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• Near-to-source wastewater sampling
sites are subject to variable upstream
populations.

• Accounting for population change alters
the SARS-CoV-2 trends provided by
wastewater-based epidemiology.

• Confidence in SARS-CoV-2 trends is
strongest when samples are collected
during dry weather.

• Flush count data can be used to indicate
population size and individual building
occupancies.

• Building-level occupancy estimates aid
identification of potential sources of
SARS-CoV-2.
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Wastewater surveillance has been widely implemented for monitoring of SARS-CoV-2 during the global COVID-
19 pandemic, and near-to-source monitoring is of particular interest for outbreak management in discrete pop-
ulations. However, variation in population size poses a challenge to the triggering of public health interventions
using wastewater SARS-CoV-2 concentrations. This is especially important for near-to-source sites that are sub-
ject to significant daily variability in upstream populations. Focusing on a university campus in England, this
study investigates methods to account for variation in upstream populations at a site with highly transient foot-
fall andprovides a better understanding of the impact of variable populations on the SARS-CoV-2 trends provided
by wastewater-based epidemiology. The potential for complementary data to help direct response activities
within the near-to-source population is also explored, and potential concerns arising due to the presence of
heavily diluted samples during wet weather are addressed. Using wastewater biomarkers, it is demonstrated
that population normalisation can reveal significant differences between dayswhere SARS-CoV-2 concentrations
are very similar. Confidence in the trends identified is strongest when samples are collected during dry weather
periods; however,wetweather samples can still provide valuable information. It is also shown that building-level
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occupancy estimates based on complementary data aid identification of potential sources of SARS-CoV-2 and can
enable targeted actions to be taken to identify and manage potential sources of pathogen transmission in local-
ised communities.

© 2021 Published by Elsevier B.V.
1. Introduction

Wastewater-based epidemiology (WBE) is a promising tool for com-
plementary surveillance of infectious diseases and provision of early
warning of disease outbreaks (Sims and Kasprzyk-Hordern, 2020),
and has received considerable interest during the global COVID-19 pan-
demic (e.g. Bivins et al., 2020; Gonzalez et al., 2020; Polo et al., 2020).
Since a significant proportion of individuals infected with the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shed the
virus’ ribonucleic acid (RNA) in their faeces (Medema et al., 2020),
SARS-CoV-2 RNA concentrations in wastewater can be used to provide
an indicator of the disease prevalence without relying on clinical testing
data. Wastewater networks can, thus, be viewed as a reflection of the
microbiome of the population using the upstream systems (Newton
et al., 2015). This is beneficial aswastewater surveillance is independent
from people participating in testing (a testing bias towards symptom-
atic individuals and testing reluctance may result in underrepresenta-
tion of the infected in clinical test data).

To date, SARS-CoV-2 related wastewater surveillance projects have
been implemented in at least 54 countries, coveringmore than 2000dif-
ferent sites (University of California, 2021). The European Union has
recognised WBE as a tool to address emerging and future public health
issues (European Commission, 2020), and Member States have been
mandated to engage with the development of the European Sewage
Sentinel System for SARS-CoV-2, which will provide systematic surveil-
lance of SARS-CoV-2 and its variants in EU wastewaters (Gawlik et al.,
2021). In England, WBE for SARS-CoV-2 surveillance, led by the Joint
Biosecurity Centre and Defra Group under the Environmental Monitor-
ing for Health Protection programme (EMHP), covers in excess of 500
sites as of June 2021.

Wastewater samples are commonly collected at sewage treatment
works (STWs), thereby providing an indicator of SARS-CoV-2 preva-
lence across the entire STW catchment – in the Netherlands, for exam-
ple, samples are taken daily at every STW in the country and analysed
for presence of SARS-CoV-2 (Dutch Water Sector, 2020). However, in-
network or near-to-source sampling can provide greater resolution
and, potentially, additional insights: If the population upstream of the
sampling point is smaller, then better targeted actions can be taken to
address andmitigate any outbreak detected bymonitoring of thewaste-
water. Application of wastewater surveillance at a building scale, for ex-
ample, can aid management of outbreaks in discrete populations, and
may be beneficial in high risk settings such as schools, prisons and crit-
ical points in the food supply chain (Wade et al., 2020).

Near-to-source wastewater monitoring, employed at a hospital
building, was able to detect a single asymptomatic individual among
as many as 400 residents (Karthikeyan et al., 2021). The same study
also found that trends in the number of cases could be successfully cap-
tured, with a strong correlation between the wastewater SARS-CoV-2
concentration (gene copies (gc)/l) and the number of active COVID-19
patients identified. Collection of samples at a near-to-source site, fur-
thermore, reduces the impact of RNA degradation (due to the reduced
age of the wastewater when collected), potentially resulting in a higher
genome count and enabling greater resolution in the environmental
surveillance.

However, challenges remain in the interpretation and use of waste-
water SARS-CoV-2 data as an indicator of prevalence – one of which is
the impact of variation in the upstreampopulation size. The importance
of accounting for fluctuating population sizes in WBE has previously
been highlighted and investigated in the context of applications such
2

as illicit drug monitoring (Been et al., 2014). However, in wastewater
SARS-CoV-2 monitoring, the value considered as an indicator of preva-
lence is still typically reported as a concentration (gc/l) (i.e. not normal-
isedwith respect to population like prevalence values) (e.g. Karthikeyan
et al., 2021; Saththasivam et al., 2021; Prado et al., 2021), or even just a
binary presence or absence of SARS-CoV-2 RNA (e.g. Gibas et al., 2021).
Using concentration as an indicator of prevalencemay be reasonable for
monitoring efforts at a city-scale (i.e. those at a STW)when the popula-
tion size and wastewater dilution are relatively static, as a constant av-
erage SARS-CoV-2 load per capita would then correspond to a constant
SARS-CoV-2 concentration (assuming constant wastewater production
per capita). It is not valid, however, when population is highly variable
and/or there are significant dilution events, since a constant average
SARS-CoV-2 load per capita would then yield a variable SARS-CoV-2
concentration. This is illustrated in Fig. 1, which shows the theoretical
relationship between SARS-CoV-2 concentration, SARS-CoV-2 load per
capita, population size and baseflow (i.e. flow not attributed directly
to the population), based on a mass balance approach and assuming a
per capita wastewater production of 150 l/d (further details in the Sup-
plementary Information).

