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ABSTRACT

Objective: Clinical notes contain an abundance of important, but not-readily accessible, information about

patients. Systems that automatically extract this information rely on large amounts of training data of which

there exists limited resources to create. Furthermore, they are developed disjointly, meaning that no informa-

tion can be shared among task-specific systems. This bottleneck unnecessarily complicates practical applica-

tion, reduces the performance capabilities of each individual solution, and associates the engineering debt of

managing multiple information extraction systems.

Materials and Methods: We address these challenges by developing Multitask-Clinical BERT: a single deep

learning model that simultaneously performs 8 clinical tasks spanning entity extraction, personal health infor-

mation identification, language entailment, and similarity by sharing representations among tasks.

Results: We compare the performance of our multitasking information extraction system to state-of-the-art

BERT sequential fine-tuning baselines. We observe a slight but consistent performance degradation in MT-

Clinical BERT relative to sequential fine-tuning.

Discussion: These results intuitively suggest that learning a general clinical text representation capable of sup-

porting multiple tasks has the downside of losing the ability to exploit dataset or clinical note-specific properties

when compared to a single, task-specific model.

Conclusions: We find our single system performs competitively with all state-the-art task-specific systems while

also benefiting from massive computational benefits at inference.

Key words: multitask learning, natural language processing, clinical natural language processing, named entity recognition, tex-

tual entailment, semantic text similarity

INTRODUCTION

Electronic health records (EHRs) contain a wealth of actionable

patient information in the form of structured fields and unstruc-

tured narratives within a patient’s clinical note. While structured

data such as billing codes provide a coarse-grained signal per-

taining to common conditions or treatments a patient may have

experienced, a large quantity of vital information is not directly

accessible due to being stored in unstructured, free-text notes.

The task of automatically extracting structured information

from this free-form text is known as information extraction and

has been an intensely studied line of research over the past 2 dec-

ades. While the primary objective of information extraction is to

gather fine-grained information about patients, such as problems

experienced, treatments underwent, tests conducted, and drugs

received, auxiliary tasks such as the automatic identification and

subsequent removal of personal health information (PHI) are
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also of pragmatic interest to the functioning of the health system

controlling the EHR.

To support this diverse set of information extraction challenges,

several community-led shared tasks have annotated datasets for the

construction and evaluation of automated information extraction

systems. These include the identification of problems, treatments

and tests;1,2 the identification of drugs, adverse drug events, and

drug-related information;3 and the deidentification of PHI.4 While

these shared tasks have produced well-performing solutions, the

resulting systems are disjoint, meaning that no information is shared

between systems addressing each individual information extraction

task. Notably, this means that each task requires a separate engi-

neering effort to solve, narrow technical expertise to construct, and

disjoint computational resources to apply in clinical practice. Re-

cently, this gap has been narrowed by advances in large-scale self-

supervised text pretraining.5,6 This paradigm has resulted in well-

known language representation systems, such as BERT, which can

easily be adapted to any single domain-specific task and achieve

state-of-the-art performance. In the clinical space, researchers have

similarly leveraged large clinical note repositories such as MIMIC-

III7 to pretrain Clinical BERT8 instances, achieving large perfor-

mance gains on several clinical natural language proceeding (NLP)-

related tasks. While well-performing, a single fine-tuned Clinical

BERT instance requires significant resources to deploy into a clinical

informatics workflow, thus limiting its practical applicability. This

fact is amplified by the observation that an isolated 110 million pa-

rameter model is required for each clinical task; scaling linearly the

required hardware resources.

This article introduces Multitask-Clinical-BERT: a single, uni-

fied deep learning-based clinical multitask learning system that con-

currently addresses 8 datasets across 3 distinct NLP tasks. MT-

Clinical BERT augments the BERT5 deep learning architecture with

a novel round robin task fine-tuning schema that allows the learning

of features for multiple clinical tasks simultaneously. As a result, our

system decreases the hardware and computational requirements of

deploying BERT into clinical practice by successfully condensing

eight 110 million parameter BERT instances into a single model

while retaining nearly all BERT-associated task performance gains.

