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Species are shifting their distributions in response to climate change. This
geographic reshuffling may result in novel co-occurrences among species,
which could lead to unseen biotic interactions, including the exchange of
parasites between previously isolated hosts. Identifying potential new
host–parasite interactions would improve forecasting of disease emergence
and inform proactive disease surveillance. However, accurate predictions
of future cross-species disease transmission have been hampered by the
lack of a generalized approach and data availability. Here, we propose a fra-
mework to predict novel host–parasite interactions based on a combination
of niche modelling of future host distributions and parasite sharing models.
Using the North American ungulates as a proof of concept, we show this
approach has high cross-validation accuracy in over 85% of modelled para-
sites and find that more than 34% of the host–parasite associations forecasted
by our models have already been recorded in the literature. We discuss
potential sources of uncertainty and bias that may affect our results and
similar forecasting approaches, and propose pathways to generate increas-
ingly accurate predictions. Our results indicate that forecasting parasite
sharing in response to shifts in host geographic distributions allow for the
identification of regions and taxa most susceptible to emergent pathogens
under climate change.

This article is part of the theme issue ‘Infectious disease macroecology:
parasite diversity and dynamics across the globe’.
1. Introduction
The need to understand and predict future risk of cross-species infections is
underscored by the COVID-19 pandemic. Over the past few decades, zoonotic
diseases have increased in frequency, prevalence, severity, host range and geo-
graphic distribution [1,2]. Global trade, transport and the introduction of exotic
species have likely been important in facilitating the emergence of zoonoses [3].
These trends may worsen under climate change [4,5]. For example, many
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animal host species are already shifting their geographic
range as a response to recent environmental global change
(e.g. [6,7]), generating new species assemblages [8] and pro-
moting opportunities for parasite exchange. When
previously allopatric host species come into sympatry, novel
host–parasite interactions may emerge if parasites are able
to successfully infect newly exposed hosts. Understanding
and predicting how interaction networks will reorganize
under climate change, identifying the host pairs most likely
to exchange parasites, and the parasites most likely to shift
to infect novel hosts presents a major challenge in global
change biology and parasite macroecology [9–12].

The role of climate change in restructuring host–parasite
interactions through shifts in host ranges is poorly under-
stood outside the crop pest literature [13,14]. To generate
predictions of future host–parasite interactions, we need
data on host distributions and on host–parasite interactions,
as well as predictive models to project future host ranges
under climate change, and link-prediction models for host–
parasite interactions. Here, we present a framework for pre-
dicting future parasite sharing networks that incorporates
shifts in host distributions due to climate change, host evol-
utionary history, and ecological traits. We first review recent
progress in modelling host–parasite interactions and their
potential links to climate change as our theoretical foun-
dation. We then outline a generalized analytical framework
to predict future host–parasite interactions and use North
American mammals as a case study to demonstrate the
value of our approach for predicting the risk of novel disease
emergence events. Finally, we discuss remaining challenges
faced by our approach and suggest ways to move the field
forward.
(a) Spread of disease due to climate change
A growing body of literature has focused on the geographic
spread and transmission of infectious diseases under various
climate change scenarios. Pathogens that have been modelled
under future climate change include Ebola virus [15–17],
Aedes-borne arboviruses such as dengue and Zika [18,19],
and West Nile virus [20–22]. Most of these examples are
characterized by strong relationships between environmental
or climatic indicators and the spatial-temporal distribution of
the disease, its vector or host [19]. The emerging consensus is
that effects of climate change on the transmission of vector-
borne diseases tends to increase disease spread, risk and
burden, if mitigation measurements are not adopted [18,23].
These examples are understandably skewed to identifying
potential hotspots of disease transmission to humans, using
predictions on projected shifts in vector geographic distri-
bution and, if available, on vector population density
[19,21]. While these approaches can provide highly accurate
predictions on the geographic areas with the highest prob-
ability of occurrence of the intermediate host, they usually
ignore the definitive host and are not directly extendable to
non-vector-borne diseases.