The impacts of variable population are likely to be exacerbatedwhen
interpreting the results for near-to-source sites, since populationmove-
ment will not be averaged out to the same extent that it is at the STW
level. This is especially important for near-to-source sites that are sub-
ject to significant daily variability in upstream population (for example
due to a lack of activity atweekends or outside of academic term time at
educational sites), and approaches are required to ensure that the ef-
fects of variable populations are not overlooked.

The first aim of this study, therefore, is to investigate methods by
which the effects of variation in the upstreampopulation at a highly dy-
namic near-to-source site can be accounted for, and to build a better un-
derstanding of the impact of highly variable populations at a near-to-
source site on the insights into SARS-CoV-2 prevalence fromWBE. Am-
moniacal nitrogen (NH3−N) and orthophosphate (PO4

3-) in the
wastewater are considered as potential indicators of population
dynamics and for population normalisation. The work presented here
is specifically focused on a university campus case study, where
footfall varies considerably throughout the year (especially during
periods of lockdown), and where knowledge of COVID-19 prevalence
provided by WBE has significant potential to target actions to identify
positive cases and reduce transmission between the university and
the wider community.

Whilst near-to-source surveillance captures wastewater from a
smaller and better-defined population than monitoring at a STW level,
the pool of potential candidates for the source of any SARS-CoV-2 de-
tected may still be large. The university monitored in this study, for ex-
ample, currently has approximately 20,900 students based at the
campus and over 4300 staff members. As such, the insights provided
by WBE would be of greater assistance to campus managers if the po-
tential source(s) could be narrowed down further, e.g. to themost prob-
able building or buildings on site, so that better targeted public health
actions may be taken. The second aim of this study, therefore, is to in-
vestigate the potential of complementary data to help direct response
activities to the most appropriate locations within the site from which
wastewater is collected. This is achieved with the use of toilet flush
data, collated at washroom and building levels, which provide informa-
tion on the major sources of wastewater at the time of SARS-CoV-2 de-
tection and the relative activity levels at different locations on the
campus.



Fig. 1. Relationship between SARS-CoV-2 concentration and daily load per capita for different populations and base flows.
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Lastly, this study identifies samples collected during wet and dry
weather periods to enable exploration of the impact of wet weather pe-
riods on wastewater SARS-CoV-2 concentrations and population nor-
malisation. This aims to establish the value of wastewater monitoring
in wet versus dry periods, and address potential concerns arising due
to the presence of heavily diluted samples during wet weather.

Whilst there remain many sources of uncertainty in the use of WBE
for monitoring of SARS-CoV-2 prevalence (such as variability in viral
shedding rates between infected individuals) (Li et al., 2021; Wade
et al., 2021), it is intended that the results of this study will give im-
proved confidence in the SARS-CoV-2 trends observed in wastewater
from near-to-source sampling sites, and will enable better targeted ac-
tions to identify and manage potential sources of pathogenic transmis-
sion in localised communities.

2. Methods

2.1. Case study site selection

The University of Exeter's Streatham Campus was monitored as a
near-to-source pilot as part of the UK National Surveillance Programme.
Wastewater samples were collected in three locations at the university:
Two were downstream of student residential accommodation, and one
downstream of the main campus (consisting of multiple academic, ad-
ministrative and social buildings). This study focuses on themain campus
monitoring site. The results are expected to be of particular benefit here,
since the number of people on campus is muchmore variable than in ac-
commodation blocks (due toworking patterns and lecture scheduling, for
example), and population normalisationwill thus have greater impact on
the understanding of prevalence. The maximum size of the potential up-
stream population is also considerably larger, given that a large propor-
tion of the university's 25,000 students and staff will have access to the
main campus buildings (although not at the same time), whereas only a
small proportion will be associated with individual accommodation
sites. As such, any insights providedby this study that enable thepotential
source of SARS-CoV-2 detected in the wastewater to be narrowed down
further will be much more valuable for the larger, main campus site.

Furthermore, whilst the university does hold data on the number of
students and staff that have tested positive for SARS-CoV-2, there are no
data on the total number of students and staff using the campus each
day (or whether those that have tested positive have actually been on
the main campus site on a given day) and, thus, prevalence cannot be
calculated from existing sources of information. Comparison with city-
level case data is not considered appropriate due to significant differ-
ences in prevalence trends between the university and the wider city
(potentially due to limited interaction between campus users and the
wider community).

2.2. SARS-CoV-2 population normalisation

The daily wastewater SARS-CoV-2 load per capita (Ld, gc/capita/day)
(i.e. a value that is comparable with prevalence) can be calculated using
3

Eq. (1), where Cd is the SARS-CoV-2 concentration (gc/l), Qd is the daily
flow rate (l/day), and Nd is the population size (in this case, the number
of individuals using the university campus).

Ld ¼ CdQd

Nd
ð1Þ

However, the population size on any given day is unknown and
must, therefore, be estimated if this equation is to be used.

