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ABSTRACT

Objective: : Developing clinical natural language processing systems often requires access to many clinical

documents, which are not widely available to the public due to privacy and security concerns. To address this

challenge, we propose to develop methods to generate synthetic clinical notes and evaluate their utility in real

clinical natural language processing tasks.

Materials and Methods: : We implemented 4 state-of-the-art text generation models, namely CharRNN, Seg-

GAN, GPT-2, and CTRL, to generate clinical text for the History and Present Illness section. We then manually

annotated clinical entities for randomly selected 500 History and Present Illness notes generated from the best-

performing algorithm. To compare the utility of natural and synthetic corpora, we trained named entity recogni-

tion (NER) models from all 3 corpora and evaluated their performance on 2 independent natural corpora.

Results: : Our evaluation shows GPT-2 achieved the best BLEU (bilingual evaluation understudy) score (with a

BLEU-2 of 0.92). NER models trained on synthetic corpus generated by GPT-2 showed slightly better perfor-

mance on 2 independent corpora: strict F1 scores of 0.709 and 0.748, respectively, when compared with the

NER models trained on natural corpus (F1 scores of 0.706 and 0.737, respectively), indicating the good utility of

synthetic corpora in clinical NER model development. In addition, we also demonstrated that an augmented

method that combines both natural and synthetic corpora achieved better performance than that uses the natu-

ral corpus only.

Conclusions: : Recent advances in text generation have made it possible to generate synthetic clinical notes

that could be useful for training NER models for information extraction from natural clinical notes, thus lower-

ing the privacy concern and increasing data availability. Further investigation is needed to apply this technology

to practice.
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INTRODUCTION

Natural language processing (NLP) is an important technology for

unlocking unstructured patient information from clinical notes in

electronic health records (EHRs) to support clinical research or

practice. Currently, a few clinical NLP systems, eg, cTAKES (clinical

Text Analysis and Knowledge Extraction System),1 MetaMap,2 and

CLAMP,3 have been developed and applied to different clinical

applications such as clinical decision support and observational

studies.4–6 While developing high-performance clinical NLP sys-

tems, especially machine learning–based ones, it often requires a

large number of clinical documents,7 which are often not widely

available to the public due to privacy and security concerns. Current

practice is usually to develop programs to remove personal identi-

fiers in clinical notes (called de-identification). Different manual and

automatic de-identification methods and systems have been devel-

oped to address this issue in the past few years.8–13 For example, the

MIMIC-III (Medical Information Mart for Intensive Care) has de-

veloped hybrid approaches to de-identify textual documents in criti-

cal care settings in accordance with Health Insurance Portability

and Accountability Act (HIPAA) standards, and it has been widely

shared by large communities.11,12,14

Although de-identification techniques show promising perfor-

mance and can alleviate the concerns regarding protected patient in-

formation to some extent, they are still insufficient to enable free

sharing of data to ensure privacy guarantees.15 For example, reiden-

tification risks still exist due to unique combinations of clinical

events of a single patient. A complementary approach (ie, can be ap-

plied after de-identification) is to generate fully synthetic notes for

NLP method development. Although text generation for clinical

documents has been explored,16,17 none of the previous studies has

evaluated the utility of these synthetic notes for clinical NLP devel-

opment for common tasks such as named entity recognition (NER),

one of the most fundamental and critical NLP information extrac-

tion tasks in the medical domain.

The goal of this study is 2-fold: (1) to systematically assess and

compare 4 state-of-the-art text generation algorithms in the medical

domain by applying them to the task of generating History and Pre-

sent Illness (HPI) sections in discharge summaries; and (2) to build

an annotated corpus from synthetic documents generated by the

best-performing algorithm; train NER models using the synthetic

corpus for identifying clinical problems, treatments, and tests; and

evaluate its performance on additional annotated natural clinical

corpora collected from independent sources, and thus to assess its

utility in real clinical NER tasks. To the best of our knowledge, this

is the first study that systematically compares different algorithms

for HPI text generation and assesses the utility of synthetic clinical

notes on real NLP information extraction tasks such as NER. The

manually labeled synthetic corpus, together with the codes used in

study, is publicly available at https://github.com/UTHealth-CCB/

synthetic_hpi_ner.