Research on climate change and human diseases has
expanded rapidly, whereas the likely impact of climate
change on diseases of wildlife is much less understood [24].
Climate is an important factor in diseases of both wildlife
[25] and domesticated species [26], but whether ongoing
changes in climate will necessarily lead to an increase in dis-
ease occurrence has been challenged [27]. There remains
important debate on whether disease distributions will
expand or shift geographically under projected climate
change, and how climate factors might interact with non-cli-
mate factors to drive disease distribution and prevalence
[28,29]. There are, for example, contrasting expectations
regarding the effects of climate change on disease burden
within a given host [24,30]. However, beyond a few well-
studied species [31–33], few wildlife species have high-
quality disease data for long time series that includes both cli-
matic and non-climatic drivers [28] necessary for making
robust predictions. In a recent multi-host study, Cohen et al.
[24] generated forecasts of parasite prevalence under climate
change using thermal performance data and reported mark-
edly different responses across taxa and regions. Examples
such as this could be extended to include less well-studied
species given the appropriate analytical framework, but
also illustrate the challenges of generalizing trends across
different taxa and biogeographic regions.

(b) Multi-host pathogens and the biogeography of
parasite sharing

The patterns of co-occurrence of parasites and their hosts can
shape the fundamental properties of ecological communities,
impacting host persistence, coexistence and geographic range
extents [34]. Recent efforts have focused on bridging gaps in
our knowledge of parasite distributions relative to their host
distributions [35–37], host–parasite interactions [12] and
parasite biogeography [38,39]. Some general trends have
emerged. The richness of parasites seems to track the richness
of hosts, at least for zoonotic pathogens ([40], but see [41]),
and while many parasites infect only one or a few host
species, others have a wide host breadth, sometimes encom-
passing multiple orders [42,43]. The latter—multi-host
parasites—are responsible for a large proportion of the emer-
ging infectious diseases most threatening to humans and
wildlife [44–46].

Parasite sharing networks characterize the distribution of
interactions among parasites, forming the basis for predictions
of undocumented and future cross-species parasite sharing
[47–50]. However, our ability to make accurate predictions is
challenged by the sparseness of most existing host–parasite
networks. The detection of a host–parasite interaction requires
extensive sampling of the host and screening for the parasite
species of interest, which is resource intensive and rather
time consuming. Thus, it is common to find sparsely con-
nected host–parasite networks, with a large portion of
interactions unsampled [51]. Recent research has focused on
inferring biotic interactions using proxies—a powerful
approach when documenting all interactions within an
ecological network is not feasible [52]—and computational
algorithms for ‘filling in’ host–parasite interaction networks
by inferring missing links [53]. However, such approaches
have largely overlooked how shifting host distributions with
climate change has the potential to reshape these networks.

Geography, often presented as a condition for exposure,
has been shown to be a key predictor in the probability of
parasite sharing among hosts [49,54] and is thus critical in
structuring parasite sharing networks. Further, in mamma-
lian parasite sharing networks, habitat is a good predictor
for network modularity [47], and host geographic ranges
together with population density can explain host centrality
in the network [48]. A viral sharing network of mammals
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Figure 1. Diagram summarizing the three major steps describing our framework for inferring parasite sharing networks under current and forecasted patterns of
host co-occurrence. The first step (a) uses species distribution modelling techniques to forecast host distributions under future climate. These distributions inform
co-occurrence among hosts. The second step (b) models ShDxij , or the probability of each pair of hosts i and j sharing a given parasite Dx. For each parasite, models fit
the relationships of observed pairwise parasite sharing against phylogenetic, trait and geographic proxies. The third step (c) combines host co-occurrences (thre-
sholded or probabilistic) with host parasite sharing probabilities to generate both current and future predictions of probabilistic parasite sharing networks mediated
by host co-occurrence. Comparing future versus current networks can inform about potential impacts of climate change on network structure, on the emergence of
novel interactions, or locations where local networks may experience an increase in parasites. (Online version in colour.)
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illustrates the heterogeneity in parasite sharing across both
geography and taxonomy of hosts, with more sharing of
viruses in the tropics among rodents and bats [55]. While
research on forecasting shifts in parasite sharing networks
with shifts in host geographic distributions is still incipient
[13], such approaches would allow the identification of regions
and taxa most susceptible to emergent pathogens with the
geographic reshuffling of host distributions under climate
change. Here, we develop a general probabilistic framework
to explore how climate change might alter current host–
parasite networks and, as a case study, we apply our framework
to the parasite sharing network of North American ungulates.
2. Heuristic framework to infer shifts in parasite
sharing networks

We propose here a simple three-step approach to forecasting
parasite sharing networks under future climate change
scenarios (figure 1) that:

(1) models current and future geographic distribution of
hosts to identify which currently non-co-occurring pairs
of hosts would co-occur under different climate change
scenarios (figure 1a);
(2) models the probability of a given parasite being shared
between each pair of hosts (figure 1b);

(3) combines steps 1 and 2 to build a probabilistic parasite
sharing network allowing us to identify which host
species may be most vulnerable to novel pathogens and
which parasite species will be more likely transmitted
to novel hosts (figure 1c).

