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Feeding biopharma pipelines with biotherapeutic candidates that
possess desirable developability profiles can help improve the
productivity of biologic drug discovery and development. Here, we
have derived an in silico profile by analyzing computed physicochem-
ical descriptors for the variable regions (Fv) found in 77 marketed
antibody-based biotherapeutics. Fv regions of these biotherapeutics
demonstrate significant diversities in their germlines, complementarity
determining region loop lengths, hydrophobicity, and charge distribu-
tions. Furthermore, an analysis of 24 physicochemical descriptors, cal-
culated using homology-based molecular models, has yielded five
nonredundant descriptors whose distributions represent stability, iso-
electric point, and molecular surface characteristics of their Fv regions.
Fv regions of candidates from our internal discovery campaigns, hu-
man next-generation sequencing repertoires, and those in clinical-
stages (CST) were assessed for similarity with the physicochemical pro-
file derived here. The Fv regions in 33% of CST antibodies show phys-
icochemical properties that are dissimilar to currently marketed
biotherapeutics. In comparison, physicochemical characteristics of
∼29%of the Fv regions in human antibodies and∼27%of our internal
hits deviated significantly from those of marketed biotherapeutics.
The early availability of this information can help guide hit selection,
lead identification, and optimization of biotherapeutic candidates. In-
sights from this work can also help support portfolio risk assessment,
in-licensing, and biopharma collaborations.
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Antibody-based drug products have emerged as the best-
selling class of biopharmaceuticals in recent years. How-

ever, only 18% of biotherapeutic drug candidates entering Phase
I clinical trials today will be available in the market after several
years (1). This is because discovery of functional biotherapeutic
candidates is only an initial step. Newly discovered drug candi-
dates must translate into drug products via a series of product
development processes and clinical trials. Requirements of chem-
istry, manufacturing, and control (CMC), pharmacology, safety, and
efficacy as well as business decisions influence chances of successful
translation of discoveries into drug products (2–4). Therefore, drug
discovery scientists need to include considerations of developability
(5) along with function while nominating a biotherapeutic candidate
for development. In recent years, the concept of developability has
gained acceptance in the biopharmaceutical industry, and several
approaches are being developed as manifest in the book edited by
Kumar and Singh (5). However, developability is often interpreted
as being limited to CMC and biophysical aspects of drug product
development (6–13). Concurrently, the concept of “drug likeness” is
also being developed for biopharmaceuticals by analyzing sequences
and structural models of antibody-based biotherapeutic candidates
in the clinic (14, 15). Both trends can help improve the productivity
of biologic discovery and development projects by enabling a
greater number of biotherapeutic candidates to reach clinical de-
velopment (1). There is, however, significant attrition during all
three stages of clinical trials (1), and it is therefore important to
make a distinction between antibody-based biotherapeutics already
in the market and drug candidates in Phases I to III of the
clinical trials.

Numerous factors, both intrinsic and extrinsic to the primary
sequence, contribute significantly toward successful translation
of a biologic drug candidate as it progresses through a complex
series of processes. The generation of antibodies against a target
is usually the first stage in biotherapeutic drug discovery and
development projects. At this stage, only amino acid sequences of
potential hits are available. Is it feasible to estimate whether a newly
discovered hit has a potential to become a biotherapeutic product?
We hypothesize that a truly developable drug candidate should
possess an intrinsic physicochemical profile that would embody
manufacturability, safety, efficacy, and pharmacology in a holistic
manner. Many of these aspects are interrelated because physico-
chemical characteristics of a biotherapeutic are inherent to its
in vivo performance. For example, most aggregation-prone regions
found in therapeutic antibody sequences and major histocompati-
bility complex II T cell immune epitopes overlap with the com-
plementarity determining regions (CDRs) (16–18). Charge and
isoelectric point (pI) of therapeutic antibodies play a role in their
pharmacokinetics and pharmacodynamics (PK/PD), and clearance
(4, 19, 20). Some undesirable events, other than those linked to the
specific biology of a target, may also be inherent to a biotherapeutic
drug candidate. For example, the generation of the antidrug
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antibodies (ADAs) against biotherapeutics can affect their immu-
nogenicity, safety, efficacy, stability in human serum, PK/PD, and
clearance (21–26). In addition to intrinsic factors, many external
elements associated with manufacturing, formulation and product
development, safety, toxicology, pharmacology, clinical trial designs
and outcomes, and risk versus benefit profile of a biotherapeutic
drug candidate in relation to patient indication(s) can also signifi-
cantly affect its translation.
We have derived an intrinsic physicochemical profile by ana-

lyzing sequence and structural attributes of 79 Fv regions from 77
approved antibody-based biotherapeutics via computational means.
In this first step, we chose Fv regions of marketed biotherapeutics as
the most fundamental aspect to be studied objectively via stan-
dardized computational methods because they are amenable to
high-throughput modeling, descriptor calculations, and analyses.
The intrinsic physicochemical characteristics that can be studied
using computational means include a) amino acid sequence pat-
terns such as aggregation-prone regions, chemical liability motifs,
and immune epitopes; b) molecular surface features such as three-
dimensional locations of charged and hydrophobic residues; and c)
physicochemical descriptors, such as pI, charge, and hydrophobicity,
computed using homology-based molecular models. Expectedly,
computed physicochemical descriptors are related to biophysical
aspects of antibody solution behavior such as stability, viscosity, and
aggregation (4, 27). However, physicochemical descriptors were also
found to be correlated with other aspects such as PK/PD of
monoclonal antibodies (4, 28, 29). Recently, Tessier and coworkers
have derived amino acid composition–based physicochemical rules
to distinguish antibody sequences that drive nonspecific interactions
from those that do not (30, 31). Additionally, Finlay et al. have
shown that re-engineering the paratope for an anti–PD-1 antibody,
camrelizumab, mitigated its poly-specificity issues (32). Therefore,
physicochemical attributes encoded by sequence and structural
properties of biotherapeutic candidates can influence their behav-
iors both in vitro and in vivo.
An intrinsic physicochemical profile derived by analyzing

molecular sequence and structural characteristics of marketed
biotherapeutics, all of which have been proven to withstand different
physicochemical stresses during commercial scale manufacturing,
shipping, storage, and administration as well as possess acceptable
safety, efficacy, and pharmacology as tested in clinical trials and the
market, can be valuable toward the following use cases: 1) help
prioritize thousands of hits generated from antibody discovery
campaigns for initial small scale production and experimental test-
ing; 2) contribute toward lead identification from a pool of hits
shown to be functional and of reasonable biophysical quality from
initial experiments; 3) guide optimization of the lead molecules for
developability by identifying physicochemical properties with sub-
optimal values; 4) analyze biotherapeutic candidates currently in
development from a perspective of portfolio risk assessment; and
finally, 5) contribute toward molecular assessments during in-
licensing collaborations among academic/industrial partners.
We hypothesize that the holistic physicochemical profile derived

in this work shall contribute toward improved productivity of drug
discovery and development projects. It should also be mentioned
that there is little self-consistent experimental data on marketed
biotherapeutics in the public domain yet, although a few noteworthy
attempts have been made (14, 33). Analogous to similar rules
proposed to guide small molecule drug discovery (34–36), we an-
ticipate that this work will prove useful for biotherapeutics as well.

Results
A General Survey of Antibody-Based Biotherapeutics Currently Available
in Market. Dataset S1 provides names, sequences, and molecular
formats of all 78 antibody-based biotherapeutics that were avail-
able in the market as of early 2020. Of them, 77 have been approved
for human use, and one (lokivetmab) is for the treatment of atopic
dermatitis in canines. Of these 78 biotherapeutics, 76 (97%)

are monospecific antibodies, and two are bispecific antibodies
(emicizumab and blinatumomab). Full-length monoclonal an-
tibody (mAb, 72 out of 78, 92%) is the most common molecular
format among these 78 biotherapeutics. Among the full-length mAbs,
51 (71%) are IgG1s, 9 (12%) are IgG2s, and 12 (17%) are IgG4s.
Four of the remaining six biotherapeutics are Fabs (namely, abcix-
imab, certolizumab, idarucizumab, and ranibizumab), one is scFv
(BiTE, bispecific T cell engager, blinatumomab), and the last one is
Fv (moxetumomab). The light chains for 73 (92%) of the 78 bio-
therapeutics are of kappa (κ) isotype, and the remaining five (6%)
are lambda (λ) (Dataset S2). Interestingly, all λ light chains belong to
full-length mAbs; heavy chain isotypes in three (avelumab, belimu-
mab, and guselkumab) of them are immunoglobulin G1 (IgG1), and
the remaining two (erenumab and evolocumab) are IgG2.
The marketed biotherapeutics serve several therapeutic areas

including oncology, inflammation, autoimmune disorders, and
chronic diseases, among others (Dataset S2). They also come from
diverse sources. Of them, 28 (36%) are fully human, 34 (44%) are
humanized, 9 (12%) are chimeric, 6 (8%) are murine, and the last
one (lokivetmab) is of canine origin. We focus on 79 Fvs from 77
biotherapeutics for human use in this work and exclude lokivetmab
from further analyses.

There Is No Germline Pair Preference amongMarketed Biotherapeutics.
Currently marketed antibody-based biotherapeutics utilize diverse
germlines. Heavy chains in 15 (19%) of them belong to a single
germline, namely, IGHV1-46*01, while the remaining 62 heavy
chains are distributed across 32 different germlines as shown in SI
Appendix, Fig. S1A. Similarly, 31 light chains belong to one of the
following three germlines, IGKV1-39*01, IGKV3-11*01, and
IGKV1-33*01 (SI Appendix, Fig. S1B). The remaining 46 light
chains belong to 25 different germlines as shown in SI Appendix,
Fig. S1B. Table 1 presents the five most frequent variable heavy
(VH) and variable light (VL) germline pairs found in 77 marketed
biotherapeutics. Interestingly, the most common heavy chain
germline IGHV1-46*01 pairs with the most common light chain
germline IGKV1-39*01 only five times (Table 1). Additionally,
only three Fv regions pair IGHV1-46*01 with IGKV3-11*01, the
second most common light chain germline. These observations
show that there are no germline pairing preferences among the
marketed antibody-based biotherapeutics.

Diversity in CDR Lengths. Lengths of four out of the six CDR loops
remain constant in 77 marketed antibody-based biotherapeutics,
while those of the remaining two CDRs vary significantly (SI
Appendix, Table S1). The first CDRs in light chains (LCDR1s)
range from 10 to 17 (average = 12 ± 2) residues in length, while
lengths of LCDR2 (seven residues) and LCDR3 (9 ± 1) loops
remain constant. Among the heavy chains, the first and the
second CDRs (HCDR1 and HCDR2) are also constant in length
(HCDR1, 10 ± 1; HCDR2, 17 ± 1), while the HCDR3 loops vary
in length from merely four residues in dinutuximab to 21 resi-
dues in erenumab (average length =11 ± 3, SI Appendix, Table
S1). These findings agree with an earlier study by Raybould et al.
that involved 242 clinical-stage antibodies (15). HCDR3 length
diversity in biotherapeutics reflects the diversity of antigens these

Table 1. Five most frequent VH and VL germlines in 77 marketed
antibody-based biotherapeutics

VH germline No. VL germline No. No. of germline pairs

IGHV1-46*01 15 IGKV1-39*01 11 5
IGHV1-46*01 15 IGKV3-11*01 11 3
IGHV3-23*04 5 IGKV1-NL1*01 5 3
IGHV3-7*01 3 IGKV3-20*01 6 2
IGHV1-3*01 4 IGKV1-33*01 9 2
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antibodies bind to since HCDR3 loops are often the major
contributors toward antigen binding (16).

CDR Charge Diversity. CDRs in VL and VH domains of bio-
therapeutics show significant diversity in charge. The total charge
on CDRs in VL and VH domains of 77 marketed biotherapeutics is
shown in SI Appendix, Fig. S2. This calculation was performed
using amino acid sequences of CDRs and does not consider their
conformational attributes. There are 79 Fvs within the 77 mar-
keted biotherapeutics because one of them is a bispecific antibody,
and another is a BiTE. Salient observations are described below:

1) Of VL CDRs, 53 (67.1%) are positively charged, 17 (21.25%)
are neutral, and 9 (11.25%) are negatively charged. On the
other hand, 39 (49.4%) VH CDRs are negatively charged, 27
(34%) are neutral, and only 13 (16%) are positively charged
(SI Appendix, Fig. S2A). This leads to CDR charge asymmetry
in 56 (∼71%) of the 79 Fv regions. In 32 of these 56 Fvs, the
CDRs in VH and VL domains are oppositely charged, while
the remaining 24 Fvs contain either the VH or VL domain with
the total charge on their CDRs being 0. Similar observations
have been previously made for clinical-stage antibodies (15).

2) Out of the 32 Fvs, 30 (∼94%) with oppositely charged CDRs
are comprised of the negatively charged CDRs in VH domains
and the positively charged CDRs in VL domains. The remain-
ing two oppositely charged Fvs are comprised of the positively
charged CDRs in the VH and the negatively charged CDRs in
the VL domains (SI Appendix, Fig. S2 B and C).

3) Among the 24 Fvs that contain CDRs with a total charge of 0 in
either VH or VL domains, 14 (58%) contain CDRs with 0 total
charge in their VH domains and positively charged CDRs in
their VL domains. Three Fvs comprise CDRs with zero total
charge in VH and negatively charged CDRs in VL domains.
Negatively charged CDRs in VH domains and CDRs with zero
total charge in VL domains were observed for five Fvs. The
remaining two of the 24 Fvs contain positively charged CDRs
in VH, and those in VL domains have zero total charge.

4) Of the 79 Fvs, 23 (∼29%) do not show CDR charge asymmetry.
CDRs in both the domains have 0 total charge in 10 of these 23
Fvs. Another nine of these 23 Fvs contain positively charged
CDRs, and the remaining four contain negatively charged
CDRs in both the domains (SI Appendix, Fig. S2 B and C).

CDR Hydrophobicity. Hydrophobic residues also show differences
in their incidences within the CDR loops. The average number
of hydrophobic residues (A, I, L, F, W, Y, V, M, G, and P) in
LCDR1, LCDR2, and LCDR3 loops of VL are 5 ± 1, 3 ± 1, and
4 ± 1, respectively (SI Appendix, Table S1). They account for
43 ± 7, 38 ± 12, and 42 ± 12% of all the residues in these three
light chain CDRs, respectively. In the case of VH domains, the
average number of hydrophobic residues in HCDR1, HCDR2,
and HCDR3 are 6 ± 1, 9 ± 1, and 7 ± 2, respectively (SI Ap-
pendix, Table S1). They account for 58 ± 8, 51 ± 8, and 66 ± 13%
of all residues in these three heavy chain CDRs, respectively. In
summary, a majority of the residues in light chain CDRs are
hydrophilic, while those in heavy chain CDRs are hydrophobic in
the 79 Fvs.
The diversities in CDR lengths, charges, and hydrophobicity

are likely driven by diversities in the electrostatic and hydro-
phobic characteristics of the antigens as well as of the epitope
regions the marketed biotherapeutics recognize. However, these
diversities can also have important implications for their in vitro
and in vivo behaviors.

Physicochemical Attributes of the Fv Regions of Marketed Biotherapeutics.
Homology-based molecular models of the 79 Fv regions of the
77 marketed biotherapeutics were used to compute different
protein descriptors available in MOE2018. These descriptors

cover stability, electrostatic, and hydrophobic features of the Fv
regions and their molecular surfaces.
Several computed descriptors such as protein mass, Debye

length, and so on remain nearly constant among all the 79 Fvs.
These were discarded, and a set of 24 descriptors that show
larger variations were selected for further analyses. Pairwise
Pearson’s linear correlation coefficients show statistically signif-
icant correlations among them (Fig. 1A). A clustering of de-
scriptors based on Pearson correlations among them allowed us
to select five nonredundant descriptors with different physico-
chemical meanings. These descriptors show low values of pair-
wise correlations with one another (Materials and Methods and
Fig. 1 B and C). To test the robustness of the method used in our
work, this process was repeated four more times by setting aside
10 randomly selected biotherapeutics. There were minor differ-
ences in the clusters due to the smaller number of data points (69
Fvs instead of 79 Fvs). However, this did not affect selection of
the five nonredundant descriptors (SI Appendix, Fig. S3 and
Dataset S2). The distributions of these five descriptors inform us
about stability, electrostatics, and molecular surface properties
of Fv regions.
Table 2 and Fig. 2 summarize distributions of the five non-

redundant physicochemical descriptors for the 79 Fvs. These
distributions were further divided into different classes based on
the year of approval for biotherapeutics (older versus newer
biotherapeutics, with 2015 arbitrarily chosen as the transition
year), route of administration (intravenous versus subcutane-
ous injections), formulation buffer pH (above or below pH 6),
and concentration (low versus high concentration liquid for-
mulations). Intrinsic physicochemical profiles were rederived
for each of these classes by reclustering the descriptors (SI
Appendix, Fig. S4 and Dataset S2) and computing the values of
average, SD, and range for each of the five nonredundant de-
scriptors in each class. These results are also shown in Table 2.
No statistically significant differences among the average values
of five nonredundant descriptors in these categories were ob-
served (P value = 1.0, Table 2). This suggests that the physi-
cochemical profile derived in this work is truly intrinsic to
sequence and structural characteristics of Fv portions of the
marketed biotherapeutics. The following text discusses insights
gained from these distributions of five nonredundant descrip-
tors for all 79 Fvs.

Variable Domain Interface Stability: Surface Area Buried between VL

and VH Domains (BSA_VL: VH). Interaction between the VL and VH
domains contributes toward the stability of an Fv region and
indicates compatibility between them. Lower compatibility be-
tween VL and VH domains make Fv regions more flexible, which
can potentially initiate misfolding or domain interface rear-
rangements and lead to reduced antigen-binding affinity (37, 38).
Furthermore, smaller surface areas buried between VL and VH
domains can also potentially lower an Fv region’s conformational
stability at a given temperature (38). In this dataset, BSA_VL: VH in
the 79 Fvs of antibody-based biotherapeutics ranges from 618 to
1,046 Å2 (average = 797 ± 81Å2, Fig. 2A). The red dotted line in
Fig. 2A indicates average value. The distribution plot shows that the
majority lies near the mean, while a few Fv regions exhibit high and
low BSA_VL: VH values. For example, the variable domains of
inotuzumab and moxetumomab are highly compatible (BSA_VL:
VH, 1,046 and 1,026 Å2, respectively), whereas those in dinutuximab
and nivolumab show lower than average compatibilities (BSA_VL:
VH, 629 and 618 Å2, respectively). Fig. 2A also shows the value of
BSA_VL: VH for trastuzumab (736 Å2) as a green dotted line.
Throughout the plots of physicochemical descriptors, we have used
trastuzumab as a reference because this antibody has been known to
possess good physicochemical attributes (14).

Ahmed et al. PNAS | 3 of 11
Intrinsic physicochemical profile of marketed antibody-based biotherapeutics https://doi.org/10.1073/pnas.2020577118

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020577118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020577118


Structure-Based pI of Fv Region (pIFv_3D). The pI of the Fv region of
an antibody influences its solution properties (27) in vitro and
PK/PD in vivo (19). Both sequence- and structure-based methods
can calculate pI, and both have been shown to correlate well with
experimental pI measurements (39). Fig. 2B shows the distribution
of structure-based pI values for Fv regions of antibody-based bio-
therapeutics currently available in the market. The pIFv_3D values
range from 4.28 to 9.50 (average = 7.9 ± 1.2, Table 2), and the

pIFv_3D of trastuzumab is 8.4 (red and green dotted lines in
Fig. 2B). The distribution for pIFv_3D is long tailed, with a small
population of molecules exhibiting low pIFv_3D values. The lowest
pIFv_3D values are shown by abciximab and brentuximab
(pIFv_3D = 4.2 and 4.6, respectively), and the greatest pIFv_3D
values are shown by alemtuzumab and erenumab (pIFv_3D = 9.5
for both). Values of the formulation buffer pH range from 4.8 to 8
for the 77 marketed biotherapeutics (Dataset S2). The difference

A B

C

Fig. 1. (A) Linear correlations among physicochemical descriptors computed from homology-based models of the 79 Fv regions of 77 marketed antibody-
based biotherapeutics. Correlations among these descriptors range from −1 (red) to +1 (blue). (B) Cluster analysis of 24 descriptors that show significant
variations among different Fv regions. These 24 descriptors were grouped into five clusters shown in assorted colors. The five noncorrelated descriptors
selected from these clusters are highlighted in the red boxes. (C) Selected five noncorrelated descriptors. These descriptors demonstrate low statistical
correlation coefficients (r < 0.3) among themselves and have different physicochemical meaning. These properties are surface area buried between VL and VH

domains (BSA_VL: VH), structure-based isoelectric point (pIFv_3D), ratio of dipole and hydrophobic moments (RM), ratio of charged to hydrophobic surface
patches (RP), and hydrophobic anisotropy (Avg_HI).

Table 2. Average, SD, and range values for the five nonredundant descriptors for 79 Fvs in 77 marketed antibody-based
biotherapeutics and different subsets

Descriptors BSA_VL: VH (Å2) pIFv_3D RM(μD/μH) (D) RP Avg_HI

All 79 Fvs from 77 biotherapeutics approved for human use 797 ± 81 7.85 ± 1.24 1.09 ± 0.58 1.79 ± 0.51 0.97 ± 0.37
(618 to 1,046) (4.28 to 9.5) (0.09 to 3.29) (0.98 to 3.32) (0.3 to 1.92)

43 Fvs from 42 biotherapeutics approved through 2014 787 ± 73 7.8 ± 1.4 1 ± 0.5 1.8 ± 0.5 1 ± 0.3
(618 to 964) (4.3 to 9.5) (0.1 to 2.6) (1.1 to 3.1) (0.4 to 1.9)

36 Fvs from 35 biotherapeutics approved in 2015 and onwards 808 ± 88 8 ± 0.9 1.1 ± 0.7 1.7 ± 0.5 1 ± 0.4
(630 to 1,046) (5.3 to 9.5) (0.2 to 3.3) (1 to 3.3) (0.3 to 1.9)

28 Fvs from 27 biotherapeutics approved for subcutaneous route of
administration

798 ± 68 8.1 ± 0.9 1.1 ± 0.7 1.8 ± 0.5 1.1 ± 0.4
(666 to 955) 5.3 to 9.5 0.1 to 3.3 (1.2 to 3.3) 0.3 to 1.9

51 Fvs from 50 biotherapeutics approved for intravenous route of
administration

792 ± 86 7.8 ± 1.3 1.1 ± 0.6 1.7 ± 0.5 0.9 ± 0.3
(618 to 1,046) (4.3 to 9.5) (0.3 to 2.7) (1 to 3.1) (0.3 to 1.8)

28 Fvs from 28 approved biotherapeutics with a formulation pH < 6 797 ± 68 8 ± 0.9 1.1 ± 0.7 1.6 ± 0.5 0.9 ± 0.4
(644 to 943) (5.1 to 9.5) (0.3 to 3.3) (1 to 3) (0.3 to 1.9)

45 Fvs from 43 approved biotherapeutics with a formulation pH ≥ 6 794 ± 88 7.8 ± 1.3 1.1 ± 0.6 1.9 ± 0.5 1 ± 0.4
(618 to 1,046) (4.3 to 9.5) (0.1 to 2.6) (1 to 3.3) (0.3 to 1.9)

26 Fvs from 25 approved biotherapeutics with Low concentration
(≤10 mg/mL) formulation

794 ± 106 7.6 ± 1.7 1.1 ± 0.6 1.9 ± 0.5 1 ± 0.4
(618 to 1,046) (4.3 to 9.5) (0.4 to 2.7) (1.2 to 3.1) (0.4 to 1.8)

27 Fvs from 27 approved biotherapeutics with high concentration
(≥100 mg/mL) formulation

797 ± 65 8.1 ± 0.8 1.1 ± 0.6 1.8 ± 0.4 1 ± 0.4
(666 to 943) (5.5 to 9.3) (0.1 to 3.3) (1.1 to 3) (0.3 to 1.9)

The routes of administration for three biotherapeutics are intradermal, intramuscular, or intravitreal. Seven biotherapeutics did not have documented pH
values. When a range for pH values was provided, the midpoint of this range was used. All the datasets in this table yield similar values for the five
nonredundant descriptors, and the difference among them are statistically insignificant (χ2 = 0.091 and a P value = 1.0).
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between pIFv_3D and formulation buffer pH has been shown to
determine whether antibody solutions are repulsive or attractive at
high concentrations (27).

The Ratio of Dipole Moment to Hydrophobic Moment. Concentration-
dependent solution behavior of a biologic molecule in a given
solvent is driven by both solute–solute and solute–solvent inter-
actions (40). At the molecular level, these interactions are both
polar and nonpolar. Therefore, distributions of charged and
nonpolar residues in a biologic molecule can influence its solution
behavior. The descriptors, dipole moment (μD) (11) and hydro-
phobic moment (μH) (41, 42), inform us about distributions of
charged and hydrophobic residues in the Fv regions of marketed
antibody-based biotherapeutics. Dipole moment quantifies separa-
tion between positively and negatively charged residues in a biologic
molecule, while hydrophobic moment quantifies the separation be-
tween hydrophobic and hydrophilic residues in it (11). The ratio of
dipole to hydrophobic moments (RM) therefore denotes a balance
between electrostatic and hydrophobic attributes of the biologic
molecules. Average magnitudes of μD and μH for the 79 Fv regions
are 316.7 ± 129.6 D (range = 45.5 to 693.8) and 339.9 ± 143.4
(range = 88.3 to 794.9), respectively, and the ratio (RM = μD/μH)
has an average of 1.1 ± 0.6 D (range = 0.09 to 3.29, Table 2).
Fig. 2C shows the distribution plot for RM. RM of trastuzumab is
0.48 D (μD = 196.3 D and μH = 405.1). Efalizumab shows the
lowest RM with a value of 0.09 D (μD = 45.5D and μH = 480.8),
while galcanezumab displays the highest RM of 3.29 D (μD =
290.5 D and μH = 88.2). These differences in RM lead to consid-
erable differences in Poisson Boltzmann electrostatic surfaces for
the Fv regions of efalizumab and galcanezumab (Fig. 3 A and B).