RELATED WORK

Recent advances in neural network technology have greatly im-

proved performance on text generation in the open domain. Bengio

et al18 proposed the first neural network language model to explore

text generation. Subsequently, a recurrent neural network language

model (RNNLM) was proposed by Mikolov et al19 to solve the

problem of long-distance contexts. The classical RNNLM with its

improved variants, eg, long short-term memory (LSTM)20 and gated

recurrent unit,21 gained popular attention and yielded promising

results. However, the well-known exposure bias problem generated

by maximum likelihood estimation (MLE) in RNNLM made it hard

to generate satisfactory results. Bengio et al22 tried to alleviate the

exposure bias problem using scheduled sampling. Another trending

solution is to make use of the generative adversarial network (GAN)
23 framework together with the REINFORCE algorithm.24 In addi-

tion to RNN- and GAN-based language models and their variants,

most recently, models based on various transformer architectures

with attention mechanisms have achieved state-of-the-art perfor-

mance in many text generation tasks.25–27

Several studies have investigated synthetic text generation in the

medical domain. Guan et al16 proposed a medical text GAN

(mtGAN) to generate synthetic text of electronic medical records.

The mtGAN model is based on the GAN framework trained with

the REINFORCE algorithm and is evaluated on the micro, macro,

and application levels. For the application-level evaluation, it

designed a classification experiment by comparing the models

trained on the natural and synthetic data. Liu et al17 introduced a

Transformer-based language modeling task 25,26 to generate clinical

notes based on EHR data. In Liu et al,17 the trained language model

was evaluated using different evaluation metrics and showed the

utility in supporting assistive note-writing features. Ive et al28 pre-

sented a neural Transformer model to generate artificial mental

health records, which were used to train a downstream text classifi-

cation model that obtained comparable results as to those obtained

from using the original data. Nevertheless, all these efforts were fo-

cused on specific types of neural language models (NLMs)—GAN

models compared with MLE in Guan et al,16 and transformer mod-

els in Liu et al17 and Ive et al28—and lacked the systematic compari-

sons of state-of-the-art NLMs in the medical domain.

Furthermore, none of the previously mentioned text generation

studies has investigated the utility of generated documents for the

development of the NLP information extraction tasks such as NER.

NER tasks such as recognizing important clinical entities (eg, prob-

lems, treatments, tests) are one of the fundamental and critical NLP

tasks in the medical domain. Diverse methods and tools have al-

ready been developed for clinical entity recognition, including a

number of shared tasks. For example, the 2010 i2b2/VA clinical

NLP challenge on concept extraction from clinical discharge sum-

maries is an NER task that has been widely studied by many re-

search groups.29 So far, almost all clinical NER works are based on

natural clinical notes (either de-identified or not). The use of syn-

thetic clinical documents for medical NER tasks has not been ex-

plored, which is one of the goals of this study.

MATERIALS AND METHODS

Figure 1 shows an overview of the proposed study, which consists of

2 parts. First, we implemented and compared 4 state-of-the-art text

generation models, namely CharRNN (Character Recurrent Neural

Network),30,31 SegGAN (Sub-sequence Generative Adversarial Net-

work),32 GPT-2 27 (Generative Pre-Training), and CTRL (Condi-

tional Transformer Language),33 for the task of generating text of

the HPI sections. A corpus of 570 HPI sections from natural clinical

notes in the i2b2 and n2c2 challenges were used to train different

text generation models. The BLEU (bilingual evaluation understudy)

metrics were used to evaluate different text generation methods, and

the best-performing algorithm was used to generate a synthetic cor-

pus of 500 HPI sections, which were then manually annotated for

clinical entities including problems, treatments, and tests. Second,

2194 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 10

https://github.com/UTHealth-CCB/synthetic_hpi_ner
https://github.com/UTHealth-CCB/synthetic_hpi_ner


we trained NER models using the bidirectional LSTM with a condi-

tional random field algorithm34 on the 292 HPI sections in the i2b2

challenge, with the same annotations of problems, treatments, and

tests (corpus—natural), and the 500 annotated synthetic HPI sec-

tions (corpus—synthetic), and evaluated their performances on these

2 corpora, as well as on 2 external natural clinical corpora from 2

independent sources (named external_1 and external_2 respec-

tively), to assess the utility of synthetic corpora on real clinical NER

tasks. Furthermore, we trained NER models for the augmented cor-

pus (natural training setþsynthetic) and evaluated its performance

on the test set of the natural corpus.