(a) Step 1: modelling host geographic shifts
The first step in our framework (figure 1a) addresses the chal-
lenge of modelling and forecasting host distributions. We used
species distribution models (SDMs hereafter)—i.e. statistical
models fitting the geographic distribution of a species as a
function of a set of environmental predictors [56–58]—follow-
ing usual recommendations in the field [59]. We optimized
model fit using cross-validation, whereby for a pre-set
number of iterations, data are divided into training and testing
subsets, models are calibrated using training data and their
average accuracy is checked against the testing subset of
data. The SDM literature on model thresholds, evaluation
and validation is abundant [59–62]. We chose commonly
used metrics and approaches (AUC, Kappa, D2, the threshold
maximizing sensitivity and specificity) to assess model fit, but
note that alternative approaches could be similarly applied.
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(b) Step 2: probabilistic conceptualization for parasite
sharing interactions

Based on the previous work by Gravel et al. [63], our frame-
work employs models of the probability that any pair of
hosts, Hi and Hj, share a link with any parasite or disease
Dx known to infect at least two or more of the hosts in the
analysed host–parasite data, P(Dx,Hi,Hj). We focus our frame-
work here on host–parasite interactions but it could be
equally applied to other types of interaction networks such
as herbivory, mutualism or predation with little transform-
ation. Generally, for two host species to share a previously
unshared parasite, the parasite must be capable of infecting
both hosts, and hosts must co-occur in space. We can formu-
late this as follows:

P(Dx,Hi,Hj) ¼ P(DxjHi,Hj)P(Hi,Hj), ð2:1Þ

where the leftmost term of the right-hand side of equation
2.1, P(Dx|Hi,Hj), represents the probability that parasite Dx

infects a given host Hi, while another host Hj is present.
The term on the right, P(Hi,Hj), is the host co-occurrence
probability calculated from Step 1. Decomposing equation
(2.1), we define the probability of a given parasite Dx infect-
ing a given host Hi, P(Hi,Dx) as follows:

P(Hi,Dx) ¼ P(HijDx)P(Dx), ð2:2Þ

where P(Hi|Dx) is the probability that parasite Dx is found
in host Hi, and P(Dx) is the probability that the parasite is
actually present in a local network. While we know the dis-
tribution of Hi, we typically do not know the distribution of
Dx, because parasites tend to be spatially aggregated [64]
and may not be present throughout the entire ranges of
their hosts [65,66]. As a simple first approximation, we
use the distribution of hosts that are potential reservoirs
for the parasite, for example, any other host Hj that may
or may not contain the parasite and may or may not be pre-
sent in the local network. We thus specify the distribution
of the parasite as follows:

P(Dx) ¼ P(DxjHj ¼ 1)P(Hj ¼ 1)þ P(DxjHj ¼ 0)P(Hj ¼ 0):

ð2:3Þ

Since the parasite cannot be found where there is no host, we
assume that P(Dx|Hj = 0) = 0, and thus equation (2.3)
simplifies to

P(Dx) ¼ P(DxjHj ¼ 1)P(Hj ¼ 1); ð2:4Þ
plugging equation (2.4) into equation (2.2) we get:

P(Hi,Dx) ¼ P(DxjHj ¼ 1)P(Hj ¼ 1): ð2:5Þ

We make two extra assumptions to deal with unknown
information in equation (2.5). First, we assume that the
parasite is always present when the host is present, such that
P(Dx|Hj = 1) = 1. Thus, a parasite is assumed to occur across
the entire host range, which is known to be unrealistic [39,66]
but simplifies calculations for the sake of our example, though
data on parasite distributions within host ranges may be
included if available. Further, we assume that the distribution
of the host is independent of the distribution of the parasite,
such that P(Hi|Dx) = P(Hi). These simplifying assumptions
allow us to describe the co-distribution of the host and the para-
site as a function of the co-distribution of the two host species:

P(Hi,Dx) ¼ P(Hi)P(Hj): ð2:6Þ
(c) Step 3: combining probabilities of host co-
occurrences and host parasite sharing probability

Three proxies are commonly used to infer biotic interactions
[52]—geography, phylogeny and traits—and each has been
proven to be informative in modelling the probability
of an interaction between a host and parasite species
[48,53,55,67,68]. We therefore model the sharing of a given
parasite—coded as a binary pairwise interaction matrix—as
a function of their summed effects:

ShDx
ij �Cij þ Phyij þ Tij, ð2:7Þ

where ShDx
ij is the observed sharing of parasite Dx by hosts Hi

and Hj as a function of: Cij, a measure of host co-occurrence,
that can be simplified as a binary variable coding for sympa-
try between host pairs; Phyij, the phylogenetic distance
between hosts; and Tij, a measure of trait distance between
each pair of hosts Hi and Hj (figure 1).

Two hosts may share a given parasite even if they do not
currently co-occur, P(Hi)P(Hj) = 0, as a legacy from past sym-
patry or geographic bridging by extinct hosts (see [69] this
issue, among others). Nevertheless, for simplicity, we
assume here that host i and j must have a non-zero prob-
ability of co-occurrence, P(Hi)P(Hj) > 0, such that the
probability that they share a parasite is given by

P(Dx,Hi,Hj) ¼ ShDx
ij P(Hi)P(Hj): ð2:8Þ

Importantly, P(Hi)P(Hj) may vary depending on whether
current or future host distributions are considered. Our
approach therefore allows us to model effects of climate
change-induced host range shifts on the probability of
parasite sharing.

(d) A case study for North American ungulates
The orders Artiodactyla and Perissodactyla (i.e. ungulates or
hoofed mammals) comprise a diverse set of hosts, for which
high-quality data on geographic distributions, biology and
host–parasite associations [49] is available. Several ungulate
species are directly used by humans through either domesti-
cation or game and are thus of particular interest as potential
reservoirs of diseases that impact human and livestock health
[70]. We restricted our analyses here to ungulate species
within North America because: (i) the relatively low species
richness of ungulates in this region (13 species) provides a
highly tractable dataset; (ii) species distributions within the
Nearctic are well-resolved; (iii) ungulates have a high
number of reported parasitic interactions relative to the
number of species, resulting in one of the most information-
dense host–parasite systems in North American; and (iv) cli-
mate change is projected to have a large impact across this
biogeographic region. Here, we combine data on host–
parasite associations [12], present-day host species distri-
butions [36], climatic variables for both current and future
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(data compiled in the Global Parasite Mammal Database up to 2010) parasite
richness and parasite richness after host range shifts (distributions for the year
2070 under Representative Concentration Pathway 8.5).
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climate [71], and pairwise host phylogenetic and trait dis-
tances [49] (see electronic supplementary material,
Appendix S1 for details on data and methods). In the follow-
ing three sections, we apply each step of our framework to
North American ungulates as a case study, report main
results and discuss associated challenges.
3. Host distributions and shifts in parasite
richness

Climate change may have profound impacts on the geographic
distribution of both hosts and their parasites. Species distri-
bution models for host current distributions showed high
overall accuracy, with AUC values above 0.928 for all species
(median = 0.993; see electronic supplementary material,
table S1). These strong distribution–climate relationships
suggest that climate change will likely result in tight tracking
of ungulate ranges with climate change. While the inclusion
of additional abiotic predictors such as elevation and veg-
etation, or human-related predictors such as urbanization or
land use would have likely contributed to increasing model
accuracy, i.e. highest ungulate diversity concentrates in moun-
tainous regions (electronic supplementary material, figure S1),
some of those predictors such as elevation would be invariant
with climate change. Assuming parasites faithfully track the
distribution of their ungulate hosts, we can see large differ-
ences between current (figure 2a) and forecasted (figure 2b)
parasite richnesses even in the absence of novel host–parasite
interactions. The current distribution of parasites of North
American ungulates highlights three distinct regions of para-
site diversity: the Rockies and US east coast, where the
maximum richness of parasites is estimated above 300 species;
Northern Canada and Alaska, with the lowest parasite diver-
sity (less than 50 species); and, Southern Canada, the Great
Plains, the US east coast and Mexico with intermediate
values. Assuming that ungulate hosts shift their distributions
to track changing climate, and there are host shifts, the peak
of parasite richness would expand northwards and eastwards
outside the Rockies (figure 2b). While parasite diversity is pro-
jected to increase across the majority of the continent, with the
highest relative increases forecasted for northernmost Canada
and Alaska, in some areas, parasite diversity is projected to
decrease as host ranges contract (figure 2c). Because we
assume that parasites occupy the entire range of their hosts,
parasite richness maps closely match host richness maps (see
electronic supplementary material, figure S1), though the
correlation is not perfect (rCