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At present, the QT interval on the electrocardiographic (ECG) wave-
form is the most common metric for assessing an individual’s suscep-
tibility to ventricular arrhythmias, with a long QT, or, at the cellular
level, a long action potential duration (APD) considered high risk.
However, the limitations of this simple approach have long been
recognized. Here, we sought to improve prediction of arrhythmia
susceptibility by combining mechanistic mathematical modeling with
machine learning (ML). Simulations with a model of the ventricular
myocyte were performed to develop a large heterogenous popula-
tion of cardiomyocytes (n = 10,586), and we tested each variant’s
ability to withstand three arrhythmogenic triggers: 1) block of the
rapid delayed rectifier potassium current (IKr Block), 2) augmentation
of the L-type calcium current (ICaL Increase), and 3) injection of inward
current (Current Injection). Eight ML algorithms were trained to pre-
dict, based on simulated AP features in preperturbed cells, whether
each cell would develop arrhythmic dynamics in response to each
trigger. We found that APD can accurately predict how cells respond
to the simple Current Injection trigger but cannot effectively predict
the response to IKr Block or ICaL Increase. ML predictive performance
could be improved by incorporating additional AP features and sim-
ulations of additional experimental protocols. Importantly, we dis-
covered that the most relevant features and experimental protocols
were trigger specific, which shed light on the mechanisms that pro-
moted arrhythmia formation in response to the triggers. Overall, our
quantitative approach provides a means to understand and predict
differences between individuals in arrhythmia susceptibility.
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Predicting individual susceptibility to ventricular arrhythmias is
a long-standing issue in the field of cardiac electrophysiology.

Many factors can contribute to ventricular arrhythmia risk, in-
cluding variants in a wide variety of genes, structural heart disease,
and drugs that block important cardiac ion channels (1–3).
However, even in patients who are clearly at high risk of devel-
oping ventricular arrhythmias, these are uncommon events.
Moreover, two patients can experience dramatically different ar-
rhythmia burdens, even if their genetic profiles or cardiac function
might suggest a similar level of risk (4). These observations have
led to the notion that arrhythmias arise due to an inherent sus-
ceptibility combined with a temporary, triggering factor such as an
electrolyte imbalance, a change in autonomic tone, or a circulating
medication (1, 5–7). There is therefore a great need to identify the
individuals who are most at risk for developing arrhythmias for
proper management of their lifestyles and clinical care.
Due to the role played by drugs in triggering some ventricular

arrhythmias, prediction of proarrhythmia is a major issue in drug
development. In this context, the electrocardiographic QT interval
has played a central role (8). Drug-induced prolongation of the
QT interval, corresponding at the cellular level to prolongation of
the action potential duration (APD), is assessed in preclinical and
clinical assays, and a positive signal can doom an otherwise-
promising drug development project (8). Similarly, when exam-
ining differences between individuals, those with the longest QT
intervals are generally considered to be at greatest risk (9–11).

Although useful, this QT-centric approach also has obvious limi-
tations. First, the baseline QT interval in patients does not cor-
relate with the degree of QT prolongation produced by drugs,
indicating that other factors contribute (12, 13). Second, both a
long baseline QT and drug-induced QT prolongation are only
imperfect predictors of arrhythmia risk (14–16). Noninvasive
methods to determine the individuals most at risk for arrhythmia
could therefore be of great benefit in clinical care.
Improved prediction of arrhythmia risk could potentially be

achieved by combining two complementary computational tech-
niques: 1) supervised machine learning (ML) algorithms and 2)
simulations with mechanistic mathematical models. ML, which has
proven to be useful for discovering hidden patterns in data (17, 18),
can be used for classification problems such as separating high-risk
and low-risk patients. However, ML requires large sample sizes to
be effective, and it is difficult to apply directly to clinical data due
to heterogeneity in standards of data collection. In this regard,
simulations with mechanistic models can play an important role, as
this strategy allows for the generation of large sets of pseudodata,
all produced under controlled and repeatable conditions (19–22).
A rigorous ML study of arrhythmia susceptibility based on simu-
lated data would provide an important proof of concept to inform
later studies that analyzed clinical recordings.
A few recent publications have combined modeling and ML by

applying either unsupervised or supervised ML to data sets gen-
erated through simulation (23–26). Here, we extended this strategy
to address a more challenging question: can measurable features
from cellular APs, obtained in the absence of an arrhythmogenic

Significance

Despite our understanding of the many factors that promote
ventricular arrhythmias, it remains difficult to predict which
specific individuals within a population will be especially sus-
ceptible to these events. We present a computational frame-
work that combines supervised machine learning algorithms
with population-based cellular mathematical modeling. Using
this approach, we identify electrophysiological signatures that
classify how myocytes respond to three arrhythmic triggers.
Our predictors significantly outperform the standard myocyte-
level metrics, and we show that the approach provides insight
into the complex mechanisms that differentiate susceptible
from resistant cells. Overall, our pipeline improves on current
methods and suggests a proof of concept at the cellular level
that can be translated to the clinical level.