Synthetic text generation
Four state-of-the-art NLM, namely CharRNN, SegGAN, GPT-2,

and CTRL, were implemented to generate clinical text for the HPI

section. The following sections will describe the dataset we used for

training and the 4 text generation language models that we imple-

mented here.

HPI training data for text generation

To train the NLMs for text generation, we used discharge summa-

ries from the 2010 i2b2/VA NLP challenge.29 That corpus contains

826 available clinical notes (after excluding notes from the Univer-

sity of Pittsburgh Medical Center as by the updated data user agree-

ment), of which 292 HPI sections were extracted and used in this

study. In addition, to increase the training data, we also included

clinical notes from the 2018 n2c2 Shared-Task,35 which contributed

additional 278 HPI sections. We combined both datasets, which

resulted in 570 HPI sections from natural clinical notes, containing

9159 sentences and 149 920 tokens in total (with the average num-

bers of sentences and tokens per file as 16 and 263, respectively).

These 570 HPI sections were used to train text generation models.

Neural language models

NLMs18 play an important role in many NLP tasks, such as machine

translation, text summarization, speech recognition, and text gener-

ation. The NLMs learn to predict a probability distribution over the

vocabulary given some linguistic context, ie, Pfwtjcontextg, where

wt is the t-th word in the vocabulary and context can be words be-

Figure 1. Overall framework of the synthetic text generation and evaluation of clinical named entity recognition tasks. (Left box) Compare different text generation

language algorithms and generate the synthetic corpus of History and Present Illness sections (BLEU [bilingual evaluation understudy] measures reported in Ta-

ble 1); (right box) train named entity recognition models and evaluate their performance across different corpora: synthetic, natural, external_1, and external_2.

Yellow arrows indicate 10-fold cross validation for each corpus (performance is reported in Table 3); purple arrows indicate train on the synthetic corpus and pre-

dict on test sets of natural, external_1, and external_2 (performance is reported in Table 4); orange arrows indicate train on the natural corpus and predict on test

sets of synthetic, external_1, and external_2 (performance is reported in Table 5); and green arrows indicate train on the naturalþsynthetic corpus and predict on

test sets of natural corpus (performance is reported in Table 6).
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fore and after wt. For our task of generating HPI sections, we have a

corpus of natural HPI sectionsC ¼ fWigM
i¼1, where each document

contains a sequence of words W ¼ fw1; . . . ;wTgand each word

comes from a vocabulary of tokens. Our goal is to generate a set of

synthetic HPI sections by training a NLM to learn the underlying

distribution of the natural data.

CharRNN. RNNs19 and their improved variants, eg, LSTM 20,36

and gated recurrent unit,21,37 have shown impressive results in the

text generation task due to their ability to capture long-term depen-

dencies, ie, to remember the preceding inputs using internal memory.

The RNN language models are usually trained by MLE using teacher

forcing.38 During the training time, RNN encodes preceding inputs to a

hidden vector and makes use of the hidden vector to conduct the infer-

ence of the next word at each iteration. Character-level RNN language

models30,31 have proven to work successfully in text generation, with

better capability to handle the out-of-vocabulary problem (https://

www.youtube.com/watch?v¼B4v545V3Dq0&t¼12s; Lecture 17:

Issues in NLP and Possible Architectures for NLP, Stanford CS224N:

NLP with Deep Learning). To study the classic RNN model in clinical

text generation as a baseline framework, we apply a character-level

RNN based on multilayer recurrent neural networks to train a

CharRNN (https://github.com/sherjilozair/char-rnn-tensorflow) NLM

for synthetic clinical text generation.

