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Objective. To identify significant pathways and genes in intervertebral disc degeneration (IDD) based on bioinformatics analysis.
Design. The GEO database was used to download the GSE124272 dataset. Differentially expressed genes (DEGs) were analyzed
using Limma package in R language. Then, gene ontologies (GO), Kyoto encyclopedia of genes and genomes (KEGG), and
protein-protein interaction (PPI) networks were used to further identify hub genes. The mRNA expression levels of top six
hub genes were verified. Results. We found 563 DEGs, of which 214 were upregulated and 349 were downregulated. The top 5
GO terms and pathways were shown including immune response, cell cycle, and p53 pathway. Based on the PPI analysis, we
verified the mRNA expression levels of 6 hub genes. The mRNA levels of CHEK1, CDCA2, SKA3, and KIF20A were
upregulated in degenerative NP tissue than in healthy NP tissue. However, the mRNA level of BUB1 and SPC25 was
downregulated. Conclusions. This study may provide new biomarkers for the IDD and treatments to repair IDD related to
CHEK1, CDCA2, SKA3, BUB1, KIF20A, and SPC25.

1. Introduction

Intervertebral disc degeneration (IDD) is a significant cause
of intervertebral disc degeneration diseases including low
back pain, stenosis, lumbar disc herniation, and ischialgia,
which can cause the worldwide economic and social burden
and seriously affect quality of life [1–8]. Boden et al. found
that all subjects between 60 and 80 years of age showed
IDD, though 35% of subjects between 20 and 39 years of
age showed at least one lumbar level of IDD [9]. There is cur-
rently no effective treatment for IDD to reverse and repair
IDD [10]. In recent decades, finding effective treatments
and developing appropriate treatment procedures for IDD
have become the focus of research [11–17].

The anatomical structure of a complete intervertebral
disc consists of the surrounding annulus fibrosus (AF), the
central nucleus pulposus (NP), and the cartilage endplate
(CEP) [18]. During IDD, inflammation, oxidative stress,
apoptosis, senescence, and other pathological factors are

involved. IDD is considered a result of multifactorial contri-
butions including trauma, inflammation, age-related
changes, and local nutritional and vascular dysfunction
[19]. At present, conservation and surgical treatments are
often used in the treatment of IDD, but those methods can
only relieve symptoms and may recur repeatedly, limiting
spinal activity [20]. One key reason for the current situation
is the lack of a clear understanding of its pathophysiology
and molecular mechanisms [21].

Hub genes are defined as having the highest degree of
connectivity, suggesting functional importance in the dis-
eases. Thus, investigating the hub genes and key pathways
associated with IDD is necessary to clarify the pathophysiol-
ogy and molecular mechanisms, which provides potential
effective therapeutic strategies.

Recently, microarray technology and bioinformatics
analysis have become popular methods of exploration of
disease pathogenesis and identification of biomarkers for
disease progression [22]. The purpose of this study is to
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identify potential molecular targets and signaling pathways
associated with IDD based on Gene Expression Omnibus
datasets. To identify potential hub genes among these DEGs,
we constructed protein-protein interaction (PPI) networks.
These hub genes were also validated using human nucleus
pulposus (NP) samples, which reveals potential molecular
mechanisms associated with IDD.

2. Research Materials and Methods

2.1. Retrieving Data. The GEO database (http://www.ncbi
.nlm.nih.gov/geo) is a gene expression database created by
NCBI (the National Biotechnology Information Center of
the United States). This GSE124272 dataset was downloaded
from the GEO database, which consisted of 16 whole blood
samples from 8 patients with intervertebral disc degenera-
tion and 8 patients with healthy discs. This dataset was pub-
lished by Wang Yi et al. [23]in 2019, and the patients were
genotyped using the GPL21185 Agilent-072363 SurePrint
G3 Human GE v3 8x60K Microarray.

2.2. Data Processing and Identification of DEGs. We used
affy package (https://bioconductor.org/biocLite.R) in the R
software bioconductor to read the data. The robust multiar-
ray averaging (RMA) algorithm was used to normalize the
data. Finally, we used the Limma package (Limma package
R 3.4.3) to identify DEGs. P < 0:05 and |log2FC ∣ ≥1 were
used to identify DEGs from these samples, and volcano plot
was constructed.

2.3. Functional Enrichment Analysis of DEGs. The DAVID
(http://david.abcc.ncifcrf.gov/) database is mainly used for
functional enrichment analysis of DEGs [24]. We used the
DAVID database to enrich and analyze the functions and
pathways including gene ontology (GO) terms and Kyoto
encyclopedia of genes and genomes (KEGG) terms with a
significant threshold of P < 0:05. GO terms consisted of
three categories: biological process (BP), cellular component
(CC), and molecular functional (MF).