There aremultiple potential approaches to population estimation. In
WBE, biomarkers (substances excreted by humans) that have homoge-
neous excretion throughout a community at lowvariance can be used as
indicators of population size (Choi et al., 2018). These include, for exam-
ple, creatinine and coprostanol (Daughton, 2012), and the cross-
assembly phage (crAssphage) (Wu et al., 2021). Water quality parame-
ters, such as biochemical oxygen demand (BOD), chemical oxygen de-
mand (COD), total phosphorus (TP), total nitrogen (TN) and ammonia
or ammonium, may also be considered as population biomarkers
(Xagoraraki and O'Brien, 2019, van Nuijs et al., 2011): Been et al.
(2014), for example, usedmeasured ammonium concentrations in con-
junction with the expected daily per capita ammonium discharge to es-
timate population size for the purposes of illicit drug monitoring, and
Rico et al. (2017) generated population estimates based on TN, TP,
BOD and CODand typical daily per capita discharges for each parameter.

Provided that daily flow rate (Qd, l/day) and biomarker
concentration (Xd, mg/l) data is available for a historical period with
known population (Nd), the daily discharge per capita of a biomarker
(x, mg/capita/day) can be estimated using Eq. (2), and the population
on any given day using Eq. (3).

x ¼ XdQd

Nd

� �
ð2Þ

Nd ¼ XdQd

x
ð3Þ

Once the daily discharge per capita of a specific biomarker is known,
concentrations of a substance of interest (in this case, SARS-CoV-2 RNA)
can then be population normalised using Eq. (4), without calculating
the population size and without any ongoing requirement for flow
rate data (based on substitution of Eq. (3) into Eq. (1)):

Ld ¼ Cdx
Xd

ð4Þ

where Ld is the daily per capita load of SARS-CoV-2 at day d (gc/capita/
day) and Cd is the SARS-CoV-2 concentration in thewastewater at day d
(gc/l).

Population estimates may also be generated using non-wastewater
data: Thomas et al. (2017) and Deville et al. (2014), for example, pro-
duced dynamic population estimates using mobile phone communica-
tion data. With respect to the case study site in particular, there is
ongoing investigation into the potential use of wi-fi tracking for

Image of Fig. 1
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population monitoring under the ‘Riba to Reality’ project (UKRI, 2020);
whilst there are no results available for use from this yet, it is a promis-
ing development. Additional data available for the case study site that
may be indicative of population includes metered water and electricity
supply and washroom-level flush counts.

Each of these methodologies is subject to limitations, however, and
there are some barriers to implementation in a near-to-source study,
where it should be noted that not everyone on site will contribute to
the wastewater collected since some visits may only be short. Whilst
mobile phone-based population estimates have the advantage that
they can account for people who spend only a short period of time in
the monitored location, irrespective of whether they produce any
wastewater, this may be a disadvantage in near-to-source WBE as the
population estimate is likely to exceed the number of people that con-
tribute to thewastewater being sampled, and thus result in an underes-
timate of SARS-CoV-2 gene copies per capita. To avoid this problem, a
populationnormalisationmethodology based onwastewater character-
istics is considered more appropriate for a near-to-source site with a
highly dynamic population.

For other non-wastewater indicators such as metered water, elec-
tricity supply and flush counts, data is only available for a subset of
buildings on campus. As there is insufficient evidence that the occu-
pancy dynamics of these buildings are representative of those of the
whole campus, it is inappropriate to use these for population normalisa-
tion (although building-level population estimatesmay aid SARS-CoV-2
source identification, as discussed in Section 2.3).

There are also potential disadvantages of using biomarkers inwaste-
water for population normalisation. For the case study site, ammoniacal
nitrogen and orthophosphate concentrations are available, but it is
recognised that nutrient concentrations will be affected by industry
(Xagoraraki andO'Brien, 2019) and, where there is significant industrial
input into the sewer network, this may lead to errors in population es-
timates (vanNuijs et al., 2011). Other studies, however, have concluded
that use of such nutrients is appropriate (e.g. Choi et al., 2018; Been
et al., 2014), and Zheng et al. (2017) found population estimates
based on ammonia‑nitrogen to show good agreement with estimates
provided by wastewater treatment plant operators with local knowl-
edge. Furthermore, given that the focus of this study is a near-to-
source site, and it is known with a high degree of certainty that there
are no industrial inputs to the wastewater, these concerns are not con-
sidered a barrier in this study.

A remaining issuewith this approach is the need to calculate the daily
biomarker load excreted per capita. Whilst previous studies have either
estimated a site-specific value using historical data (e.g. Rico et al.,
2017) or used published values from the literature (e.g. van Nuijs et al.,
2011), neither of these approaches is appropriate for this study. To calcu-
late a site-specific value, data is required from a period with known pop-
ulation; however, nowastewater data was collected at the case study site
prior to the pandemic (when the campus could be assumed to be at full
capacity, i.e. a known population size), and occupancy figures during
the period of wastewater monitoring are unknown. Use of daily values
from literature is also inappropriate since these are typically calculated
at a STW level and thus capture discharge from every occupant over a
full 24 h, whereas campus users are only present for part of the day and
their biomarker discharge will, therefore, be proportionately smaller.

Based on Eq. (4), and given that the daily biomarker discharge per
capita (x) is constant at a given site but cannot be calculated, this study
calculates values that are proportional to the SARS-CoV-2 load per capita
(gene copies per mg of biomarker) instead of the actual load per capita
(gene copies per capita) (Eq. (5)). These values are not comparable be-
tween sites; however, they are sufficient for understanding the effects
of population normalisation on SARS-CoV-2 trends at a single site.

Lt∝
Cd

Xd
ð5Þ
4

Ammoniacal nitrogen and orthophosphate are both considered as
potential biomarkers, and statistical analyses are used to evaluate
a) the relationship between values calculated using each biomarker,
and b) the impact of normalisation. Specifically, Pearson correlation co-
efficients are calculated to measure the linear correlation between dif-
ferent metrics, and linear regression (method of ordinary least
squares) is used to generate lines of best fit. The Spearman's rank corre-
lation coefficient is used to evaluate the impact of population normalisa-
tion on the rankings of SARS-CoV-2 RNA concentrations and population
normalised values.