Our main contributions are summarized as follows:

1. We develop a single deep learning model that concurrently

achieves competitive performance over 8 clinical tasks spanning

named entity recognition, entailment, and semantic similarity. As

a result, we achieve an 8-fold computational speed-up at inference

compared to traditional per-task, sequentially fine-tuned models.

2. We demonstrate the feasibility of multitask learning towards de-

veloping a universal clinical information extraction system that

shares information among disjointly annotated datasets.

3. We release and benchmark against a new and more competitive

BERT fine-tuning baseline for 8 clinical tasks by performing ex-

tensive hyperparameter tuning for each task’s dataset.

RELATED WORK

Multitask learning has been an integral subfield of the machine

learning community for many decades.9–11 In the context of deep

learning, programs in several domains spanning drug discovery,

computer vision, and NLP have continued to achieve successes by

sharing supervised signal and data between machine learning

tasks.12–15 Within the biomedical and clinical domain, much of the

work has been focused on information extraction tasks. Previous

works can be divided into 2 categories: multitask learning on a sin-

gle task across multiple datasets and multitask learning across

related tasks within a single domain. Multitask learning over a sin-

gle task has primarily centered around named entity recognition. In

the biomedical domain, these systems focused on extracting biomed-

ical entities (eg, chemical, genes, diseases, and species) from scien-

tific literature.16–20 Within the clinical domain, these systems

focused on extracting clinical concepts (eg, problems, treatments,

and tests) from clinical notes.13 These works focused on data effi-

ciency with the hypothesis that multitask learning on existing named

entity regression (NER) datasets would reduce the annotated data

required to extract new entity types.

Much of the multitask learning across tasks has focused on learn-

ing both entity and relations. Within the biomedical domain, Li et al21

evaluated their approach over 2 entity/relation tasks within scientific

literature: adverse drug events and bacteria biotopes. Within the clini-

cal domain, Shi et al22 focused on family history entities and relations

in clinical records. These works, focused on jointly processed corre-

lated tasks, increased the overall performance of the model. Peng et

al23 evaluated joint learning entities and relations across both the clini-

cal and biomedical texts to evaluate the transfer of knowledge not

only between tasks but also domains. Their findings showed informa-

tion can be shared across the 2 domains, improving the overall results

for information extraction tasks.

These previous works perform multitask learning via a sum of

losses objective in which, given the losses on a batch from each data-

set, the model updates the weights with a backpropagation against the

sum of all the losses. In this work, we explore utilizing a round robin

technique comparing the results to utilizing the sum of the loss.

Within clinical multitask learning, these previous works focused

on single task and related tasks. However, Li et al24 evaluated multi-

task learning across 8 distinct tasks within the general English do-

main. Their findings showed that related tasks may not always help

each other. However, unrelated tasks are not correlated tasks, and

therefore the sharing of the input features and hidden units can ben-

efit each other during training creating a more generalizable system.

Collobert et al25 evaluated multitasking across 6 distinct NLP tasks

showing that multitask learning improved generalization even across

possibly unrelated tasks. In this work, we explore multitask learning

across 3 distinct NLP tasks: entity recognition, semantic text similar-

ity, and natural language inference, across 8 datasets.

MATERIALS AND METHODS

This section begins with description of the clinical text benchmarks

and then a description of our clinical multitask learning system. Our

goal is to investigate the effect of multitask learning across a set of

diverse clinical tasks.

Data
We use 8 clinical tasks to evaluate our multitasking system. Table 1

describes the tasks, the predefined train and evaluation splits used in

our experiments, and the corresponding task evaluation metric.

The Semantic Textual Similarity (STS) task is to assign a numeri-

cal score to sentence pairs, indicating their degree of semantic simi-

larity. Our system includes 1 STS dataset:

1. The n2c2-2019 dataset consists of deidentified pairs of clinical

text snippets from the Mayo Clinic that were ordinally rated from

0 to 5 with respect to their semantic equivalence where 0 indicates

no semantic overlap and 5 indicates complete semantic overlap.
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The training dataset contains 1642 sentence pairs, while the test

dataset contains 412 sentence pairs.

Textual entailment is the task of determining if 1 text fragment is

logically entailed by the previous text fragment. We utilize 2 entail-

ment datasets:

2. The MedNLI27 dataset consists of the sentence pairs developed by

physicians from the Past Medical History section of MIMIC-III

clinical notes annotated for Definitely True, Maybe True, and

Definitely False. The dataset contains 11 232 training, 1395 de-

velopment, and 1422 test instances. We combined the training

and development instances for our work.

3. The MedRQE28 dataset consists of question–answer pairs from

the National Institutes of Health’s National Library of Medicine

clinical question collection (FAQ). The positive examples were

drawn explicitly from the dataset while the negative pairs were

collected by associating a randomly combined question–answer

pair as having at least 1 common keyword and at least 1 different

keyword from the original question. The dataset contains 8588

training pairs and 302 test pairs with approximately 54.2% as

positive instances.

NER is the task of automatically identifying mentions of specific

entity types within unstructured text. In this work, we utilize 5 NER

datasets:

4. The n2c2-2018 dataset3 consists of 505 deidentified discharge

summaries drawn from the MIMIC-III clinical care database and

annotated for adverse drug events and the drug that caused them;

reason for taking the drug and the associated dosage, route, and

frequency information. The training and test sets contain 303 and

202 instances, respectively.

5. The i2b2-2014 dataset2 consists of 28 772 deidentified discharge

summaries provided from Partners HealthCare annotated for PHI

including, patient names, physician names, hospital names, identi-

fication numbers, dates, locations, and phone numbers. The train-

ing and test sets contain 17 310 and 11 462 instances,

respectively.

6. The i2b2-2012 dataset consists of deidentified discharge summa-

ries provided by Partners HealthCare and MIMIC-II. The dataset

was annotated for 2 entity types: 1) clinical events, including both

clinical concepts, departments, evidentials, and occurrences; and

2) temporal expressions, referring to the dates, times, durations,

or frequencies. In this work, we evaluated only the event annota-

tions. The training and test sets contain 16 468 and 13 594 instan-

ces, respectively.

7. The i2b2-2010 dataset1 consists of deidentified discharge summa-

ries, provided by Partners HealthCare and MIMIC-II, and deiden-

tified discharge and progress notes from the University of

Pittsburgh Medical Center. The dataset was annotated for 3 entity

types—clinical concepts, clinical tests, and clinical problems.

These entities overlap with the i2b2-2010 event annotations. The

training and test sets contain 27 837 and 45 009 instances, respec-

tively.

8. The quaero-2014 dataset29 consists of a French medical corpus

containing 3 document types: 1) the European Medicines Agency

drug information; 2) MEDLINE research article titles; and 3) Eu-

ropean Patent Office patents. The dataset was annotated for 10

types of clinical entities from the Unified Medical Language Sys-

tem Semantic Groups:30 Anatomy, Chemical and Drugs, Devices,

Disorders, Geographic Areas, Living Beings, Objects, Phenomena,

Physiology, and Procedures. The training and test sets contain

2695 and 2260 instances, respectively.

Multitasking clinical BERT
In this section, we describe our multitask learning framework which

aims to adapt the weights of a base pretrained model into a feature

encoder capable of generating text representations suitable for mul-

tiple tasks simultaneously. In a non-multitask learning environment,

the standard practice of learning from pretrained transformers, such

as BERT, is a method known as sequential fine-tuning. During se-

quential fine-tuning, a BERT encoder is initialized with self-

supervised pretraining and then fine-tuned with loss signal from a

task-specific head. This procedure adapts the weights of the base

pretrained model into a task-specific feature encoder capable of rep-

resenting the input text, such that the task objective is easily discern-

ible by the task-specific head (eg, linearly separable in the case of

classification).