The Ratio of Surface Areas of Charged Patches to Hydrophobic
Patches. Characteristics of molecular surface patches also influ-
ence solution behavior of an antibody. For example, large
charged and hydrophobic surface patches have been linked to
undesirable aggregation as well as high viscosity in antibody
formulations (4, 15, 16, 43). Moreover, large positively charged
patches vicinal to the CDRs can lead to nonspecific binding (4,
16, 44, 45). It has been also shown that disrupting the charged

B

A

C

D

E

Fig. 2. Distributions of the five nonredundant descriptors for the 79 Fv
regions from 77 marketed antibody-based biotherapeutics. (A) Buried sur-
face area between the BSA_VL: VH, (B) pIFv_3D, (C) RM, (D) RP and, (E)
Avg_HI. The red dotted lines in these plots show the mean values, and the
green dotted lines show values for trastuzumab.

Fig. 3. Poisson Boltzmann electrostatic surfaces are shown for (A) efalizu-
mab (RM = 0.09 D) and (B) galcanezumab (RM = 3.60 D). The molecular
surface of galcanezumab shows significantly greater electrostatic polariza-
tion than efalizumab. Charged (blue for positive and red for negative) and
hydrophobic (green) patches on molecular surfaces of (C) cemiplimab (RP =
0.98) and (D) emicizumab_anti-FX (RP = 3.32). A greater portion of the
molecular surface of emicizumab is covered by the charged patches, while
the hydrophobic patches cover a greater part of the molecular surface of
cemplimab. The arrows indicate regions of significant differences in the
molecular surfaces.
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and hydrophobic patches can improve solution properties of
antibodies (43, 45). A descriptor, RP, was devised to quantify the
balance between molecular surface areas covered by charged
(sum of the areas of positively charged and negatively charged
patches) and hydrophobic patches (Materials and Methods). The
distribution of RP is shown in Fig. 2D. The average value of RP
for Fv regions of marketed antibody-based biotherapeutics is
1.8 ± 0.5 (range = 0.98 to 3.32, Table 2), and the RP of trastu-
zumab is 1.57 (green dotted line in Fig. 2D). The lowest RP is
found for cemiplimab with a value of 0.98, whereas the highest RP
is observed as 3.32 for emicizumab_anti-FX. Therefore, charged
and hydrophobic patches on molecular surfaces for the two Fvs
show significant differences (Fig. 3 C and D).

Average Hydrophobic Imbalance. The average hydrophobic im-
balance (Avg_HI) measures anisotropy in the distribution of
hydrophobic residues on a protein’s surface. It was devised to
explain chromatographic behaviors of small proteins by Sala-
gado et al. (46). A small value for Avg_HI suggests that hy-
drophobic residues are distributed evenly over a protein’s
surface, whereas a large Avg_HI value shows that the hydro-
phobic residues may be localized in a region of its surface. In
this work, average HI value for Fv regions in 77 marketed
antibody-based biotherapeutics is 1.0 ± 0.4 (range = 0.30 to
1.92, Table 2), and the Avg_HI value for trastuzumab is 0.97
(Fig. 2E). Guselkumab shows the lowest Avg_HI of 0.30,
whereas benralizumab has the greatest Avg_HI of 1.92.

Potential Applications of the Intrinsic Physicochemical Profile. As
stated in the introduction, the intrinsic physicochemical profile
derived by analyzing Fv regions of 77 antibody-based bio-
therapeutics can be used in multiple ways. In this section, four
potential examples are described. First, Fv regions from 271 CST
antibodies (Phase I to III) were analyzed for similarity of their
intrinsic physicochemical characteristics to those of the 79 Fv
regions found in marketed biotherapeutics from a perspective of
portfolio risk evaluation. Second, 14,037 antibodies from human
next-generation sequencing (NGS) repertoires, studied by
Raybould et al. (15), were studied here to deepen our under-
standing of the similarity between natural human antibodies and
marketed biotherapeutics (47). Third, 3,120 hits from our internal
antibody discovery campaigns (2015 to early 2019) were evaluated
for their physicochemical similarity to the marketed antibody-
based biotherapeutics from the perspective of hit selection dur-
ing initial stages of drug discovery. Fourth, we analyze specific
examples of mAbs from the perspective of lead identification and
optimization. Intrinsic physicochemical profiles of the Fv regions
from two mAbs are compared as a worked example for lead
identification. We then describe two well-known case studies of
mAbs that faced challenges in their product development stages.
These challenges were later shown to be mitigated via mutations
at a single or a few positions in their amino acid sequences
(48–50).
In the first three of these analyses, two different statistical

measures, namely, flags and Z-distances, were used. These
measures are described in Materials and Methods. Briefly, for
each Fv region in the above mentioned sets of antibody se-
quences, its homology-based model was used to compute the
values for five nonredundant descriptors identified in the previous
section. Each of these five descriptor values was used to compute
Z-scores by comparing them with the average and SD values of the
corresponding descriptors for the 79 Fv regions as described in SI
Appendix, Eq. 5. The distributions of Z-scores of the five nonre-
dundant descriptors are shown as box plots in Fig. 4 A–C. Each
descriptor with Z-score > 1.96 or < −1.96 contributes a flag for an
Fv region. Therefore, an Fv region can collect up to five flags.
Furthermore, Z-scores for the five nonredundant descriptors of an
Fv region were combined as shown in SI Appendix, Eq. 5 to

compute its Z-distance. The greater the Z-distance of an Fv, the
further it is from the average physicochemical properties of the 79
Fvs from the 77 marketed biotherapeutics.
Table 3 summarizes statistics on flags for Fv regions of 271

CST antibodies, 14,037 human antibodies, and 3,120 internal
hits. Data on 79 Fvs from the marketed biotherapeutics is also
included for reference. Note that no Fv region in these three
antibody-sequence sets is flagged more than four times. A ma-
jority of Fv regions in all the three datasets do not have any flags,
that is, Fv regions in 177 (∼65%) of the 271 CST antibodies,
10,054 (72%) of the 14,037 human antibodies, and 2,285 (∼73%)
of the 3,120 internal hits possess average physicochemical prop-
erties that are similar to those of the 79 Fvs. Furthermore, 81
(30%) CST antibodies, 3,466 (25%) human antibodies, and 727
(23%) of internal hits possess a single flag, while two flags were
found for 10 (4%), 490 (3%), and 99 (3%) of CST, human, and
our internal hit antibodies, respectively. Finally, less than 1% of
antibodies in these three sets of antibody sequences possess three
or more flags (Table 3). A small number of flags among antibodies
in these three datasets suggests that the 77 marketed antibody-
based biotherapeutics may possess broad ranges for the five
physicochemical descriptors. A second reason could be the use of

