Skip to main content
. 2021 Sep 16;6(9):e006623. doi: 10.1136/bmjgh-2021-006623

Table 1.

Principal findings of outbreak prediction articles, by disease

All diseases Rift Valley fever Zika disease CCHF Ebola and Marburg disease Lassa fever MERS Nipah and Henipa virus SARS
Number of articles (%) 58 (100) 21 (36) 13 (22) 8 (14) 6 (10) 5 (9) 4 (7) 2 (3) 2 (3)
Date range
 2010–2019 47 (81) 15 13 6 5 4 4 2
 2000–2009 9 (16) 4 2 1 1 2
 1990–1999 2 (3) 2
Region of study
 African continent 28 (48) 18 1 6 5
 Asia-Pacific 4 (7) 3 1
 Europe 3 (5) 1 1 1 1
 Middle East 9 (16) 2 6 1
 North America 2 (3) 1 1
 Latin America and Caribbean* 5 (9) 5
 Global 8 (14) 1 3 2 2
Prediction methodology
 Risk mapping 26 (45) 14 6 1 3 2 1 1
 Regression model 21 (36) 7 5 4 3 1 1
 Time series forecasting 23 (40) 9 5 4 2 1 2
 Qualitative 7 (12) 4 2 2 1 1
 Other quantitative 9 (16) 1 2 1 1 2 1 1 2
 Species niche model 15 (26) 3 4 1 5 3 1
 Machine learning 16 (28) 3 6 2 2 2 1
 Spatiotemporal model 25 (43) 13 4 4 2 2
 Internet/phone/computer† 6 (10) 5 1
 Early warning system** 17 (29) 7 5 3 1 1
 Incidence modelling 11 (19) 5 5 1
Model type
 Deterministic 6 (10) 2 1 1 1 1
 Stochastic 35 (60) 11 9 6 3 3 2 1
 Mixed 6 (10) 1 1 1 2 1 2
 Not applicable/not stated 11 (19) 7 2 1 1 1
Data sources
 Case data 47 (81) 12 12 7 6 5 3 2 2
 Other patient health data 13 (22)
 Meteorological/climate 39 (67) 19 7 5 4 3 1
 Vector/host 31 (53) 13 7 4 5 3 1
 Sociodemographic 24 (41) 7 7 3 3 2 2 1 1
 Behaviour (way of infection) 8 (14) 2 1 1 1 2 1
 Healthcare 5 (9) 1 2 1 1 1 1
 Transportation 12 (21) 2 4 1 2 2 1 2
 Internet† 7 (12) 1 5 1
 Geographical 32 (55) 15 13 6 5 4 4 2
 Economic 9 (16) 2 4 1 1 2 1
 Ecological 18 (31) 9 3 2 4 2
 Expert opinion 5 (9) 4 1 1
 Other‡ 6 (10) 1 1 1 3 2
Prediction outcome
 Future cases 21 (36) 1 9 5 1 3 2
 Outbreak risk factors 37 (64) 19 4 7 6 3 1
 Immunity parameters§ 7 (12) 2 1 1 1 2
 Risk maps 29 (50) 4 2 1 1 2
 Spatial prediction 44 (76) 19 10 5 4 4 1 1 2
 Temporal prediction 39 (67) 15 7 6 4 2 3 1 1
 Outbreak risk 36 (62) 14 9 3 5 3 2 2 1
 Spillover events 6 (10) 2 2 3 2
 Bio-Env-Econ consequences¶ 4 (7) 3 1 1
 Env transmission suitability 20 (34) 10 4 2 4 2 1
 Population at risk 8 (14) 3 2 2 3
 Introduction risk 5 (9) 1 2 2 1 1 1
 Effect of climate change 3 (5) 2
 Epidemic dynamics 17 (29) 3 4 4 2 1 2 1
Implementation of prediction/methods by decision makers
 Yes 6 (10) 4 1 1
 Suggested 30 (52) 10 4 6 4 4 3 1 1
 No 22 (38) 7 8 2 1 1 1 1 1
Predictions validated against future outbreak data
 Yes 24 (41) 10 3 4 3 1 1 2
 No 34 (59) 11 10 4 3 4 4 1

For detailed definitions, see online supplementary material.

*Includes South and Middle America.

†Internet and phone-based system/app/computer programme.

‡Non-categorisable data types.

§Reproduction number (R value).

¶Biological, environmental or economic consequences.

**Or proposed Early Warning System.

CCHF, Crimean-Congo haemorrhagic fever; MERS, Middle East respiratory syndrome; SARS, severe acute respiratory syndrome.