SegGAN. RNN NLMs try to predict the next word given the pre-

ceding ground-truth words and language models are usually only ex-

posed to the training data distribution instead of their own

prediction, which leads to the well-known exposure bias problem.22

Recently, the GAN 23 framework has attracted a lot of attention for

text generation due to its success in image generation. The GAN

model contains 2 neural networks that compete with one another: a

generator G tries to generate fake data, and a discriminator D tries

to classify the natural data from the fake ones. However, it’s diffi-

cult to apply GANs in text generation because the gradient from the

discriminator cannot be back-propagated to the generator due to

discrete text outputs. To tackle the drawback of GANs, variant

GANs are developed. The SegGAN (https://github.com/liyzcj/seg-

gan) proposed by Chen et al32 demonstrated significant improve-

ments over state-of-the-art GAN models—SeqGAN,24 LeakGAN,39

and RelGAN40—by making the adversarial learning not only on the

entire sequence, but also on the subsequences. Here, we apply the

SegGAN mechanism (an improvement based on RelGAN) to train a

GAN-based NLM for synthetic clinical text generation.

GPT-2. GPT-2 (https://github.com/openai/gpt-2) is a large

transformer-based pretrained language model (1.5 billion parame-

ters) published by OpenAI that shows the unprecedented capability

to generate synthetic text,27 when compared with other contextual

embedding models, eg, BERT41–43 and XLNet.44,45 Here, we fine-

tune (https://github.com/minimaxir/gpt-2-simple) the GPT-2 model

(1.5 billion parameters) on our natural clinical HPI corpus to train a

GPT-2 NLM for synthetic clinical text generation. During fine-

tuning, all the notes in the natural HPI corpus are concatenated with

blank line, which also provides a customized character to indicate

the start and end of a note. After the new model has been trained for

the natural HPI corpus based on the pretrained GPT-2 language

model, synthetic samples are generated, and each note is identified

using the customized blank line character. Although the latest GPT-

series model GPT-346 has shown improved performance on text gen-

eration, currently it is not publicly available. We plan to include

GPT-3 models in our future work as soon as they become available.

CTRL. CTRL (https://github.com/salesforce/ctrl) is a 1.63-billion-

parameter conditional transformer language model that was trained

to condition on control codes that govern the content and task-

specific behavior.33 The control codes were derived from the struc-

ture that naturally co-occurs with raw text, preserving the advan-

tages of unsupervised learning while providing more explicit control

over text generation. Like GPT-2, we fine-tune the CTRL pretrained

model (256 sequence length) on the HPI corpus to train a CTRL

NLM for synthetic clinical text generation.

Parameter settings

For CharRNN, we set the hyperparameter of length of sequence as

100, the number of sequences in batch as 32, and the learning rate

as 0.001. For SegGAN, we set word embedding dimensions of

LSTM cell as 32 and 64 for generator and discriminator, respec-

tively, and the batch_size as 16. For GPT-2, we set the number of

training epochs as 1000 and the learning rate as 0.0001; and for

CTRL, we create a new control code and set the iterations for train-

ing steps as 256.

Evaluation

BLEU aims to evaluate how similar 2 sentences are and is widely

used for text generation evaluation.47 To automatically evaluate the

performance of the 4 text generation algorithms, we generated 500

synthetic HPI sections using each algorithm and calculated BLEU

scores for n-grams of size 1 to 4 (denoted as BLEU-1, BLEU-2,

BLEU-3, and BLEU-4, respectively) for each generated HPI corpus.

Evaluation of synthetic corpus on the clinical NER task
We evaluated the utility of the synthetic corpus using the clinical

NER task in the 2010 i2b2/VA challenge, which is to recognize clini-

cal problems, treatments, and tests. For the 500 HPI sections (the

synthetic corpus) generated by the best-performing algorithm, we

manually annotated problem, treatment, and test entities following

the same guideline used in the challenge. In addition, we included 2

existing clinical corpora with the same annotations. Detailed infor-

mation about these datasets and evaluation experiments is provided

in the following sections.

The NER task and annotated datasets

In the 2010 i2b2/VA clinical NLP challenge, one task is to extract

important clinical entities including clinical problems, treatments,

and lab tests.29 This is a general clinical information extraction task,

and it has been used as a benchmark for comparing different clinical

NER methods in many studies.48–50 Here, we proposed to evaluate

the utility of the synthetic corpus using this widely studied task.