2.3. Source identification

As discussed in Section 2.2, supplementary data, including metered
water supply, electricity supply and flush counts, are available for a sub-
set of buildings on campus, and may be used to analyse occupancy dy-
namics within these buildings. Preliminary investigation shows very
poor agreement between building-level population estimates based
on metered water and electricity supply at the case study site (see Sup-
plementary Information for example) – potentially due to seasonal and
other non-population-related influences – and, therefore, only flush
counts are considered further.

Given that flush count data relates directly to the production of
wastewater, this information can beused to assess the relative contribu-
tion of different buildings to the wastewater sampled, and thus provide
additional insights into the potential source(s) of any SARS-CoV-2 RNA
detected in the wastewater.

It has previously been shown that the number of flushes per occu-
pant varies by building (Melville-Shreeve et al., 2021a, 2021b); there-
fore, flush counts cannot be compared directly between buildings and
instead are used to estimate the occupancy of each building on any
given day. The maximum capacity of each building in which flush
counts were monitored is shown in Fig. 2, and it is assumed that on
weekdays during the autumn term of 2019 (pre-pandemic) all build-
ings were operating at full capacity. The mean daily flush count per
capita is then estimated for each building using Eq. (6), and building oc-
cupancies during the wastewater monitoring period are estimated
using Eq. (7).

f i ¼
∑
d∈T

Fi,d

Tj j ð6Þ

Pi,d ¼ Fi,d
f i

ð7Þ

where fi is the mean daily per capita flush count for building i, Fi,d is the
total flush count for building i on day d, T denotes the set of term time
days where building occupancy is assumed to equal building capacity,
and Pi,d is the estimated population of building i on day d.

This methodology is not used to estimate the total population of the
campus on a daily basis for the purposes of population normalisation as
only as subset of the buildings have flush counts monitored. As signifi-
cant variability is found between buildings for the daily per capita
flush counts and the population estimates (see Section3.3), it is not con-
sidered appropriate to assume that the population dynamics for the
monitored buildings are indicative of those for the whole campus.
Based on flush count data, it is not possible to either eliminate or target
any of the buildings that are not monitored as a potential source of any
SARS-CoV-2 detected in the wastewater; however, the population esti-
mates provided can be used to prioritise/deprioritise each of the build-
ings with flush count data available in the search for the source of the
SARS-CoV-2. A set of flush data for every toilet on campus would yield
additional value as a future extension to this study.



Fig. 2. Case study site schematic, illustrating sampling locations and wastewater flow from campus buildings. Surface drainage is omitted for clarity.
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2.4. Wet and dry weather days

Days are classified aswet weather or dryweather (or neither) based
on Environment Agency rainfall data for the nearest rain gauge (station
ID 45184, located approximately 4 km from the case study site)
(Environment Agency, 2021). A day is considered a dry weather day if
no rainfall has been recorded on that day or in the previous six hours.
A day is considered awetweather day if the total rainfall for that day ex-
ceeds 2 mm (with the threshold set based on the depth of rainfall ex-
pected to cause runoff from impervious surfaces (Ladson, 2019)). Days
that fall into neither category (i.e. have rainfall but less than 2 mm, or
have had rainfall in the preceding six hours) are not classified as either
wet or dry.

2.5. Data collection and handling

This study incorporates both wastewater data and supplementary
data relating to occupancy of the campus, and a schematic of the case
study site illustrating the data collection locations is given in Fig. 2.
Wastewater samples were collected downstream of the academic, ad-
ministrative and social buildings (wastewater from student residences
on campus are not contributory), and they were analysed to provide
concentrations of SARS-CoV-2, ammoniacal nitrogen and orthophos-
phate. Wastewater flow rate was measured at the same location. Flush
countswere collected from five buildings,which have a combined occu-
pancy of 4346 at full capacity.

Further detail on the data collection methodologies and data han-
dling for each data type is provided in the following sections.

2.5.1. Wastewater characteristics
Methodologies for the SARS-CoV-2, ammoniacal nitrogen and ortho-

phosphate data collection and processing are summarised below. Fur-
ther details are available in Wade et al. (2020) and Hoffmann et al.
(2021).

Composite wastewater samples were collected over a 24-h period
using HACH AS950 autosamplers (100 ml every 15 min); these were
then retrieved and kept at 4 °C to prevent degradation of RNA during
transportation to a laboratory for analysis.

Prior to 1st January 2021, Quantitative Polymerase Chain Reaction
with a reverse transcriptase step (RT-qPCR) with polyethylene glycol
(PEG) precipitation was used to quantify the N1 gene from the SARS-
CoV-2 virus in thewastewater samples. Themethod (including the con-
centration of the virus and the extraction and quantification of the viral
RNA) is described in detail by Farkas et al. (2021). Briefly, centrifugation
is used to eliminate large particulate matter and then, after pH
5

adjustment (where necessary), the supernatant is incubated in a
PEG8000/NaCl solution. Centrifugation is used to pellet the viruses
bound to PEG, the pellet is resuspended and an RT-qPCR assay used to
quantify the N1 gene from the SARS-CoV-2 virus (Farkas et al., 2021).
Quality controlmeasures are detailed by Farkas et al. (2021) and include
process negative controls (0.5 ml phosphate buffered saline (PBS)) and
positive controls (0.5 ml PBS spiked with phi6). From 1st January 2021,
the laboratory switched to ammonium sulphate precipitation, followed
by centrifugation and viral RNA extraction by lysis with guanidine thio-
cyanate and adsorption to silica. All RT-qPCRs were carried out in dupli-
cate for each sample, and the mean of two estimates reported.

This methodology provides a measurement of the number of RNA
copies in the sample, which is reported as gene copies per litre of waste-
water sample collected. The practical limit of detection (LOD) is 133 gc/l.
No adjustments for analytical efficiency are applied.

