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Abstract

Neural datasets are increasing rapidly in both resolution and volume. In neuroanatomy, this 

trend has been accelerated by innovations in imaging technology. As full datasets are impractical 

and unnecessary for many applications, it is important to identify abstractions that distill useful 

features of neural structure, organization, and anatomy. In this review article, we discuss several 

such abstractions and highlight recent algorithmic advances in working with these models. In 

particular, we discuss the use of generative models in neuroanatomy; such models may be 

considered “meta-abstractions” that capture distributions over other abstractions.

Introduction

As the scale of neuroanatomy data has grown, algorithms and abstractions have been 

developed to distill high-dimensional data into usable forms. Such approaches have allowed 

us to address questions such as: What is the density of synapses in a specific region of 

the brain? What is the connectivity between an area of interest and the rest of the brain? 

What is the best way to divide a brain area into subregions? As the number of data points 

grows yet further, however, it is possible to ask a different kind of question about variation 

across different samples or different individuals. These questions can be thought of as “how” 

instead of “what”: How does neuroprotective treatment alter the density of synapses? How 

does learning affect the sparseness of connections in a network? How does the modularity of 

brain networks vary across subjects?

The goal of this article is to discuss how generative approaches in machine learning can be 

used to address such questions in large-scale neuroanatomy. A generative model captures 
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the variability between samples in a dataset, or between entire datasets, by generating 

artificial examples with similar statistics to the real data. For example, a generative modeling 

approach can be used to sketch artificial neurons that are structurally similar to genuine 

ones, or to simulate a connectome for which the network properties match those observed 

from microscope data. Generally, the model itself incorporates randomness in order to 

simulate the true probability distribution over data. A perfect generative model would 

parameterize the underlying data distribution exactly, allowing the entire dataset to be 

recreated algorithmically.

We start by describing three main classes of abstractions widely used in neuroanatomy: 

counts or densities to model the spatial distribution of discrete objects like cells or synapses, 

connectomes to model the connectivity between either cells or brain areas, and modular 
or hierarchical models that describe how data are organized into groups. We then describe 

generative models that are matched to these various abstractions. For example, Poisson 

models can generate count data of objects such as cells or synapses [1], stochastic block 

models can be used to build graphs [2], and hidden Markov models can be used to generate 

the dendritic trees of neurons [3]. In each case, we describe both the algorithmic approach 

and the conclusions that can be drawn from these abstractions.

After providing an overview of generative models that are built on top of these popular 

abstractions, we outline generative models that are not built upon any lower-level 

abstraction. Instead, models such as generative adversarial networks (GANs) [4], [5] and 

variational autoencoders (VAEs) [6] can generate very high-dimensional data, including 

entire images. Such models can be used to analyze the sources of variability in observed 

images [7], to augment observed data, or to interpolate between different imaging modalities 

[8].

Abstractions

In this section, we highlight key classes of abstractions used in neuroanatomy and describe 

approaches to estimate these models from high-dimensional and complex brain data (see 

Figure 1). Each of these abstractions can be considered in terms of (i) what data sources it is 

commonly derived from, (ii) what questions it can be used to answer, (iii) what information 

it retains and what it discards from the full-dimensional data, and (iv) algorithms used to 

derive the abstraction.

Counts and Densities.

In neuroanatomy, quantification of brain structure often starts by counting cells, synapses, 

spines, or other objects in the brain. Counts, or the number of discrete objects in a 

interval/bin of fixed size, provide the data necessary to compute density estimates from 

many samples. A large body of work in neuroanatomy involves modeling changes in 

densities across multiple samples or conditions.

• Example data sources: Cellular densities can be resolved in Nissl- or DAPI

stained brain images [12] and retinal datasets (Figure 1a) [13], as well as 

X-ray microCT [14]. Synapses can be resolved in electron microscopy (EM) 
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[15], [16] and array tomography [17] datasets. Individual mRNAs can now be 

resolved in brain tissue with spatial transcriptomics (mFISH) [18], multiplexed 

error-correcting FISH (merFISH) [19], and expansion microscopy-based FISH 

[20].

• Type of conclusion drawn: The spatial distribution and patterns of discrete 

objects like cells or synapses. Micro and macroscale architecture can also be 

detected by analyzing spatial patterns in the data. Counts can also be used to 

track changes to the nervous system in development [21], disease [22], or aging 

[23].