Author contributions: M.V. and E.A.S. designed research; M.V., X.M., and E.A.S. per-
formed research; M.V., X.M., and E.A.S. analyzed data; and M.V. and E.A.S. wrote
the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1To whom correspondence may be addressed. Email: eric.sobie@mssm.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2104019118/-/DCSupplemental.

Published September 7, 2021.

PNAS 2021 Vol. 118 No. 37 e2104019118 https://doi.org/10.1073/pnas.2104019118 | 1 of 9

PH
YS

IO
LO

G
Y

https://orcid.org/0000-0003-0548-5820
https://orcid.org/0000-0001-7224-7318
https://orcid.org/0000-0001-7327-8538
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2104019118&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:eric.sobie@mssm.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104019118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104019118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104019118
https://doi.org/10.1073/pnas.2104019118


perturbation, predict how cells will respond in the future to such a
perturbation? Using simulation results from a controllable, un-
derstandable cellular system, we show that ML can successfully be
applied to answer this question, offering the possibility that mea-
surements made in normal sinus rhythm can predict arrhythmia
risk. Moreover, the results demonstrate how the combination of
the two computational techniques can be used to prioritize ex-
periments and to understand mechanistic differences in how ven-
tricular myocytes respond to different proarrhythmic triggers.
Overall, the study provides a road map for the application of ML to
assess arrhythmia susceptibility.

Results
Arrhythmogenic Triggers Produce Variable Responses across a Population
of Myocytes. We investigated individual arrhythmia susceptibility in
a population of cardiomyocytes. Using the O’Hara et al. ventricular
myocyte model as a baseline (27), we created a virtual population
of 10,586 myocytes by randomly varying model parameters (19, 28,
29). Arrhythmia susceptibility was assessed by subjecting each cell
in the population to three different triggers: 1) block of delayed
rectifier potassium channel (IKr Block); 2) augmentation of the
L-type Ca2+ current (ICaL Increase); and 3) injection of inward
current (Current Injection). After applying each trigger, we split
our population into resistant and susceptible groups based on
whether the triggers caused arrhythmogenic behavior (Fig. 1),
which was characterized as either a repolarization failure or an
appearance of an early afterdepolarization (EAD). We found that
48%, 52%, and 55% of the population was susceptible to IKr Block,
ICaL Increase, and Current Injection, respectively. Across all
myocytes, we found that 55% of cells exhibited the same arrhyth-
mogenic response (appearance or lack thereof an arrhythmia) to
all three triggers, while the remaining 45% showed differences
(Fig. 2A). Of the 45% for which differences were observed, 61%
exhibited the same response to IKr Block and ICaL increase and a
different response to Current Injection. The alternative possibilities
were encountered less frequently. As an example, Fig. 2B shows
two cells with similar pretrigger APs, in which one was resistant to

Current Injection and susceptible to IKr Block and ICaL Increase,
while the other was resistant to the latter two triggers but suscep-
tible to Current Injection.

APD Only Predicts Susceptibly to Current Injection. Once we had
established a population that exhibited variable susceptibility to
arrhythmic perturbations, we used ML to predict susceptibility.
The goal of this analysis was to predict whether a cell would be
susceptible to a trigger based on AP characteristics measured in
the absence of the trigger (Fig. 1). Since APD at 90% repolari-
zation (APD90) is commonly considered to correlate with ar-
rhythmia risk (30), we first examined how well this single metric
could predict susceptibility (Fig. 2C). To evaluate performance, we
plotted the receiver operator characteristic (ROC) curve and
calculated the area under it (auROC). We found that APD90 is an
excellent predictor of susceptibility to current injection (auROC =
0.89) but a mediocre predictor for IKr Block and ICaL Increase
(auROC = 0.60 and 0.71, respectively) (Fig. 2D). Thus, APD90
alone is not sufficient to predict cellular susceptibility to every
arrhythmogenic trigger.

Measuring Additional Metrics of the AP Waveform Improves Risk
Prediction. Next, we aimed to determine whether susceptibility
prediction could be improved by considering additional features of
the AP and calcium transient (CaT) waveforms. We calculated
eight features from the AP and six features from the CaT,
extracted from waveforms obtained during steady-state pacing at 1
Hz, before triggers were applied (Fig. 3A and SI Appendix, Sup-
plementary Methods). These features were then used as predictors
to train a series of ML classifiers, as described in Materials and
Methods, and classifiers were compared by plotting ROC curves.
For instance, with the classifiers that predicted susceptibility to IKr
Block (Fig. 3B), inclusion of more AP features increased classifier
performance from auROC = 0.60 to auROC = 0.75. In contrast,
features calculated from CaTs were not effective at predicting
susceptibility to this trigger (auROC = 0.56). Similar results were
observed for the ICaL increase (Fig. 3C) and Current Injection