A

B

C

Fig. 4. Boxplots showing distributions of Z-scores for (A) 271 CST, (B) 14,037
human, and (C) 3,120 internal hit antibodies with respect to the five non-
correlated descriptors derived from the 79 Fv regions from 77 marketed
biotherapeutics. The individual Z-scores for each Fv region were combined to
obtain its Z-distance using SI Appendix, Eq. 5.
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a Z-score cutoff value of >|1.96|, which covers 95% of the distri-
butions (average ±2 SD). Nonetheless, these results show that 271
CST antibodies contain fewer Fvs whose physicochemical prop-
erties are similar to those of the marketed biotherapeutics than
the other two datasets.
The distribution of flags among Fv regions of the 271 CST

antibodies was further investigated for their incidence in Phase I
(86 antibodies), Phase II (129 antibodies), and Phase III (56
antibodies) (Dataset S1). A breakdown analysis shows that 62
(72%), 79 (61%), and 33 (59%) Fv regions in antibodies in
Phases I, II and III do not have any flag. This observation sug-
gests that greater proportions of antibody-based biotherapeutic
candidates discovered in recent years (Phase I) have physico-
chemical properties that are like those of the marketed anti-
bodies in comparison to those discovered several years ago
(Phase III). This is consistent with improvements in antibody
discovery technologies and emphasis on developability in recent
years. Fv regions of 20 (23%) Phase I, 43 (33%) Phase II, and 19
(34%) Phase III antibodies have a single flag, while 3 (3%), 5 (4%)
and 3(5%) of antibodies show two flags for Phase I, II, and III,
respectively. As anticipated, Fv regions for only one antibody in
Phase I and two in Phase II possess three flags. Interestingly, one
antibody, lampalizumab, in the Phase III of clinical trials at the time
of this analysis, is flagged four times. Note that several antibodies
may have progressed to the next phases and others might have been
approved or discontinued since the collection of this data.
Table 4 compares average values and ranges of the five non-

redundant physicochemical descriptors seen for Fv regions
in 271 CST, 14,037 human, and 3,120 internal hit antibodies with
those of 79 Fvs from 77 marketed antibody-based bio-
therapeutics. The physicochemical descriptors for 79 Fvs show
smaller variations (ranges) than those seen for the other three
datasets. Z-distance values for Fv regions in 271 CST, 14,037,
human and 3,120 internal hit antibodies were also calculated to
quantitatively assess their similarity to the marketed antibodies.
The average Z-distance values are given in Table 4, and histo-
grams showing the Z-distance distributions are plotted in
Fig. 5 A–C. In addition to these, a quartile analysis of the dis-
tribution of Z-distances observed for all the 79 Fvs was

performed. The Z-distance values at the first and the fourth
quartile intervals observed for the 79 Fvs were used to obtain
cutoff values for classifying the 271 CST, 14,037 human, and
3,120 internal hit antibodies as having physicochemical proper-
ties very similar (Z-distance < 1.57), similar (1.57 ≤ Z-distance ≤
2.67), or dissimilar (Z-distance > 2.67) to those of the marketed
antibody-based biotherapeutics (Table 5). Note that high
Z-distance values do not imply that such antibodies cannot be
developed into biotherapeutic products. Instead, these values
imply that such drug candidates may require greater attention
during their sequence optimizations and/or drug product devel-
opment. In the case of 271 CST antibodies, the intrinsic physi-
cochemical properties of the Fv regions from 53 (∼20%) of them
are very similar to those of the marketed antibody-based bio-
therapeutics. Additionally, 130 (48%) of them have similar
physicochemical properties as those of the marketed bio-
therapeutics. However, approximately one-third of 271 CST
antibodies (88, 32.5%) possess physicochemical properties that
are dissimilar from those seen for the antibodies-based bio-
therapeutics (Z-distance > 2.67, Table 5). Interestingly, physi-
cochemical properties of 2,362 (16.8%) human antibodies are
very similar, and those of another 7,581 (54%) human antibodies
are similar to physicochemical properties of the marketed anti-
bodies. These observations agree with those of Deane and co-
workers (15, 47), who reported that human NGS repertoires
contain antibodies with sequences highly similar to those of the
marketed antibody-based biotherapeutics. Taken together, these
observations suggest that ideal antibody-based drug products are
likely to be human antibodies that possess good manufactur-
ability and physicochemical stability characteristics. Further-
more, our internal hits analyzed in this work were obtained from
antibody generation campaigns that involved either transgenic
mice expressing human antibodies or phage display libraries
constructed using human germlines. These hits also show com-
parable results. Three-fourths of them (2,280 out of 3,120, 73%)
have Z-distance values ≤ 2.67, and the remaining one-fourth
(840, 27%) possess physicochemical properties that are differ-
ent from those of 77 marketed biotherapeutics (Z-distance >
2.67, Table 5). Note that the 271 CST antibodies contain a

Table 3. Flags for the Fv regions of 271 CST, 14037 human, and 3120 internal hit antibodies

No. of flags
79 Fvs in 77 marketed

biotherapeutics
Fvs in 271

CST antibodies
Fvs in 14,037

human antibodies
Fvs in 3,120

internal antibodies

0 58 (73%) 174 (64%) 9,861 (70%) 2,240 (72%)
1 18 (23%) 82 (30%) 3,609 (26%) 756 (24%)
2 3 (4%) 11 (4%) 539 (4%) 115 (4%)
3 0 3 (1%) 27 (∼0%) 9 (∼0%)
4 0 1 (0%) 1 (0%) 0

Data on 79 Fvs is provided for the sake of reference.

Table 4. Average values and ranges for five nonredundant descriptors and Z-distances for the Fv regions of 77 marketed antibody-
based biotherapeutics, 271 CST, 14,037 human, and 3,120 internal hit antibodies

Descriptor 79 Fvs in 77 marketed biotherapeutics* 271 CST antibodies 14,037 human antibodies 3,120 internal hits

BSA_VL: VH (Å2) 797 ± 81 (618 to 1,046) 781 ± 93 (585 to 1,211) 796 ± 83 (436 to 1,456) 778 ± 82 (521 to 1,318)
pIFv_3D 7.9 ± 1.2 (4.3 to 9.5) 7.7 ± 1.3 (4.6 to 9.9) 8 ± 1.3 (4.1 to 10.3) 7.8 ± 1.3 (3.9 to 9.8)
RM(μD/μH) (D) 1.1 ± 0.6 (0.1 to 3.6) 1.07 ± 0.7 (0.1 to 6.1) 0.9 ± 0.8 (0 to 22.9) 1.08 ± 1.07 (0.1 to 42.3)
RP 1.8 ± 0.5 (1.0 to 3.3) 2 ± 0.9 (0.6 to 11.1) 1.9 ± 0.9 (0.3 to 16) 1.7 ± 0.7 (0.4 to 7.8)
Avg_HI 1 ± 0.4 (0.3 to 1.9) 0.9 ± 0.4 (0.14 to 2.3) 1 ± 0.4 (0 to 3.1) 0.9 ± 0.4 (0.03 to 3.2)
Z-distance 2.1 ± 0.7 (0.6 to 4.2) 2.5 ± 1.4 (0.7 to 18.6) 2.5 ± 1.4 (0.3 to 37.5) 2.4 ± 1.7 (0.5 to 71.5)