In contrast, in a multitask learning environment the weights of

the base pretrained model into a feature encoder are tuned for multi-

ple tasks simultaneously. In our case, this is achieved by treating the

BERT transformer encoder as a feature encoder that feeds into mul-

tiple lightweight task-specific architectures, each implementing a dif-

ferent task objective. Traditionally, hard parameter multitask

learning is achieved through loss summation,21,22 where the encoder

is updated to minimize the sum of all losses across tasks. While ef-

fective, this approach does not scale to larger numbers of tasks due

to the linearly increasing device memory requirements and tuning

necessary to prevent a single task loss signal from dominating during

learning. In turn, we propose and validate a hard parameter multi-

task learning model that learns a multitask encoder with memory

requirements independent of the number of tasks present during

training.

Our multitasking model (Figure 1) comprises of a BERT feature

encoder with weights initialized from Bio þ Clinical BERT8 and

8 per-dataset task-specific heads. The head architectures are as fol-

lows:

• Named Entity Recognition (Figure 2a): token classification via a

per-entity linear classifier on subword tokens providing loss sig-

nal with cross entropy loss.

Table 1. Clinical information extraction benchmarks with reported performance metric

Task Dataset Metric Description # Train Inst. # Test Inst.

STS n2c2-201926 Pearson Rho Sentence pair semantic similarity 1641 410

Entailment MedNLI27

MedRQE28

Accuracy

Accuracy

Sentence pair entailment

Sentence pair entailment

12 627 8588 1422 302

NER n2c2-20183

i2b2-20144

i2b2-20122

Micro-F1

Micro-F1

Micro-F1

Drug and adverse drug event

PHI deidentification events

36 384

17 310

16 468

23 462

11 462

13 594

i2b2-20101 Micro-F1 Problems, treatments and tests 27 837 45 009

quaero-201429 Micro-F1 UMLS semantic groups (French) 2695 2260
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• Semantic Text Similarity (Figure 2b): sentence pair semantic sim-

ilarity scoring via a linear regression on the sequence representa-

tion (sentence classification [CLS]) token providing loss signal

via the mean squared error.
• Natural Language Inference (Figure 2c): sentence pair logical en-

tailment via a linear classifier on the sequence representation

(CLS) token providing loss signal with cross entropy loss.

To train our multitasking model, the feature encoder was

adapted to support all tasks simultaneously. There are several estab-

lished methods of adapting the feature encoder parameters by com-

bining loss signal from each head during training31 (eg, averaging/

adding losses); however, most assume that the loss function is con-

stant across all of the heads. In general, this is not necessarily true.

When different loss functions are present, the standard solution is to

subsample instances from each dataset proportional to the dataset

size, compute a weighted sum of all the per-task losses, and then

proceed with batch stochastic gradient descent against the total sum

of losses.31 Instead, we propose a simpler and less involved training

scheme that additionally reduces the device memory constraints im-

posed by methods such as loss summation. We train our multitask

learning model as follows. During each data epoch, batches are ran-

domly sampled from each NLP task and paired with the task’s corre-

sponding linear prediction head. Each linear head takes turns having

its parameters adjusted towards executing its designated NLP task,

given the BERT encoder features. Each time a linear heads’ parame-

ters update, the shared BERT encoders’ parameters receive an up-

date. Heads are cycled on the encoder in a round robin fashion to

ensure that the encoder does not become overly specialized in pro-

ducing features for any specific task head. This training schedule is

formally described in Algorithm 1.