2.4. PPI Analysis. PPI networks were constructed to predict
protein-protein interactions of DEGs using the STRING
database (http://www.stringdb.Org). Then, these data were
uploaded into Cytoscape software (https://cytoscape.org/)
to visualize the networks of DEGs. Finally, we used MCODE
plug-in in Cytoscape to identify the hub genes based on the
previously constructed PPI networks.

2.5. Verification of Hub Genes. We obtained nucleus pulpo-
sus (NP) tissues from two patients with acute lumbar disc
herniation or degenerative disc disease. One patient under-
went posterior lumbar interbody fusion, and another under-
went percutaneous endoscopic lumbar discectomy. The
relatively healthy NP tissues were grades I~II, and degener-
ated NP tissues were grades III~V according to Pfirrmann
classification score by magnetic resonance imaging. The
Pfirrmann grades of these two NP tissues, respectively, are
grade II and grade V. The NP tissues were harvested under
sterile conditions and immediately sent to the laboratory.
Written informed consent was obtained from each patient.

The study was approved by the Ethics Committee of Hubei
Provincial Hospital of Traditional Chinese Medicine.

2.6. RNA Extraction and Quantitative Real-Time- (qRT-)
PCR. We used TRIzol reagent (Ambion, Foster City, CA,
USA) to extract total RNA from human NP tissues accord-
ing to the manufacturer’s instructions. We used PrimeScript
RT Master Mix (Takara Bio, Shiga, Japan) to reverse tran-
scribe total RNA according to the manufacturer’s instruc-
tions. Then, qRT-PCR was performed using the One-Step
SYBR PrimeScript RT-PCR Kit (Takara Bio) to quantify
the mRNA expression levels of SPC25, CHEK1, CDCA2,
SKA3, BUB1, and KIF20A. Endogenous housekeeping gene
GAPDH was used to normalize these mRNA expression
levels. The 2−ΔΔCt method was used to compute these rela-
tive expression levels. Table 1 shows the primer sequences
used for qRT-PCR.

2.7. Statistical Analysis. SPSS statistical software 24.0 was
used for statistical analysis (SPSS, Inc., Chicago, IL, USA).
Each experiment was carried out at least three times. The
results are performed as the mean ± standard deviation
(SD). These data were analyzed using Student’s t-test. To
evaluate the difference in gene expression level between
two groups, P < 0:05 was considered significant.

3. Results

3.1. Identification of DEGs. We analyzed the DEGs between
two groups in the GSE124272 based on P < 0:05 and ∣log2
FC ∣ ≥1 and found 563 DEGs, of which 214 were upregulated
and 349 were downregulated. Volcano plot was shown to
visualize the DEGs in Figure 1.

3.2. GO and KEGG Functional Enrichment Analysis of DEGs.
We analyzed the functional enrichment of DEGs to explore
the potential molecular mechanism and related genes. The
top five enriched GO terms and the KEGG pathway of DEGs
are shown in Figures 2 and 3 and Table 2.

3.3. PPI Network and Hub Gene Analysis. In order to iden-
tify the potential interaction between the DEGs, we built a
PPI network and used the Cytoscape software to visualize
it. In the intervertebral disc degeneration group, the PPI net-
work included 207 nodes and 668 edges (Figure 4), and the
top 20 hub genes were identified by MCODE (Figure 5).

3.4. Validation of the Hub Genes. To validate the identified
hub genes, we used two human NP tissues including one
from a patient with healthy disc and one from a patient with
degenerated disc to identify the mRNA levels of the top six
hub genes. The mRNA levels of CHEK1, CDCA2, SKA3,
and KIF20A were upregulated in degenerative NP tissue
than in healthy NP tissue. However, the mRNA level of
BUB1 and SPC25 was downregulated in degenerative NP
tissue. These results are shown in Figure 6.
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4. Discussion

IDD plays an important role in spine-related diseases. It is
difficult to reverse the IDD progression with current treat-
ments. Although numerous studies have studied the mecha-
nisms of IDD, the underlying mechanisms remain unclear.
In our study, the GSE124272 was used to identify the DEGs
of two groups. GO and KEGG enrichment analysis were per-
formed to find significant biological processes and signal
pathways. The important biological processes are related to
immune response, innate immune response, cell division,
mitotic nuclear division, and cell proliferation. It is worth
mentioning that cell proliferation plays an important role
in IDD. Many studies have confirmed that the proliferation

level of intervertebral disc cells is diminished during IDD
progression. On the contrary, the apoptosis rate of interver-
tebral disc cells increases relatively [25–31]. Many molecules
regulate this process of IDD, including proteins, micro-
RNAs, and long noncoding RNAs [25, 32–40]. Wang et al.
[33] demonstrated that lncRNA-RMRP promoted NP cell
proliferation and upregulated expression of cyclin D1 and
PCNA.