Four annotated corpora (following the same annotation guide-

line as in the challenge) were included in this study, including (1) the

annotated synthetic corpus: 500 HPI sections generated by the best-

performing algorithm were manually annotated by experienced

annotators in our group, following the guidelines used in the 2010

i2b2/VA challenge; (2) the annotated natural corpus: as described in

the previous section, the raw natural corpus contains HPI sections

from both the i2b2 and the n2c2 challenges, of which the 292 HPI

sections from the i2b2 challenge were already annotated and were

used in this evaluation here; (3) the annotated external_1 corpus: in

a previous study,3 a corpus of outpatient clinic visit notes from the

2196 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 10



University of Texas Health Science Center at Houston (1351 notes)

were already annotated using the same guidelines, and after we lim-

ited it to HPI sections, it resulted in an annotated corpus of 805 HPI

sections as the first external corpus (external_1); and (4) the anno-

tated external_2 corpus: a corpus of mock clinical documents from

MTSamples (https://www.mtsamples.com/) (338 notes) were also

annotated using the same guidelines in the previous work,3 and

from that, 153 annotated HPI sections were included here as the sec-

ond external corpus (external_2).

NER model training and evaluation experiments

All NER models were trained using the bidirectional LSTM with a

conditional random field algorithm34 in the TensorFlow Named En-

tity Recognition (tf-ner) package (https://github.com/guillaumegen-

thial/tf_ner), which has been reported to have good performance in

several clinical NER studies.51–53 We set the epochs as 25 for train-

ing all the models. As shown in Figure 1 (right box), we first evalu-

ated the performance of models trained on each corpus itself using

10-fold cross-validation performed by dividing each dataset into

train, development, and test subsets with a ratio of 80%:10%:10%,

respectively. We then evaluated the performance of the NER model

trained on the annotated synthetic corpus using the 3 other corpora:

natural, external_1, and external_2. Models from 10-fold cross-

validation experiments have different sets of optimized hyperpara-

meters, and it is difficult to determine the best set of hyperpara-

meters when predicting on external corpora. Our approach is to

build 10 models (each with optimized hyperparameters) from 10-

fold cross-validation settings and apply all of them to the external

corpora via an ensemble approach, which implements a simple vot-

ing strategy to combine predicted labels from 10 models. To com-

pare the performance between natural and synthetic, we also

evaluated the performance of the NER model trained on the natural

corpus using the synthetic, external_1, and external_2 corpora.

There are scenarios in which the number of available natural

clinical notes is limited, which causes low performance of NER

models. In that case, generating and annotating additional synthetic

notes would be very helpful, if we can approve that combining an-

notated natural and synthetic notes can further improve the perfor-

mance of NER models. Therefore, we conducted an additional

experiment to evaluate an augment method: we trained NER models

by combining the synthetic corpus and the training set of the natural

corpus (synthetic þ natural) and evaluated its performance on the

test set of the natural corpus.

Strict and relaxed precision, recall, and F1 measures54 are

reported for each entity type as well as for the overall performance

for each NER model.

RESULTS

Table 1 shows the BLEU-1, -2, -3, and -4 scores of different text gen-

eration methods. Results show that GPT-2 achieved the best perfor-

mance among 4 methods, with the highest BLEU-2 score of 0.92.

Table 2 shows 2 examples of HPI sections generated by GPT-2.

Both read well, although not all sentences make sense semantically

(eg, admission due to medical bills in the second example).

Table 3 shows the performance of NER models trained and

tested on each individual corpus using 10-fold cross-validation. For

the same NER task, the NER model on external_1 achieved the

highest strict overall F1 score of 0.859, while the model on exter-

nal_2 achieved the lower strict overall F1 score of 0.767, indicating

intrinsic differences among corpora from different sources.

Tables 4 and 5 show the performance of NER models that were

trained on either the synthetic or natural corpus and were evaluated

on the 3 remaining corpora. The synthetic corpus actually achieved

slightly higher performance than that of the natural corpus on both

external_1 and external_2 corpora: strict and relaxed overall F1

scores for synthetic vs natural are 0.709 (0.854) vs 0.706 (0.857)

and 0.748 (0.871) vs 0.737 (0.859) on external_1 and external_2,

respectively, indicating the great utility of the synthetic corpus in

real NLP tasks.

