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Protein functional dynamics from the rigorous global
analysis of DEER data: Conditions, components,
and conformations
Eric J. Hustedt1, Richard A. Stein1, and Hassane S. Mchaourab1

The potential of spin labeling to reveal the dynamic dimension of macromolecules has been recognized since the dawn of the
methodology in the 1960s. However, it was the development of pulsed electron paramagnetic resonance spectroscopy to
detect dipolar coupling between spin labels and the availability of turnkey instrumentation in the 21st century that realized
the full promise of spin labeling. Double electron-electron resonance (DEER) spectroscopy has seen widespread applications
to channels, transporters, and receptors. In these studies, distance distributions between pairs of spin labels obtained under
different biochemical conditions report the conformational states of macromolecules, illuminating the key movements
underlying biological function. These experimental studies have spurred the development of methods for the rigorous
analysis of DEER spectroscopic data along with methods for integrating these distributions into structural models. In this
tutorial, we describe a model-based approach to obtaining a minimum set of components of the distance distribution that
correspond to functionally relevant protein conformations with a set of fractional amplitudes that define the equilibrium
between these conformations. Importantly, we review and elaborate on the error analysis reflecting the uncertainty in the
various parameters, a critical step in rigorous structural interpretation of the spectroscopic data.

Introduction
The modern tool kit of structural biology includes diverse,
complementary methods spanning the spectrum from compu-
tational to experimental that can visualize global structures at
atomic resolution as well as probe them on local site-specific levels
and can reveal the dynamic dimension under equilibrium or time-
resolved conditions. The integration of these methods has been
touted as the next frontier in the quest to reveal the interplay of
structure and dynamics that underpins protein function. Probe
methods, including electron paramagnetic resonance (EPR) spec-
troscopy of site-specifically spin-labeled proteins, have contrib-
uted a unique perspective on protein dynamics (Mchaourab et al.,
2011; Claxton et al., 2015; Jeschke, 2018a). In particular, pulsed EPR
methods are distinguished by the ability to investigate proteins in
multiple conformational states in near-native environments with
high sensitivity. Because integration of structural biology data is
mostly performed a posteriori, the process requires not only
knowledge of the rules of interpretation (i.e., how models are
derived from data) but also well-established tools for assessment
of rigor and reproducibility of the underlying analysis.

The pulsed EPR technique double electron-electron res-
onance (DEER) spectroscopy measures long-range (>20 Å)

distances between electron spins (Jeschke, 2012; Borbat and
Freed, 2014; Jeschke, 2014), typically extrinsic probes intro-
duced into biological macromolecules by site-directed spin la-
beling (Roser et al., 2016). DEER has been applied to multiple
proteins, RNA, and DNA systems. In the protein space, unique
insight was revealed on ion channel architecture and gating
(Pliotas et al., 2012; Dellisanti et al., 2013; Dalmas et al., 2014;
Dürr et al., 2014; Puljung et al., 2014; Raghuraman et al., 2014;
Arrigoni et al., 2016; Zhu et al., 2016; Evans et al., 2020),
transporter alternating access and energy landscapes (Claxton et al.,
2010;Mittal et al., 2012; Georgieva et al., 2013; Kazmier et al., 2014a;
Kazmier et al., 2014b; Masureel et al., 2014; Joseph et al.,
2015; Dastvan et al., 2016; Martens et al., 2016; Timachi
et al., 2017; Verhalen et al., 2017; Göddeke et al., 2018; Dastvan
et al., 2019; Joseph et al., 2019; Nyenhuis et al., 2020), and re-
ceptor activation and allosteric modulation (Park et al., 2006;
Kim et al., 2012; Kang et al., 2015; Yee et al., 2015; Van Eps et al.,
2017; Van Eps et al., 2018; Wingler et al., 2019; Elgeti and
Hubbell, 2021). The range of applications of DEER include
evaluation of static structures in solution (e.g., Zhou et al.,
2005) or native-like environments (e.g., Barrett et al., 2012),
probing ligand-induced conformational changes, characterization
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of equilibrium fluctuations, and investigation of protein–protein
interactions (Hilger et al., 2005; Hilger et al., 2007; Kim et al.,
2011; Edwards et al., 2014). The most frequent strategy is to
attach pairs of spin labels at introduced cysteines in a purified
protein (Fig. 1 A), although promising alternative strategies
have been introduced (Roser et al., 2016; Ackermann et al.,
2021; Gamble Jarvi et al., 2021). Multiple pairs are designed to
provide a pattern of characteristic distances or distance changes
relevant to the structure or model to be tested. Distance re-
straints from DEER have been integrated with computation
methods to model protein structures ab initio (Alexander et al.,
2008; Alexander et al., 2013; Jeschke, 2016), to refine struc-
tures, and to generate models of intermediate states (Kazmier
et al., 2014b; Evans et al., 2020) or protein complexes (Kim

et al., 2012; Edwards et al., 2014). In combination with cryo-
EM, DEER distance distributions can provide a complementary
approach to pinpoint the mechanistic identity of various con-
formations and to validate models of conformational changes
(Dürr et al., 2014; Zhu et al., 2016).

The cornerstones of DEER data interpretation are the rigor-
ous transformation of the raw signals into complex distance
distributions, the structural interpretation of these distributions
as spatial restraints, and the generation of structural models
consistent with the derived restraints. As an illustration, con-
sider a hypothetical membrane transporter doubly labeled at the
extracellular surface of two transmembrane (TM) helices (Fig. 1
B) with two conformations, outward closed (OC) and outward
open (OO), that differ by a large translocation of one helix

Figure 1. Site-directed spin labeling and DEER. (A)Model showing the MTSSL attached to an α-helix at a cysteine residue. (B)Models showing spin labels at
extracellular sites of two helices of an integral membrane protein in two different conformational states. (C) The expected distance distributions for the OO
(red) and OC (black) states. (D) The corresponding intramolecular DEER signals.
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relative to the other. The distribution, P, of distances, R, between
the labels for each conformation (Fig. 1 C) is determined by its
tertiary structures, the degree of disorder in the structure, and
the rotameric disorder of the labels. The different distance dis-
tributions for the two conformations produce distinct DEER time
traces (Fig. 1 D).