• Information included: The spatial position of objects is included but the 

connectivity between these objects is not modeled. In some cases, each count 

can also be associated with additional metadata or ‘marks’ like the object’s size.

• Algorithms used to create abstraction: Segmentation and density-based methods 

have been developed to quantify the spatial organization and distributions of cells 

[14], [24] (Figure 1c), synapses [25]–[28], neuronal arbors [29], organelles [30], 

and spines [31].

Connectomes.

Graphs are some of the most widely used abstractions for neuroanatomical data. They 

are typically used to convey observed physical connectivity between individual neurons or 

neuronal assemblages. Such graphs are commonly referred to as “structural” connectomes 

(in contradistinction to “functional” connectomes, which capture correlations between 

observed activity of neurons). At the microscale, cellular connectomes have nodes for 

neurons and (weighted) edges for synapses. In meso- or macro-scale connectomes, nodes 

represent local or global brain areas, while edges represent projections between the areas. 

Such graphs are also referred to as “projectomes”.

• Example data sources: At the microscale, connectomes can be extracted from 

EM [16] (Figure 1) and expansion microscopy (ExM) [32] datasets. Projectome 

mapping methods have made use of viral tracing methods and whole-brain 

serial two-photon microscopy (STP) and MOST [33]–[36] to reveal long-range 

connections. Projectome data has also been obtained from humans using 

magnetic resonance imaging (MRI) [37]–[40], mainly through the use of 

diffusion tensor imaging.

• Type of conclusion drawn: Connectomes and projectomes can be used to 

understand learning and plasticity, as well as constrain models of neural 

information processing.

• Information included: The connectivity between neurons or brain areas is 

included in these models. In some cases, the strength of connections can also 

be estimated and included to produce a weighted graph. The spatial position of 

each node is often excluded in a graphical representation of the data.

• Algorithms used to create abstraction: There has been extensive recent work 

on automatic labeling of EM and ExM images to segment neurons [41]–
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[49] and synapses [26], [50]. On the computational side, Majka et al. [51] 

demonstrate tools for coregistering projectomes to create a common map of 

primate (marmoset) cortex, while other algorithms have been developed to infer 

higher resolution completions of partial connectivity data [52], [53].

Modular and Hierarchical Models.

Finally, we consider modular and hierarchical abstractions which divide data into groups 

based upon which examples/segments have similar characteristics. One example is 

representing a large brain volume as a collection of brain regions, modules, or spatially

defined regions of interest [54], [55]. This principle can be iterated by expressing data 

examples in terms of a hierarchical model, where discrete groups are divided into subgroups 

at many scales. For example, the morphology of a neuron can be described with a 

hierarchical format, with a coarse division into soma, axon, and dendrite which is further 

broken down into individual branches.

• Example data sources: Serial two-photon and fMOST for whole-brain imaging 

have been used to obtain parcellations of the brain [34]. Morphological 

reconstructions for modeling the components of neurons can be extracted from 

light microscopy datasets [56].

• Type of conclusion drawn: The high-level organization of the data and which 

parts of the signal are similar and thus belong to the same group. A hierarchical 

format for data can be advantageous in representing similarities in data across 

multiple spatial or evolutionary divisions/scales.

• Information included: Modular representations group the structure of many 

nearby segments of a neuron (parts) or nearby parts of a brain region into one 

bulk class. The membership of data to a class is preserved and perhaps the 

average (centroid) of the class is also maintained. Hierarchical models further 

provide information about the distance between different groups as relative to 

their multi-scale dependencies.

• Algorithms used to create abstraction: To obtain an informative parcellation 

and simplification of the data, clustering algorithms [57] such as k-means 

and spectral clustering methods [58] can be used to group spatial loci that 

have similar statistics in terms of their measured anatomical signal. Semi

automated approaches have recently been shown to provide new insights into 

structurally and functionally distinct areas in whole human brains with multi

modal measurements [59].

Generative Models for Abstractions

In this section, we describe different generative models that are built on top of the previously 

discussed abstractions. Each generative model represents a design choice about what 

features of the true data are most important to capture, based upon the questions under 

consideration.
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Generative models for count-valued data

A generative model for count-valued data (i.e., how many objects are in a region of interest) 

creates a synthetic dataset where objects are placed across space according to the underlying 

statistics of real data. Which statistics are important represent a design choice. For example, 

a model might be designed so that the density functions of real and synthetic data match or 

so as to preserve nearest-neighbor properties of the counts (e.g., the Ripley k-function [60]).

The simplest generative model used for count-valued data is a Poisson process. Here, we 

assume that the number of objects observed in a bin/interval is a Poisson-distributed random 

variable with mean given by an intensity (density) function, and where the numbers of 

objects in different bins are conditionally independent. Thus, given the potentially spatially

varying intensity of the process, samples can be generated to create a simulated dataset. To 

extend the independence assumption of Poisson models to ensure that objects are separated 

by a minimum distance, random sequential adsorption (RSA) processes have been used 

to model synapses throughout all cortical layers [27]. Point process models can also be 

constrained to generate counts along a graph structure, for instance in the modeling of spines 

along a neurite [61].

See [1] for a review of spatial point process models and their applications in neuroanatomy.

To model more complex spatial properties of the data, the underlying intensity function can 

be approximated by a sparse combination of simpler functions. LaGrow et al. [9], [62] show 

that by using a basis that can capture change points in the density, this enables the efficient 

estimation of mesoscopic properties of the density, like the layering structure in the cortex.

Generative models for connectomes

To create a realistic generative model for graphs, we need to first specify the property of the 

graph we wish to capture. One such property is the average degree of all nodes. Random 

graph theory provides a wealth of resources for generating graphs that have certain edge and 

high-level properties [63]. A more complex generative model could ask that graph metrics 

like clustering and modularity match between real and synthesized data. Such generative 

models can be introduced by building on random graph models like the widely used Erdős

Renyi random graph model [64], in which each pair of nodes is assigned an edge with some 

fixed probability p. The random overlapping communities (ROC) model is a good example 

of a generative model that can generate overlapping communities as observed in neural 

circuits, and has provable convergence in terms of its desired properties [10]. In this model, 

many subsets of the overall graph are chosen at random, and dense Erdős-Renyi random 

graphs are constructed on these (possibly overlapping) subsets. Additionally, stochastic 

block models (SBMs) are a class of generative models for synthesizing graphs [65], which 

have been used to model hierarchical modules within a connectome. In an SBM, the nodes 

of the graph are divided into several blocks, and the probability of connection between two 

nodes depends only on the blocks in which they lie. Jonas and Kording [66] introduce a 

variant of SBMs to model connectivity between neurons, where the blocks of the model 

correspond to cell types, and where distances also affect the probability of connection. 
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They use Markov Chain Monte Carlo (MCMC) methods to fit the parameters of the model, 

thereby automatically inferring cell types from connectomics data.

Hidden Markov model (HMMs) have also been applied successfully to the graph structures 

representing the branching of individual neurons. HMMs model the growth of a graph 

or other data structure over time using a Markov chain that depends on hidden variables 
that can be statistically inferred but are not observed directly. For example, the hidden 
state of a neuron as it grows might include biochemical factors that are not directly 

observable, even though they lead to observable data such as the morphology of the neuron. 

In Farhoodi et al. [67], the branching patterns of different types of neurons are learned 

and incorporated into a generative model by analyzing single-neuron morphological data 

compiled by neuromorpho.org [68]. The HMM inferred by Farhoodi et al. suggests that 

the probability of branching within a neuron depends on the distance to the soma, whether 

whether the branching occurs in a main branch or a side branch, and what the type of neuron 

is. The model thus yields both insights into the underlying factors that may be at play in 

neural branching and also a procedure for generative artificial neuronal morphologies. See 

also Farhoodi and Kording [3] for a generative approach to neuron morphologies based on 

Markov chain Monte Carlo (MCMC) sampling.

Modular and hierarchical generative models

Generative models built on top of hierarchical abstractions, typically will generate a 

sequence of items wherein the probabilistic model depends upon what was generated at 

previous generate samples. To ensure that our generative model matches the distribution 

of data, the sequence of steps must generate an output that matches the same sequence 

generation of real data.

SBMs (defined in the preceding section) are well-suited to dissecting graphical data 

into hierarchically organized modules. Lyzinski et al. [2] combine SBMs with clustering 

algorithms to decompose a partial Drosophila connectome into blocks, which are then 

clustered into similar subnetworks (motifs). The process is then repeated to generate 

a hierarchy of motifs. Priebe et al. [69] apply another generalization of SBMs to the 

Drosophila connectome to explain variation in cells that is fit poorly by simple clusters.

Generative Models for Image Data

Whereas the generative models highlighted in the previous section require (often intensive) 

pre-processing steps to first build an abstraction from image data, modern machine learning 

methods make it possible to learn a generative model from images directly. Learning models 

from images directly could potentially allow us to by-pass the initial steps of building an 

abstraction (e.g., segmenting or finding objects in images). Rather than specifying what to 

look for in an image, the generative model would be able to automatically pull out features 

from the image data that are important for building realistic representations of neural 

structure and capturing variability across examples. In this section, we highlight matrix 

factorization and deep learning approaches for learning generative models from collections 

of images, and discuss their applications in neuroanatomy.
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Latent variable models

Learning to model the distribution of high-dimensional image data is extremely challenging. 

A first step is often to form a low-dimensional representation that is easier to model. A 

simple and widely used linear approach for learning latent factors from data is principal 

component analysis (PCA); PCA fits a k-dimensional linear approximation to a dataset 

with many examples, such as a collection of many brain images. Other dimensionality 

reduction techniques such as non-negative matrix factorization [70], probabilistic PCA [71], 

and sparse PCA [72] can all be used to form a low-dimensional representation of collection 

of data (see [73] for a comprehensive review of dimensionality reduction techniques and 

their applications in analyzing measurements of neural activity).

After distilling data into a low-dimensional space, image data can be reconstructed by 

inverting the low-dimensional model learned in the analysis step (Figure 2, left). This 

synthesis operation is visualized in Fig. 2 for a linear system learned in PCA. In this case, 

a new image is created by either: reconstructing an input (pass in a noisy signal and the 

output is a clean version) or generating a new sample in the low-dimensional space and 

then using the decoder to synthesize a new image as output. This interpretation of linear 

matrix factorization (PCA) as a generative model provides a simple strategy for creating 

high-dimensional images when the data lie near a linear subspace.

Autoencoders

Generative models that rely on PCA and other matrix factorization approaches use linear 

transformations of data. It is also possible to find nonlinear low-dimensional representations 

of data. Autoencoders are now routinely used for this task [74]. Autoencoders can be 

constructed through different neural network architectures, encompassing models such as 

stacked convolutional autoencoders [75] and variational autoencoders [6]. Essentially, an 

autoencoder functions by passing high-dimensional input through a sequence of layers, 

including a low-dimensional “bottleneck” layer, then reconstructing the full-dimensional 

input again in the output layer (see Figure 3, left). The bottleneck layer thus learns a 

low-dimensional latent representation of the data. The first part (up to the bottleneck) is 

the encoder and the remainder (reconstructing the input) is the decoder. Thus, the encoder 

compresses the data to the latent representation, and the decoder is a generative model 

that recreates data from this latent representation. Thus autoencoders provide an analogous 

architecture for generative modeling for the nonlinear case as that depicted for the linear 

case in Figure 2.

Generative adversarial networks

Within deep learning, generative adversarial networks (GANs) have recently been developed 

to learn from an unlabeled training dataset to generate artificial data resembling examples 

from the dataset. Like autoencoders, GANs learn a nonlinear generative process for data via 

an artificial neural network. However, unlike autoencoders, which learn both an “encoding” 

step and a “decoding” (generative) step, GANs learn by pitting two network algorithms 

against each other, with one (the generator) attempting to generate plausible examples 

from a dataset, while the other (the discriminator) tries to tell the difference between real 

and fake examples, thus forcing the generator to improve. While extensive applications to 
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neuroanatomy have yet to be developed, GANs have already been used to simulate neuron 

morphologies [76] and spike trains [77]. A similar approach (using deep learning methods 

distinct from GANs) uses the output of one imaging modality to simulate the result of 

another imaging modality [78].

It is tempting to consider using the output of a GAN to augment real data in fitting 

additional algorithms. However, there is so far no magical algorithm that replaces the 

power of large real datasets. For example, while a GAN might be used to learn from 

a thousand images and then create a million more similar-seeming images, the artificial 

images would likely either fail in subtle ways to be truly realistic or would fail to capture the 

full diversity of real-world data. We therefore believe the function of generative algorithms 

in neuroanatomy should be, for the moment, more in modeling than in augmenting data for 

training.

Conclusions

As neuroanatomy datasets become more numerous and higher-dimensional, there is 

increasing need for generative models that capture variability across data samples and 

subjects. Where traditional abstractions such as connectomes compress data, generative 

“meta-abstractions” compress distributions over data or over abstractions. We believe 

that an understanding of the breadth of available abstractions and concomitant generative 

models, each suited to different questions and data modalities, is essential to present-day 

neuroanatomy.

Many of the generative models we have described make strong assumptions about the 

structure of the data-for example, that it is well-approximated by a density function or 

succinctly described by a Markov chain. By contrast, generative algorithms from deep 

learning typically have no such prior assumptions, and the models they learn are often 

“black boxes” that are hard to interpret. Interpretation becomes increasingly difficult as we 

move to full images and raw data because it is not always clear what properties of the data 

are being modeled and how. New approaches for ‘disentangling representations’ [79] aim 

to mitigate these issues and build architectures that reveal more interpretable factors. An 

important line of research is to build deep learning architectures that are interpretable and 

can be used to draw inferences about disease, inter-subject variability, and other changes to 

neural structure.

Traditionally, neuroscience has provided views of the structure of the nervous system 

that resolve or model one aspect of the anatomy at a time. Neuroscience methods are, 

however, increasingly moving towards resolving multiple types of structures simultaneously 

to provide multi-modal and multi-scale structural information for large volumes, in some 

cases up to whole brains [12], [34]. With increasing access to multi-modal information, it 

is critical to develop abstractions and generative models that distill the data into a usable 

simplification that leverages the multi-modal data provided. Because traditional methods for 

modeling neuroanatomy have focused on modeling a single attribute of the data (a graph, or 

a density), in some cases it is not clear how best to integrate data formats and models across 

different modalities of information. It is exceedingly likely that different aspects of anatomy 
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(change in density of synapses or cells, or strengthening of connections in a specific region 

of the brain) co-vary in complex and nonlinear ways and multi-modal datasets will be 

necessary to reveal these relationships.

Generative models are now being used to learn increasingly complex attributes of a wide 

range of datasets. We believe that they will be a useful tool moving forward for modeling 

variability in large-scale neuroanatomy datasets.
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Highlights

1. Modern neuroscience has now entered the age of big data. Low

dimensional models and abstractions are needed to distill high-dimensional 

neuroanatomical data into a simpler format.

2. Generative models provide a powerful strategy for modeling large-scale 

neuroscience datasets. Such approaches aim to synthesize new data, rather 

than analyzing data.

3. Deep learning-based generative modeling frameworks like generative 

adversarial networks and autoencoders are still difficult to interpret; however, 

they have the potential to reveal hidden factors that control variability across 

complex large-scale neuroanatomy datasets.
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Figure 1: Abstractions and Generative Models for Neuroanatomy.
(1) COUNTS & DISTRIBUTIONS: From left to right, we show a (left) retinal dataset 

before and after cell detection [9], (middle) a depiction of how count data can be represented 

as a density function, and (right) a Poisson model for generating new count data. (2) 

CONNECTOMES: From left to right, we show (left) an electron microscope image of a 

thin slice of cortical brain tissue before and after dense segmentation to build a connectome, 

(middle) a depiction of a connectome as a graph, and (right) an example of the random 

overlapping communities model for sparse graphs with three communities displayed as 

different colors [10]. (3) MODULAR AND HIERARCHICAL REPRESENTATIONS: From left to right, we 

show (left) a light microscope image with a biocytin filled neuron in two views before and 

after tracing (from the Allen Institute for Brain Science’s Cell Types Atlas [11]), (middle) 

a hierarchical representation of a dendrite, and (right) example neuronal morphologies 

generated after an iterative sampling procedure [3], where the iteration number is displayed 

over each generated morphology.
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Figure 2: Linear matrix factorization methods like PCA and their interpretation as a generative 
modeling procedure.
From left to right, we show the decomposition of a data matrix consisting of examples 

along its columns, into a low-dimensional format. In the middle, we depict the low-d 

representation of the data in two dimensions. On the right, we show a reconstructed or 

synthesized data matrix that uses the inverse mapping to expand the low-d data back into a 

high-dimensional space again.
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Figure 3: Generative models for synthesizing structural brain images.
On the left, we depict an autoencoder consisting of an input layer, a low-dimensional hidden 

layer (latent space), and output layer. In the training phase, a low-dimensional model for 

data is learned and in the synthesis phase, a sample from this model is generated and 

used to generate a new image. This architecture is applied to auto-fluorescence images 

of 1,700 different brains (25 micron resolution) to synthesize new images: on the right, 

a synthetically generated image (top), example of a real image used to train the network 

(bottom), and a denoised (reconstructed) version of the image displayed on the bottom.
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