*Note that the ranges for the five nonredundant descriptors are smaller for the Fvs from marketed biotherapeutics.
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greater proportion of Fvs (32.5%) with physicochemical prop-
erties dissimilar to those of the 79 Fvs found in marketed bio-
therapeutics in comparison to 27% in our internal hits and 29%
of human antibodies. This trend is consistent with the increased
representation of humanized or fully human antibodies among
the approved biotherapeutics.
In the fourth application of this work, we first study intrinsic

physicochemical profiles of the Fv regions of two mAbs, namely,

trastuzumab and lampalizumab, and then compare two poorly
behaving parent mAbs with their rationally optimized variants
from previously reported case studies (48, 49). The boxplots shown
in Fig. 6A compare intrinsic physicochemical profiles of the Fv
regions from trastuzumab and lampalizumab, a Phase III antibody
that has been flagged four times in this analysis (Table 3). In a
thought experiment, let us consider that these two antibodies have
been identified as lead candidates in a hypothetical biologic drug
discovery program and are equivalent function wise. Now, Fig. 6A
shows that intrinsic physicochemical parameters of the Fv region of
the lead candidate with a Z-distance of 1.4 (trastuzumab) are more
similar to those of the 79 Fvs from the marketed biotherapeutics
than the one with a Z-distance of 6.7 (lampalizumab, Fig. 6A);
therefore, it should be prioritized for further optimization and drug
development. The availability of such information during early
discovery can be crucial toward mitigating attrition at the later
stages. The boxplots in Fig. 6 B and C extend this thought exper-
iment to the considerations during lead candidate optimization via
two different case studies. In the first case study, the presence of an
aggregation-prone region (APR) in light chain complementarity
determining region 2 (LCDR2) of an anti-VEGF antibody [G6
mAb, Protein Data Bank (PDB) entry 2FJF (51)] contributed to-
ward aggregation when expressed in a transient system (48). Bauer
et al. (48) used an in silico tool, Solubis (52), to identify the APR
and disrupted it by introducing a single point mutation, Ser-52 →
Arg, in LCDR2. This mutation led to significantly improved pro-
ductivity, decreased self-association, reduced opalescence, better
resistance to heat-induced aggregation, and improved colloidal
stability while maintaining target binding affinity. We note that the
parent mAb G6 and its optimized variant exhibit very similar
properties for four of the five descriptors, with more than a one
unit increase in pI of the Fv region because of a polar to charged
residue substitution (SI Appendix, Table S2). This is reflected in the
Z-scores plot comparing the physicochemical profiles of the parent
and the variant G6 antibodies in reference to the 79 Fvs from 77
marketed biotherapeutics (Fig. 6B). In the second case study, we
assessed multiple variants generated to establish an aggregation
model for an anti-IL13 antibody (CNTO607) which displayed poor
solubility in physiological formulation conditions (49). Again, a
crystal structure of the Fab portion of CNTO607 [PDB entry
3G6A (53)] was used to identify an aggregation hotspot containing
three contiguous amino acid residues, 99-F-H-W-100a, in the
amino acid sequence of its HCDR3. This hotspot was hypothesized
to cause self-association, leading to precipitation of CNTO607
antibody, and the three residues were mutated to Ala singly and all
together. We have calculated five nonredundant descriptors for all
the four variants (F99A, H100A, W100aA, and F99A-H100A-
W100aA) and the parent CNTO607 (SI Appendix, Table S2). The
descriptors RP and Avg_HI show significant differences in their
values for the variants carrying the mutations F99A, W100aA, and
F99A-H100A-W100aA compared to the parent CNTO607 but not
for the variant H100A, in agreement with the experimental results
(49, 50). Fig. 6C compares physiochemical profiles for the parent
CNTO607 and the triple point variant F99A-H100A-W100aA.
The triple mutant F99A-H100A-W100aA showed the greatest
degree of improvements in the solution behavior of CNTO607
antibody (49, 50). This agrees with the largest changes observed for
the ratio of charged to hydrophobic patches and average hydro-
phobic imbalance (Fig. 6C and SI Appendix, Table S2).

Discussion
The translation of a biotherapeutic drug candidate into a mar-
keted biotherapeutic drug product requires that the candidate
can withstand various stresses during manufacturing, shipping,
and storage. In addition, the drug product needs to possess ac-
ceptable pharmacology, safety, immunogenicity, and toxicology at-
tributes in vivo. Now, different pharmaceutical companies follow
different drug development and manufacturing processes. Clinical

A

B

C

Fig. 5. Histograms showing distributions of Z-distances for (A) 271 CST
antibodies, (B) 14,037 human antibodies, and (C) 3,120 internal antibodies.
Z-distance values greater than 10 are not shown in the histograms.
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trial designs and patient populations also show significant variations.
Furthermore, the final decision to approve or decline a given
biotherapeutic candidate is commonly made on a case-by-case
basis. Pharmacology, safety, immunogenicity and toxicology, CMC
attributes as well as risk versus benefit profile in relation to patient
indication(s) of a biotherapeutic drug candidate are important
considerations during the development (technical as well as clin-
ical) and the approval processes. While all of this is true, we argue
that the following common threads unite all marketed antibody-
based biotherapeutics: 1) all of them are efficacious in vivo and
possess acceptable pharmacological attributes, 2) all of them can
be reliably manufactured in enormous quantities repeatedly over
many years, and 3) all of them are generally safe. We hypothesize
that structural and physicochemical attributes, derived from pri-
mary sequences of marketed biotherapeutics, may contribute to-
ward each of these common threads. Therefore, insights gained by
studying these intrinsic factors of the marketed biotherapeutics
could be useful toward enhancing pipeline productivity by pri-
oritizing drug candidates that possess physicochemical attributes
similar to those of the marketed biotherapeutics. This systematic
analysis of intrinsic physicochemical properties of the marketed
biotherapeutics could not have been performed without the
availability of their primary sequences in public databases. A
similar comprehensive analysis of multiple attributes measured
via standardized experiments that inform all aspects of devel-
opability (manufacturability, safety, efficacy, and pharmacology)
shall also be very useful. As far as we know, there are no publicly
available databases that track such multidimensional experi-
mental data for biotherapeutics. In addition to intrinsic sequence
and structural elements, there are a myriad of extrinsic factors
that may have also significantly contributed toward the success of
a biotherapeutic product. Examples of such extrinsic factors include
target drugability, target biology and its implications for therapeutic
intervention, disease mechanism(s) and prevalence, biomarkers
used for patient population stratification, manufacturing process
details, business decisions, and so on. These factors may not be
easily linkable to the sequence and/or structural characteristics of
a marketed biotherapeutic product. However, again, it is currently
difficult to study these extrinsic elements systematically because
there are no comprehensive public databases that capture such
information.
This research has sought to capture a “holistic” physicochemical

profile, which is intrinsic to molecular sequences and structures of
the Fv regions of marketed biotherapeutics, by distilling numerous
aspects of in vitro and in vivo behaviors, analogous to therapeutic
antibody profile for candidates in clinical trials (15). This report
has established the boundary conditions around variations of the
physicochemical attributes of Fv regions in marketed antibody-
based biotherapeutics since the five nonredundant descriptors
show smaller variations for the 79 Fvs from the marketed bio-
therapeutics in comparison to the 271 CST drug candidates, the
14,037 human antibodies, and our 3,120 internal hits (Table 4).
This profile is a phenomenological model, and it may not directly
correlate with individual aspects of developability.