More generally, distinct distance components with varying
widths in the P(R) reflect the collection of conformations of the
protein backbone that are populated under the experimental
conditions and the rotameric states of the spin-label side chain at
each of these conformations. Biochemical conditions can be
manipulated to shift the energies of protein conformers, leading
to a set of DEER signal traces that differ by the populations of
these components. Here, we focus on tools for the rigorous
analysis of multiple DEER time traces obtained under varying
conditions from one or more doubly spin-labeled mutants of a
given protein. We describe a model-based approach to obtaining
a minimum set of distance components related to functionally
relevant conformations with a set of fractional amplitudes that
define the equilibrium between these conformations together
with error analysis reflecting the uncertainty in the various
parameters.

From DEER signal to distance distribution
Much work has been devoted to the development of methods for
the analysis of DEER data to determine the optimal P(R).
Broadly, these methods can be described as either model based,
expressing the P(R) as a linear combination of components
(typically Gaussian), or model free, often using a mathematical
regularization method. A DEER time-domain experimental sig-
nal, V(t), is the product of a signal, VO(t), arising from the dipolar
interactions within a labeled molecule or complex and a back-
ground signal, VB(t), arising from intermolecular dipolar inter-
actions (Pannier et al., 2000b; Bowman et al., 2004).

V(t) � VO(t) × VB(t) + e(t) (1)

where e t( ) is random noise drawn from a normal distribution
whose variance is independent of t (Edwards and Stoll, 2016).
Typically, nitroxide spin labels are sufficiently disordered (see
Fig. 1 B) to eliminate correlation between the interspin distance
and relative orientation eliminating any orientation selection
effects (Polyhach et al., 2007; Schiemann et al., 2009). After
averaging over all possible relative orientations, the intramo-
lecular signal, which is the signal of interest, can be modeled as
follows:

O(t) � (1 − Δ) + Δ∫∞0G(ωd(R)t)P(R)dR (2)

The modulation depth, Δ, is a function of both the labeling ef-
ficiency and various instrumental factors. G(ωd(R)t) has been
previously defined (Milov et al., 1998; Bowman et al., 2004;
Edwards and Stoll, 2016):

G(ωdt) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 + S2

√
κ

cos
�
ωdt − tan−1S

C

�
�

C
κ
cos(ωdt) + S

κ
sin(ωdt),

(3)

where C and S are the Fresnel cosine and sine integrals

C � ∫κ0cos
π
2
x2dx (4)

S � ∫κ0sin
π
2
x2dx

κ �
ffiffiffiffiffiffiffiffiffiffiffi
6ωdt
π

r

ωd � g2μ2
Bμ0

4πZ
1
R3
,

and the symbols in the equation for the dipolar frequency, ωd,
represent the usual physical constants.

The background factor can be modeled as an exponential, a
stretched exponential function (Milov et al., 1998),

B(t) � e(−10
η|t|) d

(5)

or any other desired model including one that accounts for an
excluded volume effect (Brandon et al., 2012; Kattnig et al.,
2013). All data in this work has been fit with a pure exponen-
tial background factor (d = 3) corresponding to a 3-D homoge-
neous solution. The use of an exponential expression, 10η, to
parameterize the background decay rate reduces the dynamic
range of the fit parameter and can improve fitting. For a ho-
mogeneous 3-D solution of spins (d = 3), an effective spin con-
centration can be calculated from the background decay rate
(see Appendix).

Model-based analysis of DEER data assumes that P(R) can be
described by a sum of n components:

P(R) �
Xn

k�1
fkpk(R) (6)

When using Gaussians, the components are given by

pk(R) � 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

rk

p exp

(
−(R − r0k)2

2σ2
rk

)
. (7)

However, non-Gaussian basis functions may also be used
(Hustedt et al., 2018). For a given model, the best-fit values of
each of the parameters are those that minimize the reduced
χ2 value:

χ2ν �
1

(N − q)
XN
i�1

[ Vi − OiBi]2
σ2

, (8)

where Vi is the experimentally measured signal at the ith time
point, Oi and Bi are the calculated intramolecular and back-
ground signals, σ2 is the estimated noise variance, N is the total
number of data points, and q is the total number of parameters
considered in the fit. The use of a mathematical model to define
P(R), specifically the use of a Gaussian basis set, was originally
used by Spiess and coworkers (Pannier et al., 2000a), then by
Fajer and coworkers (Sen et al., 2007), and has been further
developed by us (Brandon et al., 2012; Stein et al., 2015; Hustedt
et al., 2018).

Previously, we introduced the Akaike information criterion
corrected for finite sample size (AICc; Stein et al., 2015) and the
Bayesian information criterion (BIC; Hustedt et al., 2018) for
selecting an optimal model from a set used to analyze single
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DEER datasets based on the principle of parsimony. The set of
models considered can test different n values, different basis
functions, or differing background decay functions.

AICc � Nln

2
4PN

i�1(Vi − OiBi)2
N

3
5 + 2(q + 1)

�
1 + q + 2

N − q − 2

�
(9)

BIC � Nln

2
4PN

i�1(Vi − OiBi)2
N

3
5 + (q + 1) lnN (10)

These criteria balance the decrease in the sum of squared re-
siduals (SSR) [SSR � PN

i�1(Vi − OiBi)2] versus the increase in the
number of free parameters, q, that comes with increasing model
complexity. When selecting from a group of models that have
been tested, that with the lowest criterion value can be consid-
ered to be the optimal balance of these two factors (Burnham
and Anderson, 2002). In practice, we find that the use of BIC is
favored over AICc because the former favors more parsimonious
models.

The magnitude of the BIC values do not directly reflect the
merit of a particular model and cannot be used to determine that
a particular model is correct. Their relative values are, however,
significant. Setting BIC0 equal to the lowest BIC value of the set,
different models can be compared by calculating ΔBIC values.

ΔBIC � BIC − BIC0 (11)

These ΔBIC values do reflect the relative merit of different
models. Rules of thumb have been developed for interpreting
ΔBIC values (Raftery, 1995; Burnham and Anderson, 2002). If
the ΔBIC value for a particular model from a set under consid-
eration is >10, then the evidence against that model is very
strong, and if <2, it is weak. The use of BIC over AICc or any
other criterion for model selection is subjective. Additional
considerations, if properly justified, can be used to select an
appropriate model.

Other approaches to the analysis of DEER data include the
commonly used Tikhonov regularization (Chiang et al., 2005;
Jeschke et al., 2006; Ibáñez and Jeschke, 2020; Ibáñez et al.,
2020), alternative regularization approaches (Ibáñez and Jeschke,
2019), denoisingmethods followed by singular value decomposition
(Srivastava and Freed, 2017; Srivastava et al., 2017; Srivastava and
Freed, 2019), and neural networks (Worswick et al., 2018; Amey
et al., 2021).