Concentrations of ammoniacal nitrogen and orthophosphate were
determined using colorimetric assays. In both cases, outliers (more
than three standard deviations from themean) are omitted from further
analyses, since these may originate from a sample that was poorly
mixed and thus unrepresentative of the average wastewater composi-
tion at that time. These represent 0% of the ammoniacal nitrogen mea-
surements and 1% of the orthophosphate measurements (two
samples) in the analysis period.

The level and velocity of wastewater in the sewerweremonitored at
two-minute intervals in the same location as collection of wastewater
samples, and were used to calculate wastewater flow rate. To enable
comparison with the wastewater constituent concentrations measured
in the composite samples, flow data is resampled to provide daily
values.

2.5.2. Flush counts
Flush monitoring systems were installed in washrooms at the

University of Exeter, as described by Melville-Shreeve et al. (2021a,
2021b). These captured flush data for washrooms in six buildings, cov-
ering a total of 38 washrooms, and provided real time flush counts for
119 toilets (approximately 18% of toilets on campus). Wheelchair-
accessible washrooms were omitted for operational reasons, but all
other washrooms in the selected buildings were monitored. The se-
lected buildings represent typical university department buildings.
The monitoring system provided high resolution data, with either a
‘zero’ (no flush) or a ‘one’ (flush) recorded everyminute for every toilet.

In the case of any faults in the system, gaps may appear in the data
and give the impression of a reduced daily flush count if not identified
and accounted for. Therefore, for quality assurance purposes, daily
data completeness (the total number of data points collected, expressed

Image of Fig. 2


Table 1
Key dates in the wastewater SARS-CoV-2 analysis period.

Date Description Abbreviation

2nd December 2020 End of second national lockdown NL2-E
11th December 2020 End of university term T-E
24th December 2020 Start of university closure period CP-S
1st January 2021 End of university closure period CP-E
4th January 2021 Start of university term T-S
6th January 2021 Start of third national lockdown NL3-S
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as a percentage of the expected number of data points for the time pe-
riod) is evaluated at a washroom level. Since estimating flush counts
for periods with insufficient completeness would provide results with
unknown accuracy, all washrooms with less than 90% data complete-
ness during thewastewatermonitoring period are omitted from further
analysis. This leaves 22 washrooms, covering five buildings, as illus-
trated in Fig. 2. Additionally, any day with less than 90% data complete-
ness in any washroom is omitted from further analysis. No outliers
(more than three standard deviations from the mean) are present in
the total daily flush counts.

Detailed data completeness results for individual washrooms are
provided in the Supplementary Information (Fig. S1), and days omitted
from analyses due to insufficient site-level flush count data availability
are identified in Fig. 3, Section 2.6.

Since flush counts are required to provide an indication of building
occupancy, flushes attributable to cleaning are identified and removed
from the daily building level totals (as these are not related to the build-
ing occupancy and do not contribute to SARs-CoV-2, ammoniacal nitro-
gen or orthophosphate measured in the wastewater). A washroom is
assumed to have been cleaned if every toilet in the washroom has
been flushed in a 15 min period at least once during the day; the num-
ber of flushes attributed to cleaning (a maximum of one per toilet per
day) is then subtracted from the total flush count. Further detail on
the impact of flush count adjustments for cleaning is provided in the
Supplementary Information.

2.6. Data availability and key dates

Wastewater SARS-CoV-2, ammoniacal nitrogen and orthophosphate
data is available from 11th November 2020, and sampling is ongoing.
Calibrated wastewater flow rate data is available from the same date,
up until 23rd March 2021. Within these periods, wastewater constitu-
ent data is typically available for six days a week, although sampling
was reduced during the university's Christmas break (12th December
2020 – 3rd January 2021), and flow rate data is available for every
day. Flush data was collected from 1st July 2019 until 29th March
2021, although gaps are present where days have been omitted due to
insufficient data completeness.

The period 11th November 2020 to 29thMarch 2021, i.e. when both
wastewater constituent and flush data is available, is selected for analy-
sis of the impact of population dynamics and SARS-CoV-2 trends. Addi-
tional flush data from a period with assumed full occupancy (weekdays
during the 2019 autumn term) is also used in the source identification,
as detailed in Section 2.3.

Fig. 3 shows the availability of each data source over these two pe-
riods, with data gaps shown in red. Key dates within the wastewater
Fig. 3. Daily data availability after cleaning, a) during a period of expected full occupanc
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monitoring period which may affect the population on campus are
summarised in Table 1.

3. Results and discussion

3.1. Population dynamics

Population dynamics indicated by ammoniacal nitrogen and ortho-
phosphate are analysed to check that they appear plausible and to con-
firm that these biomarkers are a reasonable basis for population
normalisation for the case study site.

Site-specific values for the daily discharge per capita of ammoniacal
nitrogen and orthophosphate are unknown and cannot be calculated
with the available information, and thus absolute population cannot
be estimated. The total biomarker load is, however, proportional to pop-
ulation (based on Eq. (3)) and can be used to illustrate population dy-
namics and trends. Daily loads of ammoniacal nitrogen and
orthophosphate, each of which is expected to be proportional to the
population on campus, are therefore shown in Fig. 4. These are calcu-
lated using the measured wastewater flow rate and biomarker concen-
tration (QdXd).

Fig. 4a suggests that population is highly variable, whichever
biomarker is considered. Two general patterns are observed: Firstly, a
seven-day cycle, with daily biomarker loads typically low
(<500,000 mg ammoniacal nitrogen or <200,000 mg orthophosphate)
at weekends and higher during the week; and secondly, a longer term
trend with levels dropping throughout December and rising through
January. This matches what would be expected, since the main campus
was not used for lectures at weekends and fewer staff would have been
working. In December, the population on campus would be expected to
drop towards, and following, the end of term (T-E in Fig. 1) as students
started to return home and lectures ceased. Few samples were taken
during the Christmas closure period (CP-S to CP-E), when the popula-
tion on campus would have been close to zero, but where available
the biomarker loads are typically representative of a low population.
Population would then be expected to rise following the end of the
y, and b) for the wastewater analysis period. Red indicates periods of missing data.

