistent with our 5x results on the CD dataset without the AD self-supervision phase. 

As shown in Table 8, our method provides a benefit on all magnifications for renal 

cell carcinoma but decreases in performance at 2.5x magnification compared to 1.25x 

magnification. This result is consistent with the CD KD results without the auxiliary dataset.

While adding more data helped increase CD classification accuracy at 0.625x magnification 

by over 4%, this performance benefit narrowed as the magnification increased further. This 

trend can be seen in Figure 3, where the test set accuracy curves approach each other as 

the computational cost grows. Most importantly, our method outperforms the baseline at 10x 

magnification for the distillation approaches on the auxiliary dataset. This performance gain 

comes with at least a 4-factor reduction in computational cost.

Using our model to maintain accurate classification performance while minimizing 

computational cost could facilitate scanning histology slides at a much lower resolution. 

According to the Digital Pathology Association, scanners cost up to $300,000 depending 

on the configuration [68]. Reducing the scanning resolution could have a two-fold benefit, 

potentially lessening the scan time and scanner cost. To this end, histology slides could 

be scanned at a lower magnification and only inspected at higher magnification in 

challenging cases. In addition, storing and analyzing lower resolution WSIs would be 

less burdensome on the computational infrastructure. Instead of investing in complex data 

solutions, pathology laboratories could migrate to cloud-based services to manage and 

analyze smaller datasets using standard network bandwidth [69–71]. Using cloud solutions 

in the medical domain is still not widespread. However, our approach could provide a viable 

option for this emerging application.

There are still some improvement areas for our work, namely evaluating our model on 

additional datasets from different institutions. While our method was validated on three 

datasets, two of them are from our institution and may contain inherent biases in staining 

and slide preparation. Additionally, with more datasets, we would be able to investigate 

the scaling effects of self-supervised learning beyond the size of our existing dataset. The 
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impact of scaling could prove especially useful for smaller healthcare facilities that may not 

have the capabilities to collect and label data as required for training a typical deep learning 

model for histology image analysis. In addition to larger datasets, it is crucial to explore the 

efficacy of this methodology on more slides from different medical centers and for various 

diseases to evaluate the generalizability of our proposed approach.

Although the trained models can be used on WSIs with lower resolutions, our method 

still requires high-resolution WSIs during training. While reducing the computational 

requirements of the inference stage is always beneficial, there is no reduction in cost for 

training the teacher model or the self-supervised and knowledge-distillation models. This 

weakness is an active area of investigation in our future work. One possibility is using 

transfer learning to adapt a pre-trained model to an alternative high-resolution histology 

dataset. A method that utilizes transfer learning in this fashion would remove the burden 

of continuously retraining teacher models for each new dataset. Lastly, we plan to extend 

our visualization beyond Grad-CAM++. While Grad-CAM++ provides some insight into 

the black-box model, it still lacks interpretability and crucial information for pathologists to 

make meaningful diagnoses.

7. CONCLUSION

This work demonstrated that knowledge distillation could be applied to histology image 

analysis and further improved by self-supervision. We showed that our method both 

improves performance at significantly lower computational cost and scales with dataset size. 

The empirical evidence presented proves that it is possible to transfer information learned 

across magnifications and still produce clinically meaningful results. Our approach allows 

for scanning WSIs at significantly lower resolution while having little to no classification 

accuracy degradation. Our method also removes a major computational bottleneck in using 

deep learning for histology image analysis and opens new opportunities for this technology 

to be integrated into the pathology workflow.
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Highlights

• Developed a deep learning model for low-resolution histology image 

classification

• Performed knowledge distillation to maintain accuracy at low-resolution

• Improved performance further using self-supervision on unlabeled data

• Achieved strong classification performance across multiple datasets and 

metrics
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Figure 1. 
A sample WSI intended to show the high resolution and large size of histology images.
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Figure 2. 
Overview of the knowledge distillation model. The g(·) block is a resizing function that 

scales the teacher feature maps to the same size as the corresponding student ones. The 

Pixel-wise and Soft losses are combined to produce the total loss for the optimization 

process.
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Figure 3. 
Test set accuracy plotted against the computational cost. The computational cost is measured 

in GFLOPS and corresponds to the approximate number of floating-point operations 

per forward pass. The magnification of the model input data is displayed under the 

computational cost values.
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Table 1.