Model-based analysis of DEER data
The model-based approach to the analysis of DEER data is il-
lustrated in Fig. 2 using data from T4 lysozyme (T4L) labeled at
residues 65 and 80 with the methanethiosulfonate spin label
(MTSSL). After a trivial scaling and shift of the time axis, the
DEER data are fit using amodel-based approach that includes the
best-fit background factor. The optimal fit, according to BIC
values, models P(R) as a sum of two Gaussians. Table 1 gives
the statistics obtained from fitting the data in Fig. 2 to n = 1, 2,
and 3 Gaussian components. The BIC values for the n = 1 and
n = 3 models both differ from that of the n = 2 model by <10,
suggesting that none of these models can be strongly rejected
based on this dataset. In fact, the n = 3 model is preferred

according to the AICc values. The small amplitude of the third
component and the large uncertainty of this amplitude (0.02 ±
0.06), together with the very narrow width of this Gaussian
(0.04 ± 2.81 Å), all support the rejection of this more complex
model (see Table 2).

The second component in the optimal P(R) does not give rise
to a distinct second mode and is fully consistent with a single
backbone conformation of T4L with some inherent disorder and
a distribution of rotameric states of the two labels. In other cases
discussed below, individual well-separated Gaussian compo-
nents clearly correspond to distinct backbone conformations. A
general rule of thumb is that the number of conformations is less
than or equal to the number of Gaussian components.

As has been previously discussed (Hustedt et al., 2018),
model-based analysis allows for rigorous error analysis of the
best-fit parameter values and the calculation of a confidence
band for the best-fit distance distribution from the full covari-
ance matrix using propagation of errors. The 2σ (95%) confi-
dence band for the best-fit n = 2 Gaussian P(R) is shown in Fig. 2
C as a shaded region and reproduced in Fig. 2 D along with the
best-fit P(R) for 15 replicate datasets collected for the same
sample. These results demonstrate that the confidence band
obtained from fitting a given dataset properly estimates the
reproducibility of the distance distribution.

The P(R) obtained using Tikhonov regularization is also
shown in Fig. 2 C. The model-free P(R) is quite close to the P(R)
modeled as the sum of two Gaussians. Both the model-based
approach as developed primarily at Vanderbilt University
(Brandon et al., 2012; Stein et al., 2015; Hustedt et al., 2018) and
the model-free approach using Tikhonov regularization, as de-
veloped primarily by Jeschke et al. (2006), have been exten-
sively used to analyze DEER data and are well documented.
Although historically the use of Tikhonov regularization to give
model-free fits to DEER data has required an initial background
correction step, recently an approach for applying Tikhonov
regularization to uncorrected data has been developed (Ibáñez
and Jeschke, 2020; Ibáñez et al., 2020).

Videos demonstrating the use of either DD (Video 1) or
GLADDvu (Video 2) to perform the model-based fits of this T4L
dataset are available online. DD and GLADDvu are available for
download at https://github.com/erichustedt/.

Global analysis paradigm
A set of DEER experiments collected under different experi-
mental conditions can contain information far beyond what can
be inferred from the collection of P(R) obtained from individual
fits to the traces. In Fig. 1 B, each conformation leads to an in-
terlabel distance distribution that can be modeled as a single
Gaussian component whose width is determined by the distri-
bution of rotameric states of the labels. In practice, conditions
may not be available that would allow the collection of data
corresponding to the pure OO or OC conformations. Instead,
different conditions, here ligand bound and ligand free (apo),
favor the OC and OO conformations, respectively (Fig. 3 A).
Qualitatively, the data and the P(R) are consistent with a shift in
the equilibrium from one favoring OO to OC upon ligand
binding.
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Papo(R) � (1-Capo
OO )P’

OC(R) + Capo
OO P

’
OO(R

�
Pligand(R) � (1-Cligand

OO )P’
OC(R) + Cligand

OO P’
OO(R

� (12)

where CapoOO and CligandOO are the fractions of apo and ligand-bound
transporter in the OO state. Likewise, P’OC(R) and P’OO(R) are the
interspin distance distributions of the pure OC and OO states.

More generally, the P(R) for condition i can be expressed
as a common set of P’(R) corresponding to M different
conformations.

Pi(R) �
XM
j�1

Ci
jP’j(R) (13)

A more pertinent analysis of the data in Fig. 3 B would allow one
to recover estimates of the distance distributions, P’(R), for
structural modeling of the pure conformational states and the
set of coefficients, C, for defining equilibrium constants and
other thermodynamic parameters. This tutorial focuses on the
linked fitting of the datasets (i.e., the global analysis of multiple

Figure 2. Q-band DEER data and fit for T4L spin-labeled with MTSSL at residues 65 and 80. (A) The crystal structure of T4L (PDB accession no. 2LZM;
Matsumura et al., 1989) showing the location of the two spin labels. pdb, Protein Data Bank. (B) The scaled DEER data are shown as filled black circles together
with the best model-based fit (red line) and background factor (green line). (C) The best-fit P(R) modeled as the sum of two Gaussians is shown as a red line
with the associated 2σ (95%) confidence band as a shaded region. The model-free P(R) obtained using Tikhonov regularization in DeerAnalysis 2019 is also
shown (dotted blue line). The optimal regularization factor was determined by generalized cross-validation and the starting time point for background fitting
using the validation tool. (D) The solid red line and shaded region duplicate those shown in C. The best-fit P(R) modeled as the sum of 2 Gaussians obtained
from 15 replicate datasets are shown as thin black lines.

Table 1. Model statistics from fitting of T4L 65/80 data in Fig. 2

n q SSR χ2υ AICc BIC ΔAICc ΔBIC

1 5 0.001984 1.0803 −3,051.3 −3,030.3 17.5 5.4

2 8 0.001823 1.0042 −3,067.0 −3,035.7 1.8 0

3 11 0.001765 0.9842 −3,068.8 −3,027.3 0 8.3
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DEER time traces) to obtain this full description of the system
under investigation using models that explicitly link the con-
formations under different conditions.

To demonstrate putting these concepts into practice, consider
the three simulated DEER traces in Fig. 4 that were calculated for
bimodal P(R) generated from the same two unimodal dis-
tributions selected from the test set generated by Edwards and
Stoll (2018) with different relative amplitudes (Table 3). The
underlying biological model is that the protein is undergoing a
ligand-dependent shift in the equilibrium between two con-
formational states. Given the P(R) obtained from fitting these
data individually, either to bimodal Gaussian distributions
(Fig. 4 B) or using a Tikhonov regularization (Fig. 4 C), it
would be hard to argue convincingly whether the protein is or
is not behaving according to this model of its functional dy-
namics (i.e., that the protein adopts the same two conforma-
tional states at all ligand concentrations albeit in different
proportions).