Fig. 1. Computational pipeline devised to predict how physiological waveforms under normal sinus rhythm might indicate susceptibility to a future trigger.
Our computational pipeline combines population-based cardiac modeling with supervised ML to predict arrhythmia susceptibility. (1) We began by creating a
virtual population of myocytes by varying model parameters that correspond to channel conductance and kinetic properties. (2) Next, we applied three
individual triggers: IKr Block, ICaL Increase, and Current Injection on the population. (3) This allowed us to create two groups, high- and low-risk cells (cells that
were susceptible or resistant to the perturbation, respectively). Susceptible cells were described as myocytes that formed a repolarization failure or EADs. (4)
We took features from baseline (pretrigger) state of the cells along with the risk classification labels and fed them to 8-ML classifiers. (5) We evaluated
performance of each classifier by computing the area under the receiver operator characteristic curve and kept the results of the superior algorithm. (6) We
analyzed the results to define a unique set of features/experiments that can predict an individual’s susceptibility to each trigger.
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(Fig. 3D) triggers: inclusion of AP features improved classifier
performance, whereas CaT features did not. Thus, for prediction
of arrhythmia susceptibility, APs appear to provide considerably
greater information than CaTs. Although this is not surprising
given the complex membrane potential dynamics involved in
EADs, results such as these can nonetheless be useful when
making decisions about experimental protocols.
It is evident in Fig. 3D that quantifying features from an AP

measured during steady-state pacing is sufficient to predict how a
cell will respond to Current Injection (auROC = 0.98, green bar).
After further investigating these eight AP features, we found that

triangulation of the AP (TriAP) is most important for predicting
the response to this perturbation (SI Appendix, Fig. S1). Cells with
triangulated APs tend to be much more susceptible to Current
Injection than those with normal APs.

ML Performance Changes Based on the Parameters that Are Varied in
the Mathematical Model. Our population of 10,586 myocytes was
generated by varying both ionic current maximal conductances
and parameters controlling ion channel gating (29, 31, 32). Be-
cause several previous studies have produced model populations
by only varying conductances (20, 33, 34), we tested whether this

Fig. 2. APD90 cannot predict susceptibility to every arrhythmogenic trigger. (A) Upon applying three individual perturbations on the virtual population, 55%
had similar arrhythmogenic responses. Within the population where the responses varied, IKr Block and ICaL Increase had the greatest number of common
labels (61%). (B) Examples of cells from the population, both with an APD90 = 330 ms, demonstrate varied responses to the three triggers. (C) Distribution of
APD90 for the resistant (blue) and susceptible (red) subgroups for each arrhythmogenic trigger. (D) APD90 used to predict susceptibility to each trigger. Based
on the resulting ROC and corresponding auROC, APD90 is a strong predictor of susceptibility to current injection (purple) but a mediocre one for ICaL Increase
(pink) and IKr Block (yellow).

Fig. 3. Measuring the AP waveform under steady-state conditions greatly improves risk prediction. (A) Additional features describing the AP and CaT
waveforms were added to the ML algorithms to test their impact on the predictive performance. (B–D) ROCs and computed auROC plots compare the ML
performance for predicting susceptibility using APD90 (gray), eight AP Waveform features (green), six CaT Waveform features (blue), and 14 combined AP +
CaT Waveform features (black). Predicting risk with just the AP Features improves the overall results for ICaL Increase and IKr Block and is superior for Current
Injection. However, adding the CaT waveform features has no significant impact for any trigger.
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difference influenced ML classifier performance by creating a
population (n = 8,200 cells) in which only conductances varied
between myocytes. These cells were subjected to IKr Block and
ICaL Increase, and ML classifiers were developed to determine
how well features of the preperturbed APs could predict sus-
ceptibility. For both perturbations, ML performance was sub-
stantially better when only conductances were varied compared
with the population in which both categories of parameters were
varied (Fig. 4). These results imply that differences in kinetic
parameters, in addition to differences in conductances, are im-
portant in determining arrhythmia susceptibility. Moreover, the
results show that the features of the AP waveform during steady-
state 1 Hz pacing are insufficient to infer critical kinetic pa-
rameters. Thus, we hypothesized that studying the cell under
additional conditions could improve ML performance by pro-
viding information about these parameters.