Summary of image resolutions and dimensions for each dataset. The image height and width values are in 

pixels.

Dataset Resolution

Median Maximum Interquartile Range

Height Width Height Width Height Width

CD 10x (1 μm/pixel) 1,934 1,550 11,880 6,408 1,454–2,494 1,170–2,016

LUAD 10x (1 μm/pixel) 1,267 1,428 12,780 19,702 817–2,062 922–2,239

RCC 5x (2 μm/pixel) 7,152 8,424 16,832 19,304 4,358–8,908 4,946–11,268
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Table 2.

Distribution of the CD tissues for all datasets used in the model. The class counts for the self-supervised 

datasets ADv1 and ADv2 are only provided as a reference, and this class information was not used in the 

self-supervision process.

Class

Supervised Self-Supervised

Training Validation Testing ADv1 ADv2 Development

Normal 1,182 253 241 4,774 16,661 441

Non-specific Duodenitis 2,202 390 469 130 265 583

Celiac Sprue 2,524 524 529 416 1,799 921
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Table 3.

Distribution of the LUAD tissues for all datasets used in the model. The counts correspond to the annotations 

provided by the pathologist.

Class Training Testing

Lepidic 514 81

Acinar 691 124

Papillary 43 9

Micropapillary 411 55

Solid 424 36
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Table 4.

Distribution of the RCC tissues for all datasets used in the model. The counts correspond to the slide-level 

classifications provided by the pathologists.

Class Training Testing

Chromophobe 90 42

Papillary 312 128

Clear Cell 432 194
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Table 5.

Results and the corresponding 95% CIs for the teacher model as percentages. The above results were obtained 

on the respective test sets, detailed in Sections 4.2, 4.3, and 4.4.

CD LUAD RCC

Accuracy 87.06 (85.65–88.48) 94.51 (92.77–96.20) 90.16 (87.62–92.57)

F1-Score 75.44 (72.31–78.51) 80.43 (70.86–88.17) 80.09 (74.02–85.64)

Precision 75.62 (72.55–78.66) 80.41 (70.55–89.56) 78.54 (72.75–84.13)

Recall 77.15 (74.19–80.06) 81.67 (71.20–90.43) 85.19 (80.07–89.70)
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Table 6.

Results for celiac disease baseline and KD approaches as percentages with corresponding 95% CIs. Baseline 

models were trained from scratch until convergence on the corresponding magnification. The KD model 

without an auxiliary dataset was trained using the labeled dataset. Boldface text indicates the best-performing 

model for each magnification and metric.

Celiac Disease

Baseline KD KD (ADv1) KD (ADv2)

mag = 0.625x (16 μm/pixel)

  Accuracy 79.11 (77.74–80.54) 81.31 (79.91–82.72) 82.55 (81.15–83.97) 83.17 (81.75–84.61)

  F1-Score 55.72 (52.08–59.34) 64.16 (60.92–67.37) 64.95 (61.43–68.45) 66.83 (63.46–70.14)

  Precision 56.20 (52.40–59.96) 64.27 (60.91–67.56) 66.65 (62.94–70.32) 67.21 (63.78–70.52)

  Recall 55.67 (52.17–59.16) 65.13 (62.06–68.20) 64.11 (60.64–67.61) 69.29 (66.06–72.42)

mag = 1.25x (8 μm/pixel)

  Accuracy 82.70 (81.23–84.14) 84.03 (82.61–85.47) 84.43 (83.01–85.85) 84.87 (83.40–86.32)

  F1-Score 65.06 (61.55–68.43) 70.49 (67.45–73.55) 69.75 (66.53–72.94) 71.20 (67.89–74.40)

  Precision 65.06 (61.51–68.48) 70.53 (67.39–73.66) 69.32 (66.13–72.51 71.14 (67.81–74.35)

  Recall 65.22 (61.70–68.63) 71.06 (68.10–74.02) 70.95 (67.72–74.17) 73.56 (70.40–76.61)

mag = 2.5x (4 μm/pixel)

  Accuracy 83.71 (82.29–85.17) 85.68 (84.25–87.13) 85.38 (83.94–86.78) 85.83 (84.38–87.27)

  F1-Score 68.32 (64.92–71.66) 73.01 (69.94–76.03) 72.39 (69.21–75.41) 73.56 (70.42–76.64)