However, when the fit requires the means and SDs of the two
Gaussian components to be equal at different ligand concen-
trations, the best-fit distance distributions (Fig. 4 D) more ac-
curately and precisely correspond to the true distributions. For
this analysis, the background factors, η, the modulation depths,
Δ, and the relative amplitudes of the two components vary for
the three datasets (see Figs. S1, S2, and S3). The benefits of the
linked global analysis are clearly demonstrated by considering
the low-amplitude components in datasets A and C, which are
poorly recovered in the individual fits, regardless of the ap-
proach used (Fig. 4, B and C). In the global fit, however, the same
two Gaussian components are used to fit all three datasets. Both
of the recovered Gaussians, shown as cyan lines in Fig. 4 E, agree
well with the true components. Due to the ill-conditioned nature
of the problem, the considerable differences between the best-fit
distributions for the individual versus global fits (cf. Fig. 4, B and
D) result in negligible changes in the best-fit DEER traces (cf.
solid black and dashed colored lines in Fig. 4 A). Global analysis
not only results in a more accurate recovery of the true distance
distributions but also results in increased precision. This is

reflected in the narrow confidence bands of the linked versus
individual fits and in smaller parameter uncertainties (Table 3).

The global reduced χ2 value is given by

χ2ν �
1

(PjNj) − Q

XM
j�1

XNj

i�1

h
Vji − (OB )ji

i2
σ 2

j
, (14)

where Q is the total number of unique fit parameter values that
are varied. As with fitting single datasets, BIC values can be used
to select the optimal from a set of models used to fit multiple
datasets. Eqs. 9 and 10 for AICc and BIC, respectively, both as-
sume that the variance of the data is constant for all data points.
Although this assumption is valid for DEER data from a single
experiment that has not been background corrected, data from
different experiments that are being globally analyzed will have
different noise levels. Cavanaugh and Neath (1999) have shown
that the derivation of the BIC does not require the assumption
that the noise is identically distributed for all data points. Fol-
lowing Banks and Joyner (2017), we assume that each point in a
given DEER dataset, j, has a variance σ2

j � w2
j σ

2 to give

BICWLS � NTotalln

PM
j�1
PN

i�1
Vji- OB( )ji
h i2

w2
j

NTotal

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
+

(Q + 1) lnNTotal

(15)

where NTotal �
P​ Nj is the total number of data points in the

global analysis and Q is the total number of unique fit parameter
values that are varied.

Table 4 shows the statistics obtained from fitting the three
simulated datasets in Fig. 4 using six different models. Models 2,
4, and 6 use n = 1, 2, and 3 Gaussian components, each corre-
sponding to a separate conformation with no parameters linked.
Thus, these models are equivalent to fitting the data individu-
ally. For models 1, 3, and 5, all of the r0j and σrj values are linked,
and the same set of Gaussian components is used to fit both
datasets. Although the most complex model, 6, with Q � 33 gives
the lowest SSR and χ2ν values, model 3 with Q � 16 gives the
lowest BIC values and is strongly preferred.

Table 2. Fit parameters for T4L 65/80 data in Fig. 2

n 1 2 3

Δ 0.298 ± 0.002 0.297 ± 0.002 0.30 ± 0.02

η 4.61 ± 0.01 4.61 ± 0.01 4.61 ± 0.01

Scale 1.003 ± 0.002 1.001 ± 0.002 1.00 ± 0.03

r0 25.73 ± 0.06 22.8 ± 0.5 29 ± 4

σR 3.55 ± 0.08 1.3 ± 0.8 0.04 ± 2.81

Fraction 0.10 ± 0.09 0.02 ± 0.06

r0 26.2 ± 0.4 26.1 ± 0.6

σR 3.4 ± 0.2 3.5 ± 0.2

Fraction 0.90 ± 0.09 0.86 ± 0.16

r0 23.1 ± 0.7

σR 1.6 ± 1.0

Fraction 0.12 ± 0.16

Figure 3. DEER data assuming that two conformations are in equilib-
rium. (A) Simulated DEER data assuming that ligand binding (green line)
favors the OC state. (B) The corresponding P(R).
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A core principle of global analysis is that the models tested
should move beyond mathematical statements about the func-
tions and parameter sets used to fit data and incorporate the
fundamental biological questions being addressed in the ex-
periments (Beechem et al., 1991; Beechem, 1992). Moving beyond
loose interpretations of the peaks in the P(R) obtained from
individual fits, the results in Fig. 4 and Table 4 allow a DEER
practitioner to confidently assert that the data are consistent
with, and in fact optimally modeled, as a protein undergoing a
ligand-dependent shift in the equilibrium between two confor-
mational states that are themselves ligand independent.

With the recent development of the DeerLab software pack-
age (Ibáñez et al., 2020), it is now possible to perform a global
analysis of DEER data using Tikhonov regularization. The results
of such an analysis of these three simulated datasets are shown

in Fig. S4. Note that unlike model-based fitting (Fig. 4 E), the
regularization-based global analysis (Fig. S4 C) does not cor-
rectly disentangle the two component distributions corre-
sponding to the two conformations in equilibrium. In this
tutorial, we focus on the use of our GLADDvu software for the
model-based global analysis of DEER data.

A description of how parameters are linked in GLADDvu is
provided in the Appendix. Screenshots showing the use of
GLADDvu to fit these simulated datasets to model 3 are shown in
Figs. S1, S2, S3, S5, and S6. A demonstration of the use of GLADDvu
to perform all of the fits listed in Table 4 is available in Video 3.