Experimental details and reproducibility
We base our implementation on the well-known HuggingFace

“Transformers” implementation of BERT. During hyperparameter

tuning, we reinitialize with random seeds in the set f1,. . .,5g. All

fine-tuning is performed with constant learning rate 5e�5. The NER

Figure 1. Eight-headed MT Clinical BERT with a round robin training schedule. Each Entailment head predicts a one-hot class indicator. The Semantic Text Simi-

larity (STS) head predicts a similarity score in [0, 5] representing the semantic similarity of the 2 input sentences. Each Named Entity Recognition head predicts a

one-hot entity indicator for each input sub-word token.

Algorithm 1 MT-Clinical BERT Training Schedule

Require: hE: pretrained Transformer encoder.

Require: hH ¼ fhh1,..,hhng: n task-specific heads.

1: Randomly initialize hhi Vi 2f1,..,ng
2: while all batches from largest task dataset are not

sampled do

3: Sample a batch Di for each hhi 2 hH

4: for each (hhi, Di) do ! One round robin iteration

5: Let h¼ hE hhi ! Output of encoder into head hh

6: h0 ¼ h� arhL(h,Di)

7: Update h with h0

8: end for

9: end while
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heads train with a batch size of 25 length 512 subword sequences,

while the STS and entailment training is performed with a batch size

of 40. All training and evaluation are conducted on a single Nvidia

V100 32GB GPU. It takes roughly 3 hours of sampled training to

achieve the results in MT-Clinical BERT results in Table 2. It takes

roughly 8 hours of training to achieve the multitask learning (MTL)

Loss Summation results in Table 2. In addition to our pretrained

models, we support reproducibility by including all preprocessing

necessary to replicate our results in the code release.

Evaluation
To demonstrate that round-robin trained MT-Clinical BERT retains

task-specific performance, we evaluate the model alongside BERT

fine-tuning, the state-of-the-art single task approach, and a multi-

task BERT encoder trained with traditional loss summation. To in-

sure a competitive and fair comparison with existing state-of-the-art

solutions, we perform a hyperparameter search for each individual

Clinical BERT task fine-tuning run and report the best performing

model on each task. Recent work32 has found negligible perfor-

mance differences between random seed reinitialization and more

complex methods of hyperparameter search during BERT fine-tun-

ing, so we opt for the former. Specifically, for each task, a Clinical

BERT instance is initialized and fine-tuned for 20 training data

epochs over 5 unique random seeds resulting in 100 unique task-

specific models. We report the top performing model at evaluation.

We do not utilize a development set for training MT-Clinical BERT,

as the multitasking paradigm itself largely removes the ability for a

model to overfit any specific task (for if it did, performance would

degrade on other tasks). Additionally, we do not perform hypothesis

testing due to the significant computational resources required.

RESULTS AND DISCUSSION

We compare the performance of our multitasking information ex-

traction system to state-of-the-art BERT sequential fine-tuning base-

lines and multitask loss summation in Table 2. The reported

multitask results are based on the epoch that provided the greatest

overall performance of the system, rather than the individual best

per task. Evaluations reported in the column (Optimized) Clinical

BERT represent individually fine-tuned, per-task BERT models.

Evaluations reported in the column MT-Clinical BERT represent

lightweight task-specific heads over a single multitask trained BERT

feature encoder. We find that the performances reported in the Clin-

ical BERT8 paper can be substantially improved via hyperparameter

search. While this is not surprising (the authors specify that perfor-

mance was not their goal), it is important to compare improvements

or degradations against a competitive baseline. All further discus-

sion compares the multitasking model to the hyperparameter Opti-

mized Clinical BERT baseline.

When comparing the 2 evaluated approaches for hard parameter

multitask learning, we found no discernable patterns or trends in

performance metrics. Each training method, round robin and loss

summation, performs better for some tasks and worse for others.

Notably, we found that round robin trained MT-Clinical BERT

Figure 2. Task-specific heads with corresponding input representations from the BERT hidden state sequence.