  Precision 68.23 (64.77–71.67) 74.74 (71.57–77.90) 72.99 (69.76–76.06) 73.61 (70.44–76.68)

  Recall 68.57 (65.13–71.98) 74.67 (71.99–77.28) 75.67 (72.86–78.34) 76.43 (73.61–79.17)

mag = 5x (2 μm/pixel)

  Accuracy 86.15 (84.71–87.61) 85.74 (84.28–87.21) 86.99 (85.54–88.46) 87.20 (85.78–88.62)

  F1-Score 73.42 (70.15–76.63) 73.27 (70.19–76.33) 75.07 (71.89–78.17) 75.86 (72.71–78.92)

  Precision 73.44 (70.12–76.68) 75.10 (71.91–78.23) 76.46 (73.42–79.44) 76.07 (72.95–79.13)

  Recall 73.65 (70.41–76.93) 74.82 (72.16–77.51) 78.00 (75.18–80.72) 77.41 (74.41–80.35)
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Table 7.

Results for lung adenocarcinoma baseline and KD approaches as percentages with corresponding 95% CIs. 

Baseline models were trained from scratch until convergence on the corresponding magnification. Boldface 
text indicates the best-performing model for each magnification and metric

Lung Adenocarcinoma

Baseline KD

mag = 0.625x (16 μm/pixel)

  Accuracy 88.00 (86.07–89.95) 89.32 (87.37–91.26)

  F1-Score 54.38 (46.12–64.67) 57.75 (49.74–68.32)

  Precision 57.75 (45.53–74.19) 60.95 (48.76–77.30)

    Recall 55.98 (48.72–64.62) 58.29 (51.06–67.19)

mag = 1.25x (8 μm/pixel)

  Accuracy 90.45 (88.52–92.40) 93.29 (91.44–95.09)

  F1-Score 67.57 (56.49–77.07) 73.17 (63.03–82.70)

  Precision 69.85 (55.79–80.25) 76.28 (62.54–87.58)

    Recall 68.32 (58.07–78.98) 73.02 (63.99–83.26)

mag = 2.5x (4 μm/pixel)

  Accuracy 93.14 (91.25–94.94) 93.74 (91.94–95.49)

  F1-Score 72.84 (64.11–81.28) 71.88 (64.13–81.07)

  Precision 72.03 (63.53–81.02) 73.56 (64.22–87.48)

    Recall 75.51 (65.39–86.16) 72.69 (65.27–82.38)

mag = 5x (2 μm/pixel)

  Accuracy 94.18 (92.40–95.85) 94.18 (92.45–95.85)

  F1-Score 75.33 (66.30–84.23) 79.63 (69.80–87.41)

  Precision 76.85 (66.27–88.75) 79.75 (69.62–88.88)

    Recall 75.45 (66.74–85.65) 82.00 (71.36–90.62)
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Table 8.

Results for renal cell carcinoma baseline and KD approaches as percentages with corresponding 95% CIs. 

Baseline models were trained from scratch until convergence on the corresponding magnification. Boldface 
text indicates the best-performing model for each magnification and metric

Renal Cell Carcinoma

Baseline KD

mag = 0.625x (16 μm/pixel)

  Accuracy 82.39 (79.80–85.02) 85.11 (82.45–87.83)

  F1-Score 62.21 (55.38–68.97) 66.41 (59.35–73.31)

  Precision 61.38 (54.99–67.89) 69.66 (63.31–75.99)

    Recall 64.81 (57.33–72.37) 68.68 (61.32–75.66)

mag = 1.25x (8 μm/pixel)

  Accuracy 87.44 (84.77–90.06) 89.11 (86.54–91.61)

  F1-Score 73.73 (66.99–80.17) 77.10 (70.91–82.99)

  Precision 72.38 (65.91–78.88) 75.66 (69.99–81.28)

    Recall 76.73 (69.62–83.27) 82.64 (76.48–88.01)

mag = 2.5x (4 μm/pixel)

  Accuracy 88.24 (85.72–90.76) 88.39 (85.74–90.92)

  F1-Score 73.94 (67.87–79.84) 75.84 (69.57–81.71)

  Precision 73.94 (67.87–79.84) 75.34 (69.70–80.85)

    Recall 79.78 (73.25–85.74) 81.72 (76.06–86.76)
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