Global analysis of DEER data
Global analysis has long been used to fit both linear and satu-
ration transfer EPR continuous wave EPR data to determine

Figure 4. Global analysis of simulated DEER data. (A) The data (filled circles) were simulated for P(R) modeled as the sum of two components using the
amplitudes in Table 3. The true P’(R) of the components are distributions 5347 and 483 from the set of distributions calculated by Edwards and Stoll (2018)
using MMM (Jeschke, 2018b) for T4L labeled at 118/154 and 8/126 with means/SDs of 25.1/1.9 Å and 32.6/3.0 Å, respectively. The best-fit lines for model 3 (R0
and σR values linked) and model 4 (no parameters linked) are shown as solid black and dashed colored lines, respectively. (B) P(R) for model 4 for datasets A
(red), B (green), and C (blue) with the associated 2σ (95%) confidence bands as shaded regions. The black lines are the true P(R) used for the simulations.
(C) Best-fit P(R) from Tikhonov regularization using DeerLab version 0.13.2 using the same color scheme. The optimal regularization factor was determined by
generalized cross-validation. (D) Best-fit P(R) for model 3 using the same color scheme with the associated 2σ (95%) confidence bands as the shaded regions.
The black lines are the true P(R) used for the simulations. (E) The P’(R) obtained for model 3 is shown in cyan, and the true P’(R) used for the simulations is
superimposed as shaded regions. Both the x and y axis scales are the same for B–E.

Table 3. Fit parameters for simulated data in Fig. 4

Data set A B C

Simulation Fraction 0.75 0.25 0.5 0.5 0.25 0.75

Fit to model 3: linked analysis r0 25.4 ± 0.3 33.0 ± 0.4 25.4 ± 0.3 33.0 ± 0.4 25.4 ± 0.3 33.0 ± 0.4

σr 2.0 ± 0.3 2.6 ± 0.4 2.0 ± 0.3 2.6 ± 0.4 2.0 ± 0.3 2.6 ± 0.4

Fraction 0.20 ± 0.04 0.46 ± 0.05 0.70 ± 0.06

Fit to model 4: individual fits r0 25.2 ± 0.4 32.8 ± 3.1 26.2 ± 0.9 33.7 ± 1.1 25.6 ± 0.7 33.1 ± 0.5

σr 1.9 ± 0.4 3.4 ± 2.6 2.6 ± 0.9 2.1 ± 0.9 1.6 ± 0.7 2.6 ± 0.5

Fraction 0.24 ± 0.15 0.36 ± 0.14 0.70 ± 0.07
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parameters defining either the global rotational diffusion
(Hustedt et al., 1993; Hustedt and Beth, 1995, 2001; Stein et al.,
2002; Hustedt and Beth, 2004) or the distance between and
relative orientation (Hustedt and Beth, 1996; Hustedt et al.,
1997; Hustedt and Beth, 1999; Ghimire et al., 2012; Sahu et al.,
2014) of spin labels. In an early example of the use of global
analysis for DEER data, Goldfarb and colleagues investigated the
cAMP-induced conformational change in the carboxy-terminal
cyclic nucleotide binding domain (NBD) of the HCN2 ion chan-
nel (Collauto et al., 2017). A total of 26 DEER datasets collected
either at equilibrium as a function of cAMP concentration or at
varying time points following addition of stoichiometric cAMP
using a microfluidic rapid freeze quench apparatus. All datasets
were fit with three Gaussian components representing two dif-
ferent conformations: open and closed. The centers and widths of
the three Gaussians and the relative amplitude of the two Gaussian
components representing the open state were linked. The relative
fractions of the open versus closed states were varied across the
different datasets. Modeling the ligand-induced conformational
transition using a four-state model,

apo closed + cAMP#apo open + cAMP#
bound open#bound closed,

the fractions of the open and closed conformations were used to
quantify the three corresponding equilibrium constants and to
estimate the six transition rates.

Mchaourab and coworkers have globally analyzed DEER data
to investigate the ligand-dependent functional dynamics of a
number of membrane transporters, including ion-dependent
secondary transporters (Masureel et al., 2014; Dastvan et al.,
2016; Martens et al., 2016; Claxton et al., 2018; Paz et al., 2018;
Jagessar et al., 2020) and ATP-dependentmultidrug transporters
(Mishra et al., 2014; Verhalen et al., 2017; Dastvan et al., 2019).
Using previously published data, we present below details of
how global analysis has advanced the understanding of ligand-
dependent conformational equilibrium in a way that would not
be possible from the individual fits.

P-glycoprotein 1 (Pgp)
The use of DEER to investigate the conformational dynamics of
the ABC transporter Pgp provides an instructive example of the
benefits of global analysis. Although the initial DEER study was

performed on the basis of a single crystal structure (Verhalen
et al., 2017), the recent determination of multiple cryo-EM
structures (Alam et al., 2018; Kim and Chen, 2018; Alam et al.,
2019) illustrates the unique and complementary insight con-
tributed by DEER analysis (Dastvan et al., 2019). Pgp is a
mammalian ATP-binding cassette transporter capable of pump-
ing a wide array of xenobiotic substrates out of cells (Aller et al.,
2009; Jin et al., 2012; Li et al., 2014; Kim and Chen, 2018).
Moreover, a number of inhibitors have been developed in search
of a strategy to increase the efficacy of cancer chemotherapy
(Chufan et al., 2016). Here, we focus on data collected in the
presence of different substrates and inhibitors of Pgp.

An extensive set of spin label pairs was introduced to study
the functional dynamics of Pgp under different biochemical
conditions that favor specific conformational states (Verhalen
et al., 2017; Dastvan et al., 2019). Here, we focus on a pair of
sites, 511 and 1043, within NBDs 1 and 2, respectively, which
come together to form two nucleotide binding sites (NBS; Fig. 5).
In the presence of ATP and inorganic vanadate (Vi), Pgp can form
a state that mimics the post-hydrolysis transition state where
ADP and phosphate are trapped in the binding sites. Under these
conditions, DEER data from Pgp show an equilibrium between
distinctly different conformational states (Verhalen et al., 2017)
dependent on the substrate present. Fig. 6 shows 10 DEER traces
collected for Pgp labeled at 511/1043 in the presence of ATP/Vi

and either no substrate, 7 different substrates, or 2 inhibitors of
transport (Dastvan et al., 2019).