The intrinsic physicochemical profile described in this theoretical
work has several practical uses as described in the introduction
and shown via examples in Results. This profile can be very

Table 5. The physicochemical similarity of the Fv regions in 271 CST antibodies, 14,037 human antibodies, and 3,120 internal hit
antibodies with those found in marketed biotherapeutics

Dataset
Total number of Fv

regions
Highly similar (Z-distance <

1.57)
Similar (1.57 ≤ Z-distance ≤

2.67)
Dissimilar (Z-distance >

2.67)

77 biotherapeutics 79 15 (19%) 43 (54%) 21 (27%)
271 CST antibodies 271 54 (20%) 129 (48%) 88 (32%)
14,037 human

antibodies
14,037 2,293 (16%) 7,547 (54%) 4,197 (30%)

3,120 internal hits 3,120 563 (18%) 1,697 (54%) 860 (28%)

Fig. 6. Applications of the intrinsic physicochemical profiles in lead candi-
date identification and optimization. This figure utilizes boxplots showing
Z-scores to compare intrinsic Fv region physicochemical profiles for (A)
trastuzumab and lampalizumab, (B) an anti-VEGF antibody (G6) and its
variant S52R in the light chain CDR2, and (C) an anti-IL13 antibody
(CNTO607) and its triple mutant (F99A-H100A-W100aA). All these profiles
are made in reference to the 79 Fvs from 77 marketed biotherapeutics.
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impactful at the earliest stage of biologic drug discovery, namely,
selection of hits generated via antibody discovery campaigns for
experimental testing. With recent methodological advancements
in the single B cell repertoire sequencing and analyses, typical
antibody discovery campaigns against a given target can yield
thousands of hits (54, 55), and testing each hit experimentally can
be cost and time prohibitive. Along with the diversity in antibody
germlines and epitopes, similarity of their physicochemical prop-
erties to biotherapeutics already in the market can potentially help
select functional as well as easily developable hits for experimental
testing. This can help save costs and improve efficiency by elimi-
nating the need to express and purify hits that may be difficult to
develop. The availability of multiple functional hits with good
developability attributes at the very beginning of a discovery
process can also help shorten the time and reduce costs associated
with the experiments needed to move on to the next stages,
namely, lead identification and optimization. Another aspect of
biologic drug discovery and development that can benefit sig-
nificantly from the availability of this profile is about making
informed business decisions. The intrinsic physicochemical
profile described in this work can be used as a risk assessment
tool for biotherapeutic candidates already in product and/or
clinical development. Inclusion of this profile in due diligence
exercises for in-licensing purposes can also add to the success of
industrial collaborations. This profile is clearly not intended to
predict the function of a given biotherapeutic drug candidate
and therefore should not be used for such activities.

Limitations of the Intrinsic Physicochemical Profile. The intrinsic
physicochemical profile reported in this work has several limi-
tations. First of all, the number of biotherapeutic drug products
available in the market is still small in comparison to the small
molecule drug products. Therefore, this profile is expected to be
updated as more antibody-based biotherapeutic candidates be-
come marketed and more data on them (experimental as well as
computational) becomes available. This is our first attempt, and
the profile is limited to Fv regions of the marketed biotherapeutics.
It does not account for the effect of sequence structural diversity in
the constant regions or formats of the marketed biotherapeutics.
Currently marketed antibody-based biotherapeutics come in sev-
eral different molecular formats (e.g., IgG1, IgG2, IgG4, bispecific,
Fabs, ScFvs, and Fvs), formulations (e.g., lyophilized powders, high
concentration liquid formulations, and so on), and presentations
optimized for different routes of administration (e.g., intravenous,
intramuscular, subcutaneous injections, and so on). The profile
developed in this work does not consider the physicochemical
characteristics specific to individual biotherapeutic product classes,
such as high concentration liquid formulations suitable for subcu-
taneous administration versus low concentration formulations

suitable for intravenous administration, or old versus new thera-
peutic antibodies, and so on. However, the data in Table 2 shows
that dividing the 79 Fvs into such classes does not significantly
change the average values of these descriptors. This observation
supports our hypothesis that the intrinsic physicochemical profile
of the Fv region is the key to estimating which biotherapeutic
candidates can potentially pass all stages of manufacturing,
product development, clinical development, regulatory approval,
and become drug products available in the market to serve unmet
medical needs. Additionally, this profile is focused on physico-
chemical descriptors computed using the homology-based struc-
tural models. It does not provide information on incidence of
potential aggregation-prone regions, T cell immune epitopes, or
chemical degradation motifs found in biotherapeutic candidates.
Along with the structure-based physicochemical attributes, these
sequence characteristics are also important aspects of develop-
ability assessments guiding the optimization of the lead candi-
dates. Finally, marketed biotherapeutic products span a broad
spectrum of disease indications, patient populations, mechanisms
of action, molecular formats, and sequence—structural character-
istics. Therefore, data analysis studies involving them are inherently
subjective. Our study has attempted to mitigate this subjectivity by
focusing on variable regions of the marketed biotherapeutics. De-
spite the above-described limitations, this work has important im-
plications toward devising rational biopharmaceutical informatics
(9) approaches to biologic drug discovery and development. This
is one step forward in learning from biotherapeutics already in
the market to improve the selection and engineering of newly
discovered biotherapeutic candidates.

Materials and Methods
Full details of methods followed in this work are described in SI Appendix.
Briefly, homology-based models of variable regions of the marketed antibody-
based biotherapeutics were used to derive a large number of physicochemical
descriptors. Clustering these in silico descriptors has yielded a set of five non-
redundant descriptors that show no significant correlations among themselves.
These nonredundant descriptors constitute an intrinsic physicochemical profile
for variable regions found in the marketed biotherapeutics. Potential uses of
this profile are discussed based on physicochemical similarity of variable re-
gions found in three different antibody-sequence datasets with those of the
marketed biotherapeutics.

Data Availability. All study data are included in the article and/or supporting
information.
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