Image of Fig. 3


Fig. 4. Daily ammoniacal nitrogen and orthophosphate loads showing: a) change over time; and b) correlation. Key dates are indicated using abbreviations defined in Table 1.
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Christmas closure period (CP-E) and start of term (T-S), although re-
main somewhat suppressed due to the start of the third national lock-
down (NL3-S), and this is reflected in an increase in the weekday
biomarker loads.

The correlation between ammoniacal nitrogen and orthophosphate
loads (Fig. 4b) is strong but not perfect (Pearson correlation coefficient
r = 0.792), indicating that the population estimates and population
normalisation results yielded by each will differ. This may be attributed
to variations in the per capita discharge of each biomarker and the po-
tential presence of additional sources of either, or both, and is not unex-
pected given previous studies have also reported discrepancies between
population estimates based on different wastewater constituents (e.g.
van Nuijs et al., 2011). Given that no population estimates from alterna-
tive sources are available for reference, it is not possible to determine
whether ammoniacal nitrogen or orthophosphate provides a more ac-
curate representation of population dynamics and, therefore, both are
considered in the following normalisation (Section 3.2).

If samples taken during periods of wet weather are omitted, the cor-
relation increases marginally (r= 0.804), and if only samples taken on
dry weather days are included, the correlation increases further (r =
0.917). This suggests that confidence in population estimates and pop-
ulation normalisation should be greatest duringdryweather days; how-
ever, population normalisation is not restricted to these days since this
would prevent normalisation of over 70% of samples, and there is still
Fig. 5.Wastewater SARS-CoV-2 concentrations and normalised values over the wastewater mo
with a ‘|’ (top axis).
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reasonable agreement between population estimates based on the dif-
ferent biomarker loads even on wet weather days (r = 0.758).

Due to the topology and geology of the site (steep sandstone and
mudstone), ingress to the sewer (infiltration of groundwater) is not ex-
pected to be amajor contributor to thewastewater sampled; however, a
similar study in an areawith a highwater table and a poorlymaintained
pipe network may yield different results due to the increased impact of
wet weather periods.

3.2. Impact of population normalisation on wastewater SARS-CoV-2 trends

SARS-CoV-2 RNA concentrations measured in wastewater samples
at the case study site over the period 11th November 2021 to 29th
March 2021 are shown in Fig. 5 (blue lines). Samples with a concentra-
tion below the LOD are displayed with a value of 20 gc/l so that general
trends can be observed; this value is half the LOD and selected based on
the assumption that all values below the LOD are equally probable. The
concentrations in Fig. 5 show that there is only intermittent detection of
SARS-CoV-2 during the monitoring period (13% of samples collected
contain a detectable level of SARS-CoV-2), with the most frequent de-
tection and the maximum concentration both occurring in December
2020.

All SARS-CoV-2 RNA concentrations above the LOD are normalised
with respect to ammoniacal nitrogen and orthophosphate, and shown
nitoring period. Wet weather days are indicated with a ‘◊’ symbol, and dry weather days

Image of Fig. 4
Image of Fig. 5
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with ‘+’ and ‘×’ symbols respectively in Fig. 5, providing values that are
expected to be directly proportional to the daily SARS-CoV-2 load per
capita. To aid comparison of relative magnitudes with different units,
y-axes are scaled so that the maximum gc/l, gc/mg ammoniacal nitro-
gen and gc/mg orthophosphate (all on 15th November 2020) all appear
at the same level, and similar for the minimum detected values (all on
16th March 2021).

Fig. 5 shows that population normalisation (whether based on am-
moniacal nitrogen or orthophosphate) changes the picture of SARS-
CoV-2 prevalence trends provided by the wastewater monitoring. The
wastewater samples taken on 19th November 2020 and 10th January
2021, for example, have very similar SARS-CoV-2 RNA concentrations
(1045 and 1048 gc/l respectively), but there is significant difference in
their normalised values: Based on these, the daily per capita load is
shown to be 333% (based on ammoniacal nitrogen for normalisation)
or 644% (based on orthophosphate for normalisation) higher on 10th
January than on 19th November. This compares with an increase of
just 0.3% in concentration. Neither of these samples were taken on a
wet weather day, so the change cannot be attributed to dilution effects.
This suggests, therefore, that population normalisation can have signif-
icant impact on the understanding of the relative severity of peaks in
SARS-CoV-2, and that the presence of similar SARS-CoV-2 RNA concen-
trations may give a false impression of similar levels of prevalence.

This is supported by analysis of the rankings of the SARS-CoV-2 RNA
concentrations and population normalised values. Whilst the rankings
based on gc/mg ammoniacal nitrogen and gc/mg orthophosphate both
have a strong correlation with the SARS-CoV-2 RNA concentration
(Spearman's rank correlation coefficients of 0.95 and 0.91 respectively),
the sample on 10th January is an example of where population normal-
isation significantly changes the ranking (from 6th/12 based on
Fig. 6. Correlations between wastewater SARS-C
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concentration, to 3rd based on gc/mgammoniacal nitrogen or gc/mgor-
thophosphate) and may alter the importance placed on the measure-
ment and any response actions that may be considered.

A comparison of concentrations and population normalised values
for all samples with a detectable level of SARS-CoV-2 is presented in
Fig. 6, illustrating more clearly the relationship between each metric
and which measurements correspond to dry and wet weather days. In
each case, linear lines of best fit and Pearson correlation coefficients
shown are calculated based on the log10 values.