The analysis of these 10 datasets individually using either
Tikhonov regularization or model-based fitting gives broad
multicomponent distance distributions that depend strongly on
the substrate (Fig. S7). Using either approach, however, it is
difficult to draw firm conclusions about the conformations ev-
ident in these distributions. To test the utility of global analysis
for these data, three different models were used in combined fits
(Table 5). Models 1 and 2 employ three and four conformational
states, respectively, each modeled as a single Gaussian compo-
nent. The r0 and σr values of these Gaussians were linked across
all 10 datasets while the amplitudes of the components, the
modulation depths, background factors, and scale factors varied.
For the conformation with the shortest mean interspin distance,
the two NBDs are tightly bound together, trapping ADP/Vi

within NBS 2. The intermediate distance component (and its

Table 4. Model statistics from fitting simulated data in Fig. 4

Model n Linked q SSR χ2υ BIC ΔBIC

1 1 r0 and σr 11 0.13044 1.7759 -6776.0 422.3

2 1 Nothing 15 0.08557 1.1268 -7106.9 91.4

3 2 r0 and σr 16 0.07588 0.9945 -7198.3 0.0

4 2 Nothing 24 0.07503 0.9945 -7153.3 45.1

5 3 r0 and σr 21 0.07532 0.9944 -7170.2 28.1

6 3 Nothing 33 0.07377 0.9878 -7108.0 90.3

The models differ in the number of Gaussian components, n, used to define the distance distributions and in how their parameters are linked for the different
datasets. In all models, the modulation depths, Δ, and the background parameters, η, for the different datasets are not linked. A video (Video 3) demonstrating
the use of GLADDvu to perform the fits of these simulated data is available.
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corresponding conformation) is highly populated only in the
presence of the two inhibitors, tariquidar and zosuquidar, or
vinblastine, which can act as an inhibitor at high concentrations.
The two components with the longest mean distances corre-
spond to those seen in the absence of any nucleotide (apo state).
Model 3 specifically tests whether the apo-like contributions to
P(R), evident at the longer distances, can be fit as a single con-
formation modeled by two Gaussian components with a linked
ratio across all conditions. Based on the ΔBIC values in Table 5,
model 2 is the optimal model. The increase in BIC (ΔBIC � 19.3)
for model 3 versus model 2 indicates that there are distinct apo-
like conformations for different substrates. The separation of
these underlying conformational states is much clearer using
model-based global analysis, and the quality of the fits in Fig. 6 A
suggests that, indeed, there is a common set of protein con-
formations across all 10 experimental conditions.

Global analysis also allows enhanced quantitative analysis of
the relative populations of the various conformations. Those
substrates that induced the largest population of the tightly
bound component were most efficient in stimulating ATP
turnover, resulting in a linear relationship between this com-
ponent’s population and the natural logarithm of stimulated ATP
turnover rate constant, kcat (Fig. 6 C; Dastvan et al., 2019). These
results demonstrate that, using global analysis, the equilibrium
populations of protein conformations determined from the
global analysis of DEER data can be quantitatively related to the
function dynamics of the protein and that important mecha-
nistic insights can be obtained.

A demonstration of the use of GLADDvu to perform the fits of
these Pgp datasets to models 1–3 is available in Video 4.

LmrP
LmrP is a multidrug transporter from Lactococcus lactis and a
member of the major facilitator superfamily whose transport is
driven by the proton gradient (Fig. 7; van Veen et al., 1999; van
Veen, 2001). In a series of papers, DEER spectroscopy has been
used to define the protonation-dependent isomerization of the
transporter between inward-facing and outward-facing con-
formations (Masureel et al., 2014; Martens et al., 2016;
Debruycker et al., 2020). Fig. 8 shows DEER data from LmrP
collected at eight different pH values with labels placed at res-
idues L160C and I310C at the extracellular ends of TM helices 5
and 10, respectively. In Fig. S8, the individual DEER traces have
been analyzed using both model-based and model-free ap-
proaches. Collectively, these data are qualitatively consistent
with a model where TM helices 5 and 10 move closer and be-
come more ordered, closing the extracellular gate, as residues
within the pore are protonated. The shift from the OO to OC
state is reflected in a transition from a broad unimodal P(R) at
pH 8.0 centered at ∼46 Å to a multimodal P(R) at pH 4.6 with a
narrower component centered at ∼37 Å. This qualitative inter-
pretation of these data raises the question of whether they are
consistent with a single set of conformations of the protein, OO
and OC, which would give rise to an ideal pair of distributions,
P’oo(R) and P’oc(R), respectively. If so, for each of the Pi(R) cor-
responding to the eight datasets

Pi(R) � [1 − Coo(pH)]P’
oc(R) + Coo(pH)P’

oo(R),
where Coo(pH) is the pH-dependent fraction of the protein in the
OO conformation. P’oo(R) and P’oc(R) can be used for modeling the
two conformational states of the protein, and the set of Coo(pH)

Figure 5. The conformational shift of Pgp. Left: The mouse Pgp structure in the inward-facing conformation (Li et al., 2014). Highlighted are two residues,
511 and 1043, which are on opposite halves of Pgp. Middle: The structure of human Pgp in the outward-facing conformation (Kim and Chen, 2018). Right: The
closure of the NBDs is shown in detail, highlighting the nearness of the residues 511 and 1043 in the outward-facing conformation. PDB, Protein Data Bank.
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can be used for quantifying the equilibrium between the two
conformations, providing ameasure of the pH dependence of the
stability of the two conformations.

Using the model-based approach, all of the DEER traces with
the exception of the pH 6.0 data are optimally fit with n =
2 Gaussian components. At the lower pH values, the two com-
ponents with means separated by ∼10 Å clearly correspond to
OC and OO conformations. At the higher pH values, the two

components have similar r0 values, one broad and one narrow.
These results suggest that three Gaussian components will be
needed for the optimal global fit to the eight traces and raise the
question of what the broad component evident at higher pH
values represents.

The full set of models tested against the eight LmrP DEER
traces are listed in Table 6. Models 1 and 2 fit the datasets in-
dividually with two or three Gaussian components and no

Figure 6. Global analysis of Q-band DEER data for Pgp spin labeled with MTSSL at residues 511 and 1043. (A) Samples were prepared in mixed micelles
with ATP and Vi in the presence and absence of substrates and inhibitors as indicated (Dastvan et al., 2019). The scaled data are shown as filled colored circles,
and the best fits obtained from global analysis using model 2 (Table 5) are shown as solid black lines. (B) The best-distance distributions obtained using model
2 to fit the Pgp data with the associated 2σ (95%) confidence bands as shaded regions. The R0 values of the four components are indicated by the arrows.
(C) The substrate-induced population of the shortest distance component is correlated with the activation energy of ATP turnover.