Table 2. Clinical information extraction performance of MT-Clinical BERT vs hyperparameter searched Clinical BERT fine-tuning runs. All

span level metrics are exact match. Task performances showcased in the column MT-Clinical BERT represent a single multitask round robin

trained feature encoder with individual task-specific heads. Task performances showcased in the column MTL Loss Summation represent a

multitask feature encoder trained with loss summation. All other reported results are generated from task-specific BERT models. Higher is

better

MT-Clinical BERT MTL Loss Summation Optimized Clinical BERT Clinical BERT8

n2c2-2019 86.7 (�0.5) 84.5 87.2 –

MedNLI 80.5 (�2.3) 80.2 82.8 82.7

MedRQE 76.5 (�3.6) 77.5 80.1 –

n2c2-2018 87.4 (�0.7) 85.5 88.1 –

i2b2-2014 91.9 (�3.6) 94.2 95.5 92.7

i2b2-2012 84.1 (þ0.2) 84.8 83.9 78.9

i2b2-2010 89.5 (�0.3) 90.6 89.8 87.8

quaero-2014 49.1 (�6.4) 52.2 55.5 –
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requires significantly less computational resources and training time

on the fixed compute (Nvidia V100 32GB) to achieve the reported

performance.

Overall, our results show that information sharing exists in our

multitasking model as all task predictions depend only on the repre-

sentations produced by a single encoder and a task-specific linear

probing MLP over these representations. If information from all

tasks were not present in the encoders hidden state embeddings, per-

formance would degrade for 1 or all tasks. We observe a slight but

consistent performance degradation in MT-Clinical BERT relative

to sequential fine-tuning. Intuitively, this suggests that learning a

general clinical text representation capable of supporting multiple

tasks has the downside of losing the ability to exploit dataset or clin-

ical note-specific properties when compared to a single, task-specific

model. This phenomenon can best be illustrated among the English

token classification tasks, where the deidentification task, i2b2-

2014, suffered the greatest performance degradation. Clinical BERT

is pretrained over MIMIC-III. As MIMIC-III is deidentified, all PHI

markers in the original notes are replaced with special PHI tokens

that do not linguistically align with the surrounding text (eg, an in-

stance of a hospital name would be replaced with the token [HOSPI-

TAL]). Due to this, no PHI tokens are present in MIMIC-III, and,

thus the pretraining procedure of Clinical BERT over the MIMIC-III

corpus provides little signal pertaining to PHI tokens. Alsentzer et

al8 observes and discusses this property in depth. These results sug-

gest that a lack of PHI-related information during pretraining can be

overcome by the encoder during sequential fine-tuning. However,

this is not as successful when regularized by the requirement of sup-

porting multiple tasks due to the mixture of PHI and special PHI

tokens across the datasets.

Surprisingly, MT-Clinical BERT confers a slight performance

increase in the problem, treatment, and test extraction task i2b2-

2012 relative to the hyperparameter-tuned Clinical BERT baseline.

This suggests that multitask regularization with the related prob-

lem, treatment, and test extraction task in i2b2-2010 may be in-

ducing features more suited to generalizability for these entity

types. These are the only NER tasks with overlapping entity defini-

tions.

Our final observation reinforces the commonly laid out claim in

the multitasking community related to task orthogonality/overlap.

In the supervised multitask setup, 2 tasks are said to have overlap

when some characteristics of a given task (eg, data domain, task ob-

jective, target label space, etc) should intuitively help with perfor-

mance on a different but related task. Otherwise, tasks are said to be

orthogonal along that characteristic.31 The majority of the tasks (5/

8) in this study are token classification objectives. Unlike the 3 seg-

ment level tasks, these require the BERT feature encoder to learn

task-robust contextual token representations that, due to their prev-

alence during training, may negatively harm the formation of seg-

ment level representations. This objective orthogonality is suggested

by consistent and large performance decreases in the entailment

tasks (MedNLI and MedRQE). We speculate that this could be

aided by including additional clinical-related segment level objec-

tives during training or by incorporating the original next sentence

prediction pretraining objective into the multitasking mix. Similarly,

the quaero 2014 corpus is entirely in French. This naturally induces

a lingual orthogonality relative to the other 7 English corpora. This

orthogonality manifests by inducing the largest loss in competitive-

ness (�6.4%) to fine-tuning baselines across all tasks. Again, we sus-

pect that the inclusion of additional non-English token level tasks

could close this performance gap.