Table 6 shows the performance of NER models that were trained

on the augmented corpus (naturalþsynthetic) vs NER models that

were trained on the natural corpus alone. NER models trained on

the augmented corpus achieved better performance than that trained

on the natural corpus only: strict (relaxed) F1 scores of 0.851

(0.927) vs 0.828 (0.914), which indicate another use of synthetic

notes—to augment the natural corpus to further improve NER per-

formance.

DISCUSSION

In this study, we first systematically investigated 4 state-of-the-art

algorithms for the task of generating HPI sections and demonstrated

that GPT-2 achieved the highest BLEU scores. We then annotated

GPT-2–generated HPI corpus, trained deep learning–based NER

Table 1. Synthetic clinical notes generation performance

Metric CharRNN SegGAN GPT-2 CTRL

BLEU-1 87.75 94.89 97.69a 91.73

BLEU-2 69.16 87.77 92.39a 68.94

BLEU-3 48.56 79.73 85.17a 49.65

BLEU-4 32.29 72.37 77.28a 35.62

BLEU: bilingual evaluation understudy.
a indicates the highest score among different text generation methods for

BLEU-1, -2, 3- AND -4 respectively.

Table 2. Sample excerpts from 2 synthetic History and Present Illness sections generated by GPT-2

Sample excerpts

On the day of admission, the patient was found to be unresponsive at

home with recent unresponsiveness first noticed at 6 am. EMS was

called to the residence and found a 75-year-old woman unresponsive

with no obvious signs of intra-respiratory hemorrhage. She was given

IV fluids and antibiotics and intravenous antibiotics for a possible

PNA. Her temperature was 100.4. Breath sounds were not affected.

Blood pressure was noted to be down in the 30s.

This is a 39 year-old female with a history of diabetes mellitus, coronary

artery disease, who presents with shortness of breath and cough. It is a

drought-stressed female with a history of adult-use diabetes mellitus,

tobacco abuse, who presents with acute onset of chest pain since nine

in the morning with chest pressure x 3 days. She is admitted now with

increasing radiation damage to her home and extensive medical bills .
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models, and evaluated their performance on external clinical cor-

pora. Our results show that the automatically generated synthetic

corpus is useful for developing clinical NER models, indicating its

real utility in clinical NLP development. To the best of our knowl-

edge, this is the first work on systematic evaluation of text genera-

tion methods and its utility on NLP NER development in the

medical domain.

Among the 4 different text generation methods, GPT-2 achieved

the best scores on all 4 BLEU-1, -2, -3, and -4 metrics, indicating the

advantages of transformer-based NLMs for text generation. NER

models trained from the synthetic corpus generated by GPT-2

obtained comparable results, eg, for the natural dataset, the syn-

thetic model achieved a strict F1 measure of 0.790, which is lower

than the performance of the NER model trained with the natural

corpus itself (F1 of 0.828). When applying both synthetic and natu-

ral models to external corpora (external_1 and external_2), both

dropped performance significantly, probably owing to different note

types in the external corpora. However, the synthetic model actually

achieved slightly higher performance than that of the natural model

on both external corpora, which greatly demonstrates the utility of

the synthetic notes. One possible reason that synthetic model per-

formed better than natural model on the external corpora is that the

annotated synthetic corpus contains more samples than the anno-

tated natural corpus.

Another interesting use of synthetic corpora would be to aug-

ment an existing natural clinical corpus that is with limited samples.

There are scenarios in which a natural clinical corpus has limited

samples (ie, hundreds of clinical documents from a shared NLP

task) and end users want to train models with more samples. In that

case, users can consider combining the natural dataset with the syn-

thetically generated dataset for model training, thus achieving better

performance, just as what we have demonstrated in this study, ie,

naturalþsynthetic corpus improved F1 score by 2.3% compared

with natural corpus only (F1 scores of 85.1% vs 82.8%).