KEGG pathway analysis showed several pathways asso-
ciated with IDD. p53 signaling pathway have been widely
studied in IDD [27, 41–44]. Many biological processes are
involved in p53 pathway, including cell proliferation, apo-
ptosis, and senescence. p53 is a transcription factor and
well-known as a tumor suppressor in humans and other
mammals, which participates in the regulation of biological
processes. It has been reported that the p53 pathway regu-
lates the senescence process of cartilage end plate cells and
p53 phosphorylation level can been decreased through
silencing of SUMO2 [27].

PPI network analysis was used to identify hub genes in
IDD. We validated six hub genes including CHEK1,
CDCA2, SKA3, BUB1, SPC25, and KIF20A. Cell division
cycle associated 2 (CDCA2) is a cell-related protein, which
is related to CDCA1, 3, and 4-8 [45]. It has been reported
that upregulation of CDCA2 regulated by HIF-1α inhibited
apoptosis and promoted proliferation in prostate cancer
[46]. HIF-1α, a hypoxia-inducible factor, is a transcriptional
factor which affects the homeostatic maintenance of NP tis-
sue and extracellular matrix metabolism [47]. Uchida et al.
[48] confirmed that silencing of CDCA2 significantly inhib-
ited cellular proliferation and promoted apoptosis. In
addition, CDCA2 performs regulation function through sig-
nal pathways including the MAPK pathway [49].

SKA3, a subunit located in the kinetochore outer layer of
the SKA complex, performs biological function related to the
NDC80 complex to affect proper mitotic exit during mitosis,
which regulates cell proliferation and migration [50]. In

Table 1: Primer sequences.

Gene Sequence Size

CDCA2
Forward: 5′-TGTGGGCAGCTCTGTAGAAA-3′
Reverse: 5′-GGGAAGTGGAAGGAAGTGGA-3′ 185 bp

KIF20A
Forward: 5′-CGCAGTCACAGCATCTTCTC-3′
Reverse: 5′-GACGAAGGGCAGCAATACAG-3′ 202 bp

SPC25
Forward: 5′-TGCAGAGAGGTTGAAAAGGC-3′
Reverse: 5′-TGAGGGGCACTATCTGACAC-3′ 198 bp

CHEK1
Forward: 5′-TCAGGTGGTGTGTCAGAGTC-3′
Reverse: 5′-GACATGTGGGCTGGGAAAAG-3′ 211 bp

SKA3
Forward: 5′-AGCCCGTAATTGTAACCCCA-3′
Reverse: 5′-TCTGTATCTATGGCCTCCTCAC-3′ 211 bp

BUB1
Forward: 5′-TCCCCTCTGTACATTGCCTG-3′ 168 bp

Reverse: 5′-AGCTGGCAAATGGGTTTCAG-3′

GAPDH
Forward: 5′-TCAAGAAGGTGGTGAAGCAGG-3′
Reverse: 5′-TCAAAGGTGGAGGAGTGGGT-3′ 115 bp
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Figure 1: Volcano plot of DEGs. Red represents high expression,
green represents low expression, and black represents no difference.
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CRC cells, silencing of SKA3 reduced cell growth rates and
increased apoptosis, inducing G2/M arrest and decreasing
migration, and anchorage-independent growth [51]. Accu-
mulating evidence indicates that SKA3 induces the expres-
sion of matrix metalloproteinase- (MMP-) 2, MMP-7, and
MMP-9 via activating the PI3K/AKT signal pathway which
regulates numerous cellular functions mainly including
angiogenesis, metabolism, cell growth, cell proliferation,
protein synthesis, transcription activity, and cell apoptosis
[52, 53].

It is found that SPC25 plays an important role in regulat-
ing cell proliferation, apoptosis, and invasion. Cui et al. dem-
onstrated that knockdown of SPC25 suppressed cell
proliferation through decreasing in the number of cells in
the S phase and increasing in the number of cells in the
G2/M phase [54]. Chen et al. [55] demonstrated that
SPC25 was upregulated in lung cancer tissues and was
involved in the regulation of tumor cell proliferation and
metastasis. Additionally, SPC25 knockdown upregulated
expression level of p53, indicating that the p53 signaling
pathway is a potential pathway associated with SPC25 [56].
p53, a cellular stress sensor, responds to diverse stress signals
including DNA damage, hypoxia by regulating cell senes-
cence, and apoptosis in the intervertebral disc [57].

Kinesin-like family member 20A (KIF20A), a mamma-
lian mitotic kinesin-like motor protein of the Kinesin super-
family proteins, is related to Golgi apparatus dynamics and
considered a significant molecule for cell cycle regulation.
It is also found that KIF20A regulates the localization of sub-
set of central spindle components [58]. A further study indi-
cated that KIF20A affected the process of porcine early
embryo development.