Table 5. Statistics of fitting Pgp data (Fig. 6)

Model n Linked q SSR χ2ν BICWLS ΔBICWLS

1 3 Gaussians 56 2.5980E-02 1.2183 −36,842.8 62.2

2 4 Gaussians 68 2.4681E-02 1.1593 −36,905.0 0.0

3 4 Gaussians and ratio of two longest 59 2.5623E-02 1.1921 −36,885.7 19.3

The models differ in the number of Gaussian components, n, used to define the distance distributions and in how their parameters are linked for the different
datasets. In all models, the modulation depths, Δ, and the background parameters, η, for the different datasets are not linked. A video (Video 4) demonstrating
the use of GLADDvu to perform the fits of these Pgp data is available.
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parameters linked. Models 3 and 4 fit the data globally with two
or three conformations, with each modeled as a single Gaussian
component. For these models, the values of r0 and σr are linked
across all datasets, and the amplitudes, modulation depths,
backgrounds, and scale factors are not linked. Models 5, 6, and 7
all use three Gaussians with the values of r0 and σr linked and
different ways of linking some of the amplitude variables. For
model 5, the OC conformation is modeled by a single Gaussian,
and the OO conformation is modeled by two Gaussians, with a
linked ratio across all eight traces. For model 6, the OO confor-
mation is modeled by a single Gaussian, and the OC conforma-
tion is modeled by two Gaussians, with a linked ratio across all
eight traces. For model 7, the OO and OC conformations are both
modeled by single Gaussians, and a third component contributes
a linked fraction across all eight datasets.

Of the seven models tested, model 7 is optimal according
to the BIC values (Table 6). Model 7 fits the data to n = 3
Gaussian components (Fig. 8). For two of these, the frac-
tional contribution is pH dependent, one corresponding to
OC state r0 � 36.5 ± 0.1Å; σr � 0.8 ± 0.1 Å

� �
and one corre-

sponding to the OO state r0 � 47.4 ± 0.1 Å; σr � 2.1 ± 0.4 Å
� �

.
The fractional contribution of the third Gaussian
r0 � 42.4 ± 4.8 Å; σr � 5.0 ± 1.7 Å

� �
is independent of pH. This

third component could account for one or more of a number of
factors, including non-Gaussian character of the true P(R),
deviation of the background factors from true exponentials, or
the presence of nonfunctional protein in the sample. Assuming
the latter, the fraction of OO functional protein have been
plotted and fit to determine a pK for the transition between the
two conformations. Significantly, when the appropriate values
of Coo(pH) are fit to a titration curve, models 3, 5, 6, and 7 all
give similar pK values (Table 6). Although including a third,
pH-independent population did not affect the pK determined
from the titration, the ability to identify such nonfunctional
proteins can in future studies spur changes and optimization of
purification protocols.

Looking ahead
GLADDvu was designed to be a fully flexible tool suitable for a
wide variety of experimental situations beyond the examples

presented in this tutorial. These examples demonstrated how
global analysis of DEER data from one spin-labeled mutant ob-
tained under different ligand conditions gives enhanced quali-
tative insights into the functionally relevant dynamics of
integral membrane proteins complete with error analysis of the
fit parameters. One could consider analyzing data from multiple
mutants under a common set of ligand conditions with different
P’ R( ) and a common set of Cij . Such analyses would test whether
domains are moving as rigid bodies or whether the spin labels
have any influence on equilibrium coefficients.

The model-based approach available with GLADDvu allows
the ligand-dependent fractions of various components to be
determined by the fit while providing the uncertainties of the
parameters as well as the confidence bands for the distance
distributions. Recently, a model-free approach to the global
analysis of DEER data has been developed (Ibáñez and Jeschke,
2020; Ibáñez et al., 2020). As is the case for the analysis of in-
dividual time traces, different approaches to the global analysis
of multiple datasets will provide complementary insights into
the fundamental biological issues under investigation.

Online supplemental material
Fig. S1 shows a screenshot of the answer panel for dataset A of
GLADDvu during the global analysis of simulated data using
model 3. Fig. S2 shows a screenshot of the answer panel for
dataset B of GLADDvu during the global analysis of simulated
data using model 3. Fig. S3 shows a screenshot of the answer
panel for dataset C of GLADDvu during the global analysis of
simulated data using model 3. Fig. S4 shows a global analysis of
the same simulated DEER data as in Fig. 4 using Tikhonov reg-
ularization. Fig. S5 shows a screenshot of the Fit panel of
GLADDvu during the global analysis of simulated data using
model 3. Fig. S6 shows a screenshot of the P(R) panel of
GLADDvu during the global analysis of simulated data using
model 3. Fig. S7 shows distance distributions from individual fits
to the DEER data for Pgp in Fig. 6. Fig. S8 shows results from
individual fits for LmrP data in Fig. 8. Videos 1, 2, 3, and 4
demonstrate the fitting of the data in Fig. 2 using DD and the
fitting of the data in Figs. 2, 4, and 6 using GLADDvu,
respectively.

Figure 7. X-ray crystal structure of LmrP. Related to Debruycker et al. (2020). On the left is a side view of LmrP, and on the right is the top (extracellular)
view of LmrP. Highlighted are two residues, 160 and 310, on opposite halves of LmrP where spin labels have been placed. PDB, Protein Data Bank.
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Appendix
GLADDvu
Our MATLAB software, DD, for the model-based fitting of single
DEER datasets has been described in detail elsewhere (Brandon
et al., 2012; Stein et al., 2015; Hustedt et al., 2018). A separate
MATLAB program, GLADDvu, has been developed for globally
fitting multiple DEER datasets. GLADDvu is designed for maxi-
mal flexibility, allowing the user to create both simple and
complex models with parameters that are fixed, floated, or
linked as desired. A fixed parameter is kept at its initial value
and is not varied during the fit. A floated parameter is varied to

find the best-fit values that minimize the global reduced
χ2 value. A linked parameter for one experimental dataset is
required to have the same value as another floated parameter for
the same or a different dataset.

After reading in multiple files, each dataset is phased. Then,
for each separate experiment, the 0 of the time axis is adjusted
such that the signal maximum occurs at t � 0, and the values of
the DEER signal are scaled such that V t � 0( ) ≈ 1. The noise
variance for a given dataset, σ2

m, is estimated from the variance
of its imaginary component. Various background models can be
selected, including exponential, stretched exponential, and

Figure 8. Global analysis of Q-band DEER data for LmrP spin labeled with MTSSL at residues 160 and 310. Related to Masureel et al. (2014). Samples
were prepared in dodecyl maltoside micelles at eight different pH values ranging from 4.5 to 8.0 as indicated. (A) Overlay of all eight datasets and the fits
obtained from global analysis using model 7 in Table 6. (B) The P(R) obtained for model 7. (C) The OO fraction obtained for model 7 as a function of pH fit to
determine the pK value.
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excluded volume. The distance distribution can be modeled as
the sum of n components (Eq. 6), including Gaussians (Eq. 7).
Minimization of χ2ν is attempted usingMATLAB’s interior point,
global search, or particle swarm algorithms.