Table 3. Named entity recognition performances on synthetic and natural clinical corpora: synthetic refers to model trained on training data-

set and tested on test dataset of synthetic corpus; natural, external_1, and external_2 all similarly refer to models trained and tested on the

same corpus’ train and test datasets

Entity synthetic natural

Precision Recall F1 Precision Recall F1

Problem 0.811 (0.907) 0.818 (0.917) 0.814 (0.911) 0.825 (0.921) 0.841 (0.938) 0.833 (0.929)

Test 0.785 (0.863) 0.779 (0.855) 0.780(0.857) 0.838 (0.901) 0.821 (0.877) 0.829 (0.888)

Treatment 0.804 (0.889) 0.789 (0.874) 0.796 (0.881) 0.828 (0.914) 0.794 (0.881) 0.810(0.896)

Overall 0.804 (0.894) 0.803 (0.893) 0.803 (0.893) 0.829 (0.914) 0.827 (0.913) 0.828 (0.914)

Entity external_1 external_2

Precision Recall F1 Precision Recall F1

Problem 0.867 (0.927) 0.881 (0.947) 0.874 (0.937) 0.779 (0.899) 0.776 (0.905) 0.777 (0.902)

Test 0.821 (0.887) 0.779 (0.842) 0.798 (0.863) 0.773 (0.880) 0.769 (0.881) 0.770(0.879)

Treatment 0.782 (0.853) 0.809 (0.886) 0.795 (0.869) 0.728 (0.848) 0.742 (0.874) 0.734 (0.859)

Overall 0.847 (0.910) 0.859 (0.926) 0.852 (0.918) 0.768 (0.885) 0.768 (0.894) 0.767 (0.889)

Numbers in the parentheses are results based on relaxed matching criteria.

Table 4. NER performances on synthetic and natural clinical corpora: synthetic_for_natural, synthetic_for_external_1, and synthetic_for_ex-

ternal_2 refer to models trained from synthetic and tested on natural, external_1, and external_2 test datasets, respectively

Entity synth_for_natural synth_for_external_1 synth_for_external_2

Precision Recall F1 Precision Recall F1 Precision Recall F1

Problem 0.807 (0.930) 0.784 (0.899) 0.795 (0.914) 0.705 (0.842) 0.752 (0.909) 0.727 (0.874) 0.750 (0.869) 0.773 (0.904) 0.761 (0.886)

Test 0.825 (0.911) 0.724 (0.793) 0.770 (0.848) 0.674 (0.807) 0.642 (0.768) 0.657 (0.786) 0.780 (0.882) 0.750 (0.852) 0.763 (0.865)

Treatment 0.802 (0.893) 0.782 (0.872) 0.791 (0.882) 0.682 (0.830) 0.632 (0.770) 0.656 (0.798) 0.685 (0.811) 0.708 (0.858) 0.695 (0.832)

Overall 0.809 (0.918) 0.772 (0.872) 0.790 (0.894) 0.698 (0.837) 0.720 (0.871) 0.709 (0.854) 0.741 (0.859) 0.755 (0.884) 0.748 (0.871)

Numbers in the parentheses are results based on relaxed matching criteria.

Table 5. NER performances on synthetic and natural clinical corpora: natural_for_synthetic, natural_for_external_1, and natural_for_exter-

nal_2 refer to models trained from natural and tested on synthetic, external_1, and external_2 test datasets, respectively

Entity natural_for_synth natural_for_external_1 natural_for_external_2

Precision Recall F1 Precision Recall F1 Precision Recall F1

Problem 0.772 (0.866) 0.841 (0.950) 0.805 (0.906) 0.703 (0.849) 0.749 (0.920) 0.725 (0.883) 0.707 (0.820) 0.800 (0.939) 0.751 (0.875)

Test 0.768 (0.841) 0.762 (0.841) 0.764 (0.840) 0.605 (0.703) 0.682 (0.803) 0.640 (0.749) 0.726 (0.818) 0.736 (0.835) 0.730 (0.826)

Treatment 0.749 (0.852) 0.787 (0.897) 0.767 (0.874) 0.658 (0.791) 0.666 (0.827) 0.662 (0.808) 0.660 (0.778) 0.750 (0.914) 0.701 (0.838)

Overall 0.765 (0.858) 0.812 (0.915) 0.788 (0.886) 0.686 (0.825) 0.728 (0.892) 0.706 (0.857) 0.700 (0.810) 0.778 (0.915) 0.737 (0.859)

Numbers in the parentheses are results based on relaxed matching criteria.
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We also conducted error analyses on predictions for the exter-

nal_1 corpus, by both synthetic and natural models. We randomly

collected 100 false positives and 100 false negatives from each

model and manually reviewed those errors and categorized them

into 3 classes: (1) the predicted boundary is not correct, (2) the pre-

dicted semantic type is wrong, and (3) manual annotation errors.