Prediction of Cellular Response to an Increase in ICaL Can Be Improved by
Examining Cells under Hypocalcemic and Hypercalcemic Conditions. To
attempt to improve ML performance, we considered alterations to
experimental conditions that are easily achievable in a standard
cellular electrophysiology laboratory. For instance, because changes

in pacing rate and extracellular solutions can be readily performed,
we simulated the population of myocytes at fast and slow pacing
rates (2.5 Hz and 0.2 Hz) and under hypercalcemic and hypocal-
cemic conditions (3.6 mM and 0.9 mM extracellular [Ca2+], re-
spectively). We then evaluated ML performance after adding AP
features calculated under these conditions to those obtained under
standard conditions of 1 Hz pacing, 1.8 mM [Ca2+]. Inclusion of
either set of features improved ML performance, with somewhat
better results seen with the hypercalcemia/hypocalcemia experiment
(Fig. 5) compared with the pacing rate experiment (SI Appendix,
Figs. S2 and S3). For example, auROC for prediction of the re-
sponse to the ICaL Increase trigger improved from 0.82 with eight
AP features only to 0.87 with inclusion of the pacing protocol but
improved to 0.91 by simulating hypercalcemic and hypocalcemic
conditions. Similar results were seen for prediction of the IKr Block
trigger (auROC = 0.75 with eight AP features, 0.84 when adding
pacing rates, and 0.86 when adding hyper/hypo-calcemia). The
comparison between the two protocols is useful for experimental
prioritization, and the improvement in ML performance implies
that these experiments can help to infer model parameters that
control arrhythmia susceptibility.

An Excitation Threshold Experiment Greatly Improves Prediction of
Cellular Response to IKr Block. Although the hypocalcemia and hy-
percalcemia experiments successfully improved ML performance,
the susceptibility prediction for IKr Block was inferior to the pre-
diction for ICaL increase (auROC = 0.86 versus 0.91). We hy-
pothesized that this difference occurred because the AP features
from these simulated protocols were insufficient to infer one or
more biological parameters that determine susceptibility to IKr
Block. Because cellular arrhythmias often occur via EADs and
these events result from reactivation of ICaL, we reasoned that
better inferences of parameters related to this current’s kinetics
could improve ML prediction (35, 36). We therefore simulated, in
our virtual population, an excitation threshold experiment per-
formed under conditions in which INa is inhibited and AP up-
strokes must be carried by ICaL (Fig. 6A, red trace). Example cells
from the population, shown in Fig. 6B, suggest that this experiment
may be useful for distinguishing between resistant and susceptible
cells that have similar APs during 1-Hz pacing, and ML analysis
confirms a dramatic improvement to the IKr Block prediction
(Fig. 6C). Indeed, the excitation threshold produced excellent
classification either by itself or when combined with eight AP
features measured during 1-Hz pacing (auROC = 0.92 in either
case). Interestingly, while the excitation threshold also improved
ML prediction of the ICaL Increase perturbation (Fig. 6D), in this
case, the threshold needed to be combined with additional fea-
tures, such as those recorded during steady-state 1 Hz pacing
(auROC = 0.87 for threshold alone, 0.92 when combined).

Multiple Biological Parameters Are Required to Understand Susceptibility
to ICaL Increase. The results presented thus far show that ML clas-
sifiers can successfully predict, based on features measured in the
absence of a perturbation, how cells will respond to any of the three
perturbations tested (auROC > 0.9 in all cases). However, these
analyses also indicate that Current Injection and IKr Block can be
predicted with well-chosen individual metrics (TriAP and excitation
threshold, respectively), whereas prediction of the response to ICaL
Increase requires that data from multiple experiments be combined.
We hypothesized that this occurred because a greater number of
biological parameters influence susceptibility to ICaL Increase
compared with the other two perturbations. To test this idea, we
performed Least Absolute Shrinkage and Selection Operator
(LASSO) logistic regression (37) on the results using the biological
parameters as the independent variables and susceptibility as the
dependent variable (Fig. 7A). This approach allowed us to itera-
tively eliminate parameters until a particular performance was
reached, thereby quantifying the number of biological parameters

Fig. 4. ML performance changes based on the parameters that are varied in
the mechanistic mathematical model. (A) Plots of ROCs and corresponding
auROCs comparing how the 8 AP Features at steady-state predict suscepti-
bility to IKr Block when varying just channel conductances (turquoise) and
combined channel conductances and current kinetics (black). (B) Plots of
ROCs and corresponding auROCs comparing how the 8 AP Features at steady
state predict susceptibility to ICaL Increase when varying just channel con-
ductances (turquoise) and combined channel conductances and current ki-
netics (black). This highlights the inability for steady-state features to infer
critical kinetic parameters.
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needed for the prediction. Consistent with our hypothesis, the
analysis showed that Current Injection, IKr Block, and ICaL increase
required 3, 7, and 21 parameters, respectively (Fig. 7B).
This idea is further illustrated in Fig. 7C, in which we examine

for each trigger how well the two most important parameters can
separate resistant and susceptible cells. The individual dots repre-
sent 100 cells from the population and are colored based on sus-
ceptibility (red = susceptible, blue = resistant). The background
contour map represents the LASSO model prediction calculated
only from the top two parameters, in which the more lightly shaded

areas indicate the region of uncertainty. It is evident both from the
regions of uncertainty and the misclassification rates that predic-
tion is weakest for ICaL Increase, better for IKr Block, and best for
Current Injection (Fig. 7C). Thus, the ICaL Increase trigger re-
quired more electrophysiological features to achieve strong pre-
diction because many more biological parameters determine
susceptibility to this trigger.