The model used to analyze data are specified by the Back-
ground, Components, Shape, and Linked dropdown menus and
can be further modified using the individual Answer File
spreadsheets for each dataset (Figs. S1, S2, and S3). As seen in the
third column of these spreadsheets, for each of the three datasets,
there are eight parameters that are floated (i.e., they are not fixed).
These are Δ (depth), η (eta), r01, σr1, r02, σr2, a2 (amp_2), and a
scale factor (∼1). The r01, σr1, r02, and σr2 parameters for experi-
ments 2 and 3 are linked to the corresponding parameters for ex-
periment 1, as specified in the fourth and fifth columns of the
Answer File spreadsheet, ensuring that the same two Gaussian
components are used to define the best-fit P(R) for the two datasets.

The parameter dimension corresponds to d in Eq. 5. For d = 3,
concentration is the effective spin concentration assuming a ho-
mogeneous 3-D solution of spins for the given modulation depth.

[spin] (μm) � 0.001 ×
10η

Δ

The parameters β and ζ can be used for defining three non-
Gaussian component shapes, a generalized normal distribution
with nonzero excess kurtosis, a skew normal distribution with
nonzero skew, and a generalized skew normal distribution with
nonzero excess kurtosis and skew as defined in equations S1–S3 of
Hustedt et al. (2018). Here, the parameters are automatically fixed
to values, β = 2 and ζ = 0, appropriate for Gaussian components.

The fits to the data and corresponding P(R) are displayed in
the fit (Fig. S5) and P(R) (Fig. S6) panels, respectively. Statistics
for all fits are displayed in the statistics panel. Videos are pro-
vided to demonstrate the use of DD and GLADDvu to perform the
fits included in this tutorial.
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Supplemental material

Figure S1. Screenshot of the answer panel for dataset A of GLADDvu during the global analysis of simulated data using model 3. Related to Table 4
and Fig. 4 D.
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Figure S2. Screenshot of the answer panel for dataset B of GLADDvu during the global analysis of simulated data using model 3. Related to Table 4
and Fig. 4 D.

Figure S3. Screenshot of the answer panel for dataset C of GLADDvu during the global analysis of simulated data using model 3. Related to Table 4
and Fig. 4 D.
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Figure S4. Global analysis of the same simulated DEER data as in Fig. 4 using Tikhonov regularization. (A) The data are shown as filled circles. The best-
fit lines for model 3 (R0 and σR values linked) are shown as solid black lines. The dashed colored lines were obtained using DeerLab version 0.13.2 (Ibáñez et al.,
2020) to perform a global analysis using nonparametric distance distributions based on Tikhonov regularization. (B) P(R) from DeerLab for datasets A (red), B
(green), and C (blue). The black lines are the true P(R) used for the simulations. (C) The P’(R) of the underlying components of the global analysis obtained from
DeerLab are shown in cyan, and the true P’(R) used for the simulations are superimposed as shaded regions. The global Tikhonov fit with unconstrained
fractions of the conformations does not recover the proper distributions of the hypothetical pure conformational states if traces representing the pure
conformations are not included in the data. The model-based approach (Fig. 4) does recover the pure conformational states because it favors P’(R) with a
minimum number of components. If applicable, a chemical equilibrium model and Tikhonov regularization, as is possible with DeerLab, effectively constrains
the mole fractions and can recover the true P’(R).

Figure S5. Screenshot of the fit panel of GLADDvu during the global analysis of simulated data using model 3. Related to Table 4 and Fig. 4 D.
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Figure S6. Screenshot of the P(R) panel of GLADDvu during the global analysis of simulated data using model 3. Related to Table 4 and Fig. 4 D.
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Figure S7. Distance distributions from individual fits to the DEER data for Pgp in Fig. 6. (A) The model-free P(R) were obtained using Tikhonov reg-
ularization in DeerAnalysis 2019 (Jeschke et al., 2006). The optimal regularization factor was determined by generalized cross-validation and the starting time
point for background fitting using the validation tool. (B) The model-based P(R) were obtained assuming a 3-D exponential background and using Gaussian
components in DD (Brandon et al., 2012; Stein et al., 2015; Hustedt et al., 2018). The optimal number of Gaussians, n, was determined using BIC values.

Hustedt et al. Journal of General Physiology S5

Global analysis of DEER data tutorial https://doi.org/10.1085/jgp.201711954

https://doi.org/10.1085/jgp.201711954


Figure S8. Results from individual fits for LmrP data in Fig. 8. On the left, the data are shown as black dots with the individual model-based fits as blue
lines. The corresponding P(R) are shown (black lines) on the right together with those obtained from Tikhonov regularization using DeerAnalysis 2019 (Jeschke
et al., 2006; red lines). The widths of the narrow components at pH 6.5 and 7.0 have large relative uncertainties, σr � 1.1 ± 1.1 Å and σr � 0.6 ± 2.6 Å, owing to
the fact that the modulation is not fully damped over the measured evolution time.
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Video 1. Demonstration of the use of DD (https://github.com/erichustedt/DD) to perform the model-based fits of a T4L dataset. The fits listed in
Table 1 and Table 2 using n = 1, 2, and 3 Gaussians are perforrmed using DD. The optimal results, as determined by BIC values, were obtained for n = 2 and are
shown in Fig. 2. The dataset (T4L065-080M_08) is available for dowload.

Video 2. Demonstration of the use of GLADDvu (https://github.com/erichustedt/GLADDvu) to perform the model-based fits of a T4L dataset. The
fits listed in Table 1 and Table 2 using n = 1, 2, and 3 Gaussians are perforrmed using GLADDvu. The optimal results, as determined by BIC values, were obtained
for n = 2 and are shown in Fig. 2. The dataset (T4L065-080M_08) is available for dowload.

Video 3. Demonstration of the use of GLADDvu (https://github.com/erichustedt/GLADDvu) to perform the model-based global analysis of three
simulated datasets. The fits to the six different models listed in Table 4 are performed. The optimal results, as determined by BIC values, were obtained for
model 3 and are shown in Fig. 4. The datasets (Fig. 4, A–C) are available for dowload.

Video 4. Demonstration of the use of GLADDvu (https://github.com/erichustedt/GLADDvu) to perform the model-based global analysis of the Pgp
datasets. The fits to the three different models listed in Table 5 are perforrmed. The optimal results, as determined by BIC values, were obtained for model
2 and are shown in Fig. 6.
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