Fig. 6 shows that, although strongly correlated, the SARS-CoV-2 con-
centration (gc/l) is perfectly linearly related to neither the gc/mg am-
moniacal nitrogen (r = 0.899) nor the gc/mg orthophosphate (r =
0.914). This reinforces the assertion that population normalisation al-
ters the SARS-CoV-2 prevalence trends provided byWBE, since the rel-
ative magnitude (with respect to the full data set) of all SARS-CoV-2
concentrations and normalised loads would be unaltered only if there
is a perfect, linear relationship (r=1) between SARS-CoV-2 concentra-
tion and the load per unit mass of biomarker. Whilst it may appear that
the difference in the trends is likely to be minor, due to the strong cor-
relation, the difference between the linear best fit lines and the normal-
ised values is in fact considerable (Root Mean Square Percentage Error
(RMPSE) = 83.7% for SARS-CoV-2 gc/mg ammoniacal nitrogen, and
RMSPE = 89.7% for SARS-CoV-2 gc/mg orthophosphate.

Comparison of the two population normalised values (gc/mg ammo-
niacal nitrogen and gc/mg orthophosphate) shows that these exhibit a
very strong correlation (r = 0.981), suggesting that both will provide a
similar understanding of trends in daily per capita loads of SARS-CoV-2.

Given that there is greater confidence in population normalisation
using samples from dry weather days (Section 3.1), correlation coeffi-
cients are also calculated based on dry weather samples only. Again,
oV-2 concentrations and normalised values.

Image of Fig. 6


Table 2
Daily per capita flush counts used to estimate dynamic population, calculated based on
building capacities and flush counts during a full occupancy period.

Building Estimated number of flushes per occupant per day

Mean Standard deviation Coefficient of variation

A 0.336 0.101 0.30
B 0.283 0.061 0.21
C 2.033 0.172 0.08
D 0.033 0.006 0.19
E 0.578 0.113 0.20
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these show there to be a very strong (nearly perfect) correlation be-
tween the two population normalised metrics (r = 0.997), and a
weaker correlation between these and the SARS-CoV-2 RNA concentra-
tion (r=0.930 and 0.952 for normalisation based on ammoniacal nitro-
gen and orthophosphate respectively). These correlation coefficients
are based on only four samples (as this is the total number of samples
with a SARS-CoV-2 concentration above the LOD collected on dry
weather days) and, therefore, the confidence intervals (detailed fully
in the Supplementary Information, Table S1) are wider than for the cor-
relation coefficients based on all samples. However, the correlation co-
efficients still support the conclusion that population normalisation
alters the SARS-CoV-2 trends provided byWBE, as there is not a perfect
linear relationship between SARS-CoV-2 concentration and SARS-CoV-2
normalised by either biomarker. They also support the suggestion that
normalisation using either metric is similarly beneficial, as the correla-
tion between SARS-CoV-2 gc/mg ammoniacal nitrogen and gc/mg or-
thophosphate is very strong even when considering the full
confidence interval (0.867 ≤ r ≤ 1.000 for a significance level of 0.05).

3.3. Potential sources of SARS-CoV-2

Estimated daily flush counts per occupant for each of the monitored
buildings during the period of assumed full occupancy, as calculated
Fig. 7. Building occupancy estimates based on flush count data: a) Absolute occupanc
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using Eq. (6) and required to estimate dynamic building occupancies
for SARS-CoV-2 source identification, are summarised in Table 2. The
total flush counts during the assumed full occupancy period, from
which these values are calculated, are provided in the Supplemen-
tary Information (Fig. S2). The coefficients of variation indicate that
there will be a high degree of certainty in population estimates
based on the estimated flush count per occupant for Building C, and
greatest uncertainty for Building A. The significant variability be-
tween buildings in the mean daily flush count per capita broadly
matches the trends observed by Melville-Shreeve et al. (2021a)
and may be explained by variation in what each building is used
for. Buildings that are used for teaching (A, B, D and E), for example,
may have a very high capacity but a relatively low occupancy dura-
tion for each individual, and thus a low mean number of flushes
per occupant; conversely, each user of a building that is predomi-
nantly used for offices (C) may spend a longer period of time in the
building and therefore contribute more flushes. However, any
changes in building use as a result of the pandemic (such as a build-
ing with teaching space being used only for research)may contribute
further uncertainty in the daily per capita flushes and associated oc-
cupancy estimates.

It is noted that different individuals may have different toilet usage
patterns (with some contributing multiple flushes and others none),
and use of the mean daily per capita flush counts provided in Table 2
for dynamic population estimation assumes that the fraction of occu-
pants in a given building that contribute to the totalflush count remains
constant over time.

Building-level occupancy estimates during thewastewatermonitor-
ing period, based on total flush counts (available in the Supplementary
Information, Fig. S4) and the estimated number of flushes per occupant
per day (Table 2) are provided in Fig. 7. The estimated number of occu-
pants in each building (Fig. 7a) exhibits a clear weekly pattern, with
near zero occupancy in all buildings at weekends. Similarly to the
campus-level population trends indicated by thewastewater biomarker
loads (Fig. 4a), building occupancy drops throughout December, and is
y; and b) Relative occupancy (fraction of total occupants in monitored buildings).

Image of Fig. 7


C. Sweetapple, P. Melville-Shreeve, A.S. Chen et al. Science of the Total Environment 806 (2022) 150406
lowest between the start of the Christmas closure period (CP-S) and the
following start of term (T-S).

Fig. 7b shows howoccupants are distributed between themonitored
buildings and, therefore, the relative contribution of each building to the
wastewater monitored for SARS-CoV-2. This is particularly insightful on
days with low total occupancy numbers, showing for example that
there are several days where occupants are detected only in Building
C. Whilst this does not guarantee that there was no-one in the other
monitored buildings, it does mean that nobody in them contributed to
the wastewater being sampled, and thus these buildings can be elimi-
nated when searching for the source of any SARS-CoV-2 detected in
the wastewater on these days.