The results of the error analysis are (1) for false positives, errors for

boundary, semantic type, and annotation are (40%, 57%, 3%) and

(35%, 61%, 4%) for synthetic and natural models, respectively; and

(2) for false negatives, errors for boundary, semantic type, and anno-

tation are (43%, 55%, 2%) and (47%, 50%, 3%) for synthetic and

natural models, respectively. There were no obvious differences be-

tween the synthetic and natural models, in terms of error patterns.

In this study, we assume that a synthetic corpus does not contain

original orders of clinical events of patients, thus avoiding potential

adversarial attacks on reidentification when sharing them. However,

current text generation metrics such as BLEU do not measure this as-

pect. To demonstrate that a synthetically generated HPI section is

different from any original HPI section in natural clinical notes, in

terms of the sequential pattern of mentioned clinical events, we con-

ducted an additional analysis to compare event sequences in syn-

thetic notes with those in the original notes. Based on annotation,

each HPI section was converted into a sequence of events (problems,

treatments, and tests) and an event sequence similarity (ESS) metric

was introduced to measure the similarity of event sequences between

a synthetic and a natural HPI section. Basically, the ESS metric is a

modified BLEU without brevity-penalty, and it is based on clinical

events only. Our results show that all 500 generated HPI sections

have ESS scores close to zero, indicating that their event sequences

are not similar to the original text at all, thus reducing reidentifica-

tion risk. We are aware that the proposed analysis is not a strong

measurement to ensure that the synthetic notes are not identifiable,

as it is based on the order of events only. However, as the synthetic

notes can be generated based on the already de-identified natural

notes, we would argue that this measure provides additional insights

about how synthetic notes can further reduce potential reidentifica-

tion risks. Nevertheless, more in-depth investigation is necessary to

further validate such advantages.

Recently, the utility of synthetic clinical data (eg, EHRs) has

gained great attention. Choi et al55 proposed to synthesize EHRs

data using a deep learning model called a medical GAN (medGAN).

By training one neural network to generate synthetic records and an-

other to discriminate those synthetic records from the natural

records, the model can learn the distribution of both count- and

binary-valued variables in the EHRs, which can then be used to pro-

duce patient-level records that preserve the analytic properties of the

data. As their research is focused on discrete variable records and

does not address the wealth of information embedded in clinical

notes, our approach could be complementary to their work by intro-

ducing synthetic clinical notes. Of course, generating synthetic notes

with correct semantic meanings that can be used for health analytics

would be more challenging than that for NLP development, but it is

worth exploring and pursuing.

Our current study has several limitations. Text generation algo-

rithms have evolved rapidly. During the development of our work,

the latest GPT-series model GPT-346 has been reported, with a ca-

pacity of 175 billion parameters (compared with 1557 million

parameters in GPT-2) and improved performance on text genera-

tion. Nevertheless, GPT-3 is not publicly available at this time. We

have submitted a request to OpenAI for accessing GPT-3, and we

plan to further develop our text generation methods using this new

model later. In addition, we studied the utility of synthetic clinical

texts on the NER tasks only. As shown in Table 2, the GPT-2 model

may not be able to generate semantically meaningful text with co-

herent discourse information, which may limit its usage in other

NLP tasks such as timeline extraction, relation extraction, and dis-

course analysis. We will investigate the use of synthetic corpus in

those additional NLP tasks in the future.

CONCLUSION

Recent advances in text generation have made it possible to generate

synthetic clinical notes that could be used to train NER models for

information extraction from natural clinical notes, thus lowering the

privacy concern and increasing data availability. Further investiga-

tions are required to apply this technology into practice.
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