Zhao et al. [59] demonstrated that KIF20A can promote
tumor cell proliferation and inhibit apoptosis in vivo and
in vitro. Likewise, Duan et al. [60] confirmed that cellular
proliferation and invasion were promoted through upregula-
tion of KIF20A, and cell viability and invasion capacity were
inhibited via silencing of KIF20A. These findings indicate
that KIF20A may be a novel target associated with NP cell
degeneration.

Checkpoint kinase 1 (CHEK1), a serine/threonine-spe-
cific protein kinase, regulates the DNA damage response
and cell cycle checkpoint reactions and plays a significant
role in the S and G2 cell cycle checkpoints [61, 62]. In order
to inhibit damaged cells from developing throughout the cell
cycle, CHEK1 is activated to affect the initiation of cell cycle
checkpoints, cell cycle arrest, DNA repair, and cell death,
which regulates the phosphorylation level of several
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Figure 2: Top five enriched GO terms associated with the DEGs.
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Figure 3: Top five enriched KEGG terms associated with the DEGs.

Table 2: Functional and pathway enrichment analysis of DEGs.

Category Term Count Gene ratio (%) P value

GOTERM_BP Defense response to gram-negative bacterium 7 1.75% 2:00E − 04
GOTERM_BP Mitotic nuclear division 13 3.24% 5:04E − 04
GOTERM_BP Chromosome segregation 7 1.75% 6:38E − 04
GOTERM_BP Response to yeast 4 1.00% 9:36E − 04
GOTERM_BP Cell division 15 3.74% 1:16E − 03
GOTERM_CC Plasma membrane 95 23.71% 2:95E − 05
GOTERM_CC Specific granule 5 1.25% 3:70E − 05
GOTERM_CC Neuronal cell body 17 4.24% 3:75E − 05
GOTERM_CC Extracellular space 40 9.98% 1:29E − 04
GOTERM_CC Cell surface 20 4.99% 8:98E − 04
GOTERM_MF Carbohydrate binding 9 2.25% 1:09E − 02
GOTERM_MF Peptidase activity 6 1.50% 1:25E − 02
GOTERM_MF Iron ion binding 7 1.75% 3:08E − 02
GOTERM_MF Galactosyltransferase activity 3 0.75% 3:38E − 02
GOTERM_MF Cytokine binding 3 0.75% 3:38E − 02
KEGG_pathway Cell cycle 7 1.75% 1:05E − 02
KEGG_PATHWAY p53 signaling pathway 5 1.25% 1:77E − 02
KEGG_PATHWAY Amoebiasis 5 1.25% 7:41E − 02
KEGG_PATHWAY PPAR signaling pathway 4 1.00% 7:86E − 02
KEGG_PATHWAY Oocyte meiosis 5 1.25% 8:45E − 02
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downstream effectors to trigger a pleiotropic cellular
response [63]. Upregulation of CHEK1 is involved in various
types of cancer and promotes tumor progression via affect-
ing cell cycle and DNA damage response including breast
cancer, pancreatic cancer, and oral squamous cell carcinoma
[64]. It has been demonstrated that upregulation of CHEK1
can ameliorate the overall survival of non-small-cell lung
cancer patients and miR-195 downregulates the expression
level of CHEK1, which inhibits cell migration, growth, or
invasion [65].

BUB1, a component of the spindle assembly checkpoint
which is a surveillance mechanism of ensuring genome sta-
bility by delaying anaphase, is involved in cell divisions
through regulating SAC function and yielding a highly aber-
rant mitosis. Accumulating evidence indicates that centro-
meres in BUB1-deficient cells separate prematurely, which

reveals that BUB1 is essential for the proliferation of fibro-
blasts. Schliekelman et al. found that the upregulation level
of BUB1 promoted tumorigenesis and had oncogenic prop-
erties [66–68]. Likewise, Zhu et al. [69] demonstrated that
BUB1 overexpression promoted liver cancer cell prolifera-
tion and downexpression of BUB1 suppressed cell prolifera-
tion by activating the phosphorylation level of SMAD2. It
has been reported that SMAD2 regulates NP cell prolifera-
tion and anabolic processes by activation of TGF-beta 1.
Additionally, silencing of BUB1 activates a p53-dependent
premature senescence response, which induces IDD through
cell cycle arrest, cellular senescence, or apoptosis in the
intervertebral disc [70].

In conclusion, we have used bioinformatics analysis to
identify CHEK1, CDCA2, SKA3, BUB1, SPC25, and KIF20A
as hub genes related to IDD, which provided a new insight
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into IDD pathogenesis and treatment. Further studies
should be performed to verify these results.
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