Discussion
In this study, we developed a computational pipeline that com-
bines mechanistic modeling with ML analyses, and we applied this
to examine individualized arrhythmia susceptibility. Mechanistic
simulations were used to generate a heterogeneous population of
thousands of cardiomyocytes, and several ML algorithms were
applied to predict how the members of this population would
respond to triggers that induced arrhythmic behavior in some cells.
Importantly, ML was not employed to detect the arrhythmic dy-
namics, a task that can often be performed by visual inspection,
but to predict how physiological waveforms under normal sinus
rhythm might indicate susceptibility to a hypothetical future trig-
ger. The ML analyses indicated that it is more difficult to
predict the cellular responses to certain triggers than to other
triggers. Following from this result, we determined which pre-
trigger experimental protocols were effective at improving the
performance of the ML classifiers. The results indicate the
value of combining mechanistic simulations with ML and pro-
vide insight into the factors that may determine susceptibility to
particular proarrhythmic triggers.
The electrocardiographic QT interval has been the most com-

mon metric employed for the prediction of individual sus-
ceptibility to ventricular arrhythmias (10), and the QT interval
continues to be used in clinical decision-making, for instance,
when choosing treatments early in the COVID-19 pandemic
(38). Over time, however, many alternative approaches have
been proposed, sometimes grouped together under the acronym
TRIaD (Triangulation, Reverse use dependence, Instability of the
AP, and Dispersion). Over a decade ago, a series of important
studies from Hondeghem and colleagues established the utility of
TRIaD for prediction of drug-induced arrhythmia (9, 15). More
recently, mathematical modeling studies have proposed various
quantities derived from simulation results, such as qNet, which
calculates the total charge flowing through a specific set of ionic
currents (39), or the electromechanical window, which looks at
how drugs may differentially affect AP and CaT waveforms (40).
Most of these efforts, however, have focused on predicting drug-
induced arrhythmias, and conclusions have often been reached by
comparing how different metrics perform across a series of drugs.
Considerably less research has been performed to address which
individuals are especially susceptible to arrhythmias, and critical
questions remain unresolved, such as: 1) Will an individual who is
susceptible to one arrhythmic trigger be equally susceptible to
similar triggers? 2) Can information captured during experimental
perturbations complement recordings made during normal sinus
rhythm to improve predictions? Here, we addressed such questions
by combining mechanistic simulations with ML analyses.
Broadly speaking, ML can be considered a statistical analysis

that is more comprehensive and unbiased than a traditional, user-
driven approach (17). It therefore represents an appealing strategy
for determining the best predictors of an individual’s arrhythmia
susceptibility. In principle, ML could be applied directly to clinical
data to produce a straightforward, “black box” predictor. For ex-
ample, convolutional neural networks have been applied to elec-
trocardiographic (ECG) traces from tens of thousands of patients
to build classifiers that differentiate between different types of
arrhythmias (41, 42). At least two challenges, however, make it
difficult to apply a direct strategy to predict arrhythmia suscepti-
bility from clinical data obtained during normal sinus rhythm. One
is the question of interpretability; black box ML classifiers often

Fig. 5. ICaL Increase prediction is augmented when adding features from a
high-extracellular Ca2+ (Cao) experiment. (A) APs simulated under 2× extra-
cellular Ca2+ (blue), 0.5× extracellular Ca2+ (green), and steady-state condi-
tions (black). (B) Plots of ROCs and corresponding auROCs comparing how
the eight AP features, steady-state + low extracellular Ca2+ (green), and
steady-state + high extracellular Ca2+ (blue), and all three combined proto-
cols (gray), predict susceptibility to IKr Block. (C) Plots of ROCs and auROCs
comparing how the AP Features at steady state + low extracellular Ca2+

(green), steady state + high extracellular Ca2+, and combined all three ex-
perimental protocols (gray) predict ICaL Increase.
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provide practical utility without offering new insight into biological
mechanisms (43). A second, more important issue is the hetero-
geneous and often inconsistent structure of clinical data. ML is
straightforward to implement when the same calculations and
transformations can be performed on each sample. It can become
extremely challenging, however, when data are missing, because
patients receive different tests, they are seen at irregular intervals,
and arrhythmias are infrequent events. By developing our ML
classifiers using synthetic data generated with a mechanistic
model, we could performML on results with a consistent structure
that were produced under identical, well-controlled conditions.
The combination of mechanistic modeling and ML employed