To illustrate the potential benefit of these building-level occu-
pancy estimates for SARS-CoV-2 source identification, Fig. 8 shows
the wastewater SARS-CoV-2 metrics for the one-month period in
which detection was most frequent (and, thus, source identification
is of greatest potential benefit) overlaid on corresponding occupancy
estimates.

On 15th November 2020, the highestwastewater SARS-CoV-2 levels
seen at the university were recorded. Fig. 8b shows that buildings A, B,
andD can be removed as candidates for the source, since their estimated
occupancy on this day was zero. Whilst there is uncertainty in most oc-
cupancy estimates due to variation in the building-specific daily flushes
per capita values, there is greater certainty of any occupant that may
have been present not contributing to the wastewater on days where
the estimated occupancy is zero (i.e. zero flushes). However, it is
noted that flush data was not captured at wheelchair-accessible wash-
rooms, and thus the possibility of users of these buildings contributing
to the wastewater cannot be absolutely ruled out.

Furthermore, Fig. 8a shows that the occupancy of all buildings with
monitored flush counts were very low on this day. If it is assumed that
the occupancy of these buildings is broadly representative of occupancy
Fig. 8. Estimated occupancy of buildings with monitored flush counts and measures of site-lev
showing a) absolute occupancy; and b) relative occupancy. Wet weather days are indicated w
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across the campus on this day, then this suggests that the actual number
of people infected may also be very low, despite both the SARS-CoV-2
concentration and the population normalised values being very high
(since the smaller the population, the higher the per capita value
resulting from a given SARS-CoV-2 load).

On days where specific buildings cannot be eliminated based on a
zero-occupancy estimate, building-level occupancy information may
still aid efforts to trace the source of SARS-CoV-2 detected by enabling
identification of buildings with the greatest occupancy and greatest
wastewater contribution. Fig. 8b shows that on 11th November, for ex-
ample, over 60% of the total occupants of fivemonitored buildings were
in Building E – hence, there is greater probability of locating the infected
individual(s) in this building, and this should be a higher priority for
targeted testing if capacity is limited.

3.4. Future opportunities

Multiple opportunities are identified to add value to outputs set out
in this study. Specifically, the installation offlushmonitoring technology
across all washrooms upstream of the autosampler could enable amore
definitive set of conclusions to be drawn. Disaggregation of flush counts
from male and female washrooms may also improve accuracy when
assessing the relative contribution of occupants in different buildings
to the wastewater sampled, due to the presence of (unmonitored) uri-
nals in the male washrooms.

In addition, from an operational perspective, additional autosamplers
could be installed (but remain largely offline) at the outlet from each
building. These could be sampled the day after a positive signal is ob-
served in at the main campus enabling a single building to be
pin-pointed. Such measures could in turn enable patchwork closure of
buildings when prevalence exceeds a pre-defined threshold, minimising
disruption in future waves of a pandemic.
el SARS-CoV-2 in wastewater during the period 11th November to 11th December 2020,
ith a ‘◊’ symbol, and dry weather days with a ‘|’.

Image of Fig. 8
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Lastly, inclusion of the N2 gene (in addition to the N1 gene analysed
in this study) in the RT-qPCR may reduce the occurrence of any incon-
clusive results.

4. Conclusions

This study has investigated the use of ammoniacal nitrogen and or-
thophosphate for normalisation of SARS-CoV-2 detected in wastewater,
to account for the impact of highly variable populations at a near-to-
source monitoring site; evaluated the impact of population normalisa-
tion on the understanding of SARS-CoV-2 prevalence trends provided
by the wastewater data; demonstrated how complementary (non-
wastewater) data sources can help to inform a better targeted response;
andexplored thepotential impact ofwetweather periods on the results.
Key findings include:

• Population normalisation alters the trends in SARS-CoV-2 prevalence
indicated by WBE and, in a near-to-source site with a highly variable
population such as a university campus, it can reveal significant differ-
ences in prevalence between days where recorded SARS-CoV-2 con-
centrations are very similar. Population normalisation, therefore, is
considered critical for providing a comprehensive understanding of
the results from WBE when population size is highly variable.

• Normalisation using either ammoniacal nitrogen or orthophosphate is
similarly beneficial, with both providing a similar (but not identical)
understanding of population dynamics and trends in population nor-
malised SARS-CoV-2 in the wastewater. This indicates that multiple
biomarkers that are of questionable reliability for population normal-
isation at a STW level due to their presence in industrial discharges
can be appropriate for near-to-source studies.

• Agreement between population estimates based on different bio-
markers is greatest when wet weather days are omitted, indicating
that confidence in the results of population normalisation should be
greatest when the weather is dry. However, as there is still a reason-
able level of agreement on wet days, these can still provide valuable
information.

• Use of flush count data to estimate the occupancy of different build-
ings in within the near-to-source site can enable priority locations
for targeted testing to be identified when SARS-CoV-2 is detected in
the wastewater. This is particularly beneficial on low occupancy
days when no flushes are recorded in some buildings, so it is known
with certainty that no occupants of these buildings contributed to
the wastewater in which SARS-CoV-2 was detected.

• Technically feasible strategies to further advance this study have been
set out. Such solutions focus on yet more granular data acquisition in-
cluding a wider deployment of flush monitoring and short term
autosampling being added at a building-level when the main campus
data suggests increased prevalence.

Lastly, it is noted that there were restrictions in place on mobility
and/or student activities, along with guidance to ‘work from home
where possible’, for the majority this study period, due to the
COVID-19 pandemic. As such, the number of people using the main
campus site (and the difference between high and low occupancy
periods) was considerably lower than usual. For near-to-source
sites with higher variability in population – and for the case study
site as restrictions are lifted and the number of people using the cam-
pus increases – the importance of population normalisation is ex-
pected to be even greater.
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