To summarize, the main insights from our analysis are:

• A general trend of degradation in MT-Clinical BERT task-

specific performance over individual task-specific models. This

is a direct tradeoff to the 8-fold reduction in parameters and

computational speed up at inference provided by MT-Clinical

BERT.
• The observation of the task-specific performance increase on

i2b2-2012 by MT-Clinical BERT. This is potentially due to the

quader regularization provided during multitask learning.
• The observation that the greatest relative reduction in

multitasking performance occurs on datasets (MedNLI,

MedRQE and quaero-2014) with orthogonal characteristics

to the predominately English token classification (NER) tasks

considered.

Limitations
We foresee the following limitations for both the implementation

and scaling of our proposed system. First, the datasets considered

are annotated over patient discharge summaries. Naturally, different

types of notes may have differing underlying data distribution that

can lead to performance degradation. Second, we have observed

from experiments in other domains that scaling the number of tasks

(> 40) during training inversely correlates with per-task perfor-

mance. This means that multitask training with a large number of

tasks may require careful ablation experiments to gauge the net ben-

efit of adding any given task.

FUTURE WORK

There are several directions for future work. We describe them and

provide insights below.

• Adding more tasks and datasets. Is adding more tasks feasible

and beneficial? There is strong evidence12 suggesting that includ-

ing a greater number of overlapping tasks may increase task-

specific predictive performance. This comes with the additional

benefit of increasing computational performance at inference as

described in this work.
• Learning from limited data. Do the representations obtained via

multitask learning serve as a better initialization for learning

from limited data resources? Work in this direction would bene-

fit from the inclusion of instance ablation studies.
• Unifying NLP pipelines into end-to-end systems. Many common

NLP tasks build upon the output of previous tasks. This natu-

rally results in phenomena such as error propagation. Can the

shared representations produced by a multitask encoder con-

struct an effective joint NER and relation identification system?

Recent work33 suggests this is possible, but can it be accom-

plished in the multitasking framework?
• Incorporating pretraining objectives during multitasking. In low,

annotated data domains, such as clinical text, we suspect it may

be useful to incorporate the self-supervised masked language

modeling and next sentence prediction objectives during multi-

task training. During preliminary experiments, we find that this

does not harm system performance.
• Task-specific analysis. This work evaluated the effectiveness of

multitask learning across tasks. In the future, we would like to

explore how the different tasks affect the extraction of the differ-

ent clinical entity types within our NER datasets.
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CONCLUSION

In this work, we evaluated multitask learning over 8 datasets across

3 distinct NLP tasks. We compare our model to a competitive sin-

gle-task learning baseline. We found that multitask learning is an ef-

fective mechanism to distill information from multiple clinical tasks

into a single system. Our results show that information sharing

exists in our multitasking model, as all task predictions depend only

on the representations produced by a single encoder. This has the

main benefit of significant hardware and computational reductions

at inference with the trade-off of a small performance degradation.

Our system directly increases the potential for the use of recent

state-of-the-art NLP methods in clinical applications. In addition,

we contribute new state-of-the-art baselines for several clinical in-

formation extraction tasks. The data repositories and resources of

the clinical NLP community have grown steadily over the past two

decades—the doors have been opened to consolidate, cross-leverage

and jointly build on these expensive annotation efforts. We make

our implementation and pretrained models publicly accessible at

https://github.com/AndriyMulyar/multitasking_transformers.
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