in this study provided at least two benefits. The first was an
improved mechanistic understanding of the factors that control
arrhythmia risk in response to different arrhythmic triggers. The
ML analyses showed that it was relatively easy to predict how
cells respond to injection of constant current, more challenging
to predict the response to block of IKr, and most difficult to
predict how cells respond to an increase in ICaL. These surprising
results inspired further analyses, which demonstrated important
differences between the triggers in terms of which model pa-
rameters and how many model parameters determine suscepti-
bility (Fig. 7). For example, the voltage dependence of ICaL
activation, the parameter Vd, greatly affects susceptibility to IKr
block (Fig. 7A). However, because AP upstrokes carried by INa
rapidly drive membrane potential past the normal range of ICaL
activation (roughly −30 to 0 mV), small changes in Vd have only
a minimal effect on APs recorded during steady-state conditions.
This explains why the eight AP features recorded during 1-Hz
pacing are ineffective for susceptibility prediction (Fig. 3B),
while the excitation threshold under blocked INa conditions,
which correlates with Vd (SI Appendix, Fig. S5), improves ML
performance dramatically. For the current injection trigger, in
contrast, Vd has little effect on susceptibility (Fig. 7A). Here,
TriAP correlates well with the important model parameters (SI
Appendix, Fig. S5), which explains why this single metric is

sufficient for strong ML classification performance (SI Appendix,
Fig. S1). These mechanistic insights, as well as similar insights
into susceptibility to ICaL Increase (SI Appendix, Fig. S5), illus-
trate important differences between the triggers.
A second benefit from combining the two approaches is the

potential for experimental prioritization. We initially examined
cells under conditions that mimicked an individual at rest
(steady-state, 1-Hz pacing), then we added predictors to our ML
classifiers by simulating additional experimental protocols. The
results, which showed that some protocols improved ML perfor-
mance more than others, can be used to guide decisions when
resources are limited and not every experiment can be performed.
For prediction of the response to IKr Block, for instance, we found
that a single experiment measuring excitation threshold could
provide as much information as recording APs under multiple
experimental conditions (Fig. 6). Similarly, analyses showed that
prediction of the response to ICaL Increase was improved more by
including AP waveforms simulated under hypocalcemic and hy-
percalcemic conditions than by recording at multiple pacing rates.
Thus, if the goal of a cellular physiology experiment is to deter-
mine the arrhythmia susceptibility of each cell, the results suggest
that the simple interventions of altering extracellular [Ca2+] and
measuring excitation threshold, which are straightforward in most
laboratories, provide extremely informative results. We note,
however, that these conclusions are specific to the conditions we
have considered, namely, EADs caused by reactivation of ICaL.
Different experimental protocols are likely to prove most valuable
when different arrhythmia mechanisms are involved.
This experimental prioritization is likely to be important when

adapting ML to predict arrhythmia susceptibility in patients. Al-
though cellular APs, which were used to build the classifiers in this
study, are not routinely measured in the clinic, features derived
from the ECG waveform contain similar information and may also
prove useful for building ML classifiers using clinical data. In this
context, the additional experimental protocols we simulated here
would be analogous to, for instance, monitoring a patient’s ECG

Fig. 6. Excitation threshold experiment greatly improves the performance of predicting susceptibility to IKr Block. (A) Simulating an excitation threshold
experiment in an individual cell. The INa channel is blocked, and then increasing levels of current are injected till an AP forms (red). (B) Demonstration of
excitation threshold experiment in resistant and susceptible subgroups. When INa is blocked and a single stimulus of −28.5 μA/μF is applied on cells from the
susceptible and resistant groups (with similar APD90), the susceptible cells are able to stimulate an AP, whereas the resistant group requires a much higher
stimulus to perform the same. (C) Plots of ROCs and corresponding auROCs comparing how the 8 AP Features at 1 Hz (black), Threshold Experiment (pink),
and Combined Protocols (blue) predict susceptibility to IKr Block, here knowing the threshold alone would be enough to predict susceptibility to arrhythmia.
(D) Plots of ROCs and corresponding auROCs comparing how the 8 AP Features at 1 Hz (black), Threshold Experiment (pink), and Combined Protocols (blue)
predict susceptibility to ICaL Increase. Compared with IKr Block, ICaL Increase requires both the steady-state AP features and the Threshold to achieve the same
level of performance.
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during a treadmill test, at multiple times of the day, or during a
Valsalva maneuver. Based on the results presented, in which not
all protocols were equally valuable, we suggest that classifiers built
on simulated results can be used to guide and prioritize protocols
for clinical classifiers.
Several limitations of this work suggest future studies to advance

the prediction of arrhythmia susceptibility. First, the classifiers were
built from simulated results rather than from experimental data.
The results, however, have generated predictions that can readily
be tested experimentally, especially since these interventions can be
implemented in most cellular electrophysiology laboratories. A
second limitation is that although we tested eight different ML
algorithms, most of these are relatively standard methods rather
than state-of-the-art approaches currently referred to as “deep
learning.” In this initial study, we opted for ML algorithms that did
not require extensive parameter tuning, but in future work, we
intend to determine whether more complex ML approaches can
improve the predictive power.
In summary, we have demonstrated that a combination of

mechanistic mathematical modeling and ML analysis can be
applied to predict arrhythmia susceptibility. This combined ap-
proach allowed for experimental prioritization and provided
mechanistic insight into how ventricular myocytes respond to
different proarrhythmic triggers. The work offers a methodology
to understand and predict differences between individuals in the
susceptibility to dangerous ventricular arrhythmias.

Materials and Methods
The code used to run the simulations in this manuscript have been uploaded
to the following repository https://github.com/meeravarshneya1234/
ArrhythmiaPredictionProject.git.

Mathematical Model. We used a mathematical model that describes the
electrophysiology of a single human endocardial ventricular myocyte (27). This
model consists of 41 ordinary differential equations that capture changes over
time in membrane voltage, intracellular ion concentrations, and ion channel
gating. This system of equations reproduces two important physiological
waveforms—the cardiac AP and the CaT. We ran the model at 1-Hz pacing and
extracted features from both the AP and CaT. Refer to SI Appendix, Supple-
mentary Methods for more details on the stimulation protocol and the fea-
tures calculated from the waveforms.

Heterogeneous Population Development. Beginning with the baseline ven-
tricular myocyte model (27), we built a large heterogeneous population by
applying random variation to two categories of parameter, namely, those that
control: 1) ion channel densities (G, for conductances) and 2) kinetic properties
that include time constants (p) and voltage dependences (V) of channel gating.
Scaling factors for G and p model parameters were taken from a lognormal
distribution with median m = 1 and shape parameter σ = 0.3, whereas V pa-
rameters were taken from a normal distribution with mean μ = 0 and SD σ =
4 mV (29, 31, 32). A complete list of the 66 model parameters is included in SI
Appendix, Tables S1 and S2. We chose shape factors and SDs of these distri-
butions based on the experimental data, from human ventricular myocytes,
against which the model (27) was originally calibrated (44–46). For example,
time constants reported in those papers had relative variability (coefficients of
variation) ranging from 0.13 to 0.58 and voltage dependences of activation
and inactivation had SDs ranging from 3 to 10.8 mV. The values we have used

Fig. 7. Multiple biological parameters are required to understand susceptibility to ICaL increase. (A) β coefficients extracted from LASSO regression analysis
performed on mechanistic model parameters for each of the triggers with an auROC = 0.95. (B) Bar graph counts the number of β coefficients extracted from
LASSO regression analysis in A, indicating that ICaL Increase requires knowledge of many more model parameters to reach a 0.95 auROC. (C) Plotting the
results using the top two parameters, highlighted in gray in A, to predict risk. The dots indicate the color-coded arrhythmic risk for each cell (red, susceptible;
blue, resistant). The contour maps in the background represent model predictions using only the top two parameters to predict arrhythmogenic risk. It is
evident that ICaL Increase has the highest misclassification rate, demonstrating that this trigger depends on multiple additional parameters to reach a high
predictive performance.
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are therefore somewhat conservative compared with previously reported
variability.

We initially created a population of 25,000 model variants, then calibrated
the population by excluding model variants that produced AP or CaT wave-
forms thatwere inconsistentwith experimental data, as previously describedby
Passini et al. (34) This experimental data from healthy ventricular car-
diomyocytes depicts appropriate ranges for morphological features describing
the AP and CaT, which include APD20, APD50, APD90, CaT amplitude, CaD50

(CaT duration at 50% return to baseline), and CaD90 (CaT duration at 90%
return to baseline). SI Appendix, Fig. S4 illustrates our simulated distributions
along with the calibration ranges. The final calibrated population consisted of
10,586 model variants. A second population was created by varying only ionic
channel conductances and not the other categories of parameters. Calibration
resulted in a population of 8,200 cells.

Simulating Multiple Experimental Protocols. We simulated multiple additional
experimental protocols in the population, including the following: 1) altered
pacing rate; 2) hypercalcemia/hypocalcemia; and 3) excitation threshold. For the
pacing rate experiment, each cell was stimulated at least 200 times at 0.2 Hzand
2.5 Hz, and features from the steady-state cellular waveforms were calculated
(Fig. 3A and SI Appendix, Supplementary Methods). For hypercalcemia/hypo-
calcemia, we changed extracellular [Ca2+] to 3.6 mM and 0.9 mM, respectively,
stimulated each cell at least 200 times at 1 Hz, and calculated features from
the steady-state waveforms. In the mechanistic model, this required altering
the variable Cao, which controls extracellular [Ca2+]. For excitation threshold,
we set Na+ current in each cell equal to zero so that AP upstrokes had to be
carried by ICaL and determined the threshold stimulus current required to
produce an AP.

Arrhythmogenic Triggers. To test our pipeline’s ability to predict arrhythmo-
genic risk, we studied three triggers, 1) block of the rapid delayed rectifier
potassium current (IKr Block), 2) augmentation of the L-type calcium current
(ICaL Increase), and 3) injection of inward current (Current Injection). IKr Block
mimics the actions of many potent Class III anti-arrhythmics that have proven
to be arrhythmogenic. ICaL increase simulates the period at the beginning of
β-adrenergic stimulation, when a temporal mismatch between phosphoryla-
tion of ICaL and IKs may temporarily create proarrhythmic conditions (47). Al-
though the current injection trigger simulates artificial conditions created in
the laboratory rather than a trigger encountered in vivo, this metric has been
used in prior work as a quantitative representation of repolarization
reserve (48).

Both IKr Block and ICaL Increase were simulated by scaling the conductance
values for each channel, GKr and GCaL, respectively, while Current Injection was
performed by injecting a constant inward current at all times that the mem-
brane voltage exceeded −60 mV. For each perturbation, we determined an
arrhythmia threshold in the baseline ventricular myocyte by gradually in-
creasing the magnitude of the perturbation until arrhythmic behavior was
observed at any time during the last 10 beats of simulation. The final threshold
for each trigger was 94% block of IKr, a 15.13-fold increase in ICaL, and injection
of −0.7 μA/μF current. When these triggers were applied to each cell in the
virtual population, roughly half of the cells exhibited arrhythmic behavior,
defined as either repolarization failure, or an EAD, any change in the voltage
derivative from negative to positive occurring more than 100 ms after the AP

initiation. Under these conditions, EADs were initiated by reactivation of ICaL
rather than spontaneous Ca2+ release or reactivation of INa.

Supervised ML. For each perturbation, every cell in the population was classified
as either susceptible or resistant. Toperform this classification task, we employed
supervised ML. ML algorithms learn from data to identify patterns that relate a
set of features to a binary predictor. Here, we used features computed from
simulated AP and CaT waveforms, before a trigger was applied, to predict
whether individual cells would exhibit arrhythmic dynamics in response to the
trigger. Since we were unsure which ML classifier would be best suited for our
dataset, we constructed a robust pipeline that tested each task in eight
parameter-tuned classifiers. These algorithms include Support Vector Machine
(SVM), Multi-Layer Perceptron (MLP), Random Forest, Naïve Bayes, Gradient
Boosting, XGBoost, Logistic Regression, and K-Nearest Neighbors. We consis-
tently found that SVM andMLP exhibited the best classification performance (SI
Appendix, Fig. S6). We ran these algorithms in Python 3.7.4, using the ML
package scikit-learn version 0.21.3 (49), and for each classification task, we
display results from the best-performing classifier (50–52).

To train the algorithms, we split the population into 90% training and 10%
testing stratified by the target class. We normalized the input features using
MinMaxScaler for MLP and StandardScaler for the remaining. The Min-
MaxScaler normalized the features to a range of 0 and 1, while the Stand-
ardScaler normalized by removing themeanand scaling to the unit variance. To
fine-tune the hyperparameters for each classifier, we applied the function
GridSearchCV on the training set. This allowed us to effectively loop through a
series of different parameter sets using threefold cross validation. The best
parameters were then used to assess the performance of the algorithms on
the test set.

To evaluate classifier performance, the primarymetric we employedwas the
auROC. Our pipeline calculated a series of additionalmetrics including accuracy,
positive and negative predictive value, and specificity and sensitivity, reported
on our github. However, since the datasets were balanced, all metrics displayed
similar trends, and only auROC is reported in the main figures for simplicity.

LASSO Regression. To quantify the number of biological parameters needed to
predict arrhythmia susceptibility for each trigger, we utilized LASSO regression
(37). The random-scale factors (for G and p parameters) or offset voltages (for
V parameters) were collected into an X matrix of independent variables (di-
mensions 10,586 × 66), and labels (resistant or susceptible) were collected into
a Y vector of dependent variables (dimensions 10,586 × 1). This method out-
puts a β coefficient matrix that defines the relative contribution of each pa-
rameter to arrhythmia susceptibility. With LASSO regression, the penalty term
iteratively sets the coefficients of insignificant parameters β to zero, thus
providing a means of assessing which parameters are truly necessary to reach a
particular prediction accuracy. We implemented this in Python using the
LogisticRegression function in the scikit-learn package and specifying the l1
penalty. To compare the results among the three triggers, we took the
number of β coefficients required to achieve an auROC of 0.95.

Data Availability. Anonymized code data have been deposited in Github
(https://github.com/meeravarshneya1234/ArrhythmiaPredictionProject.git).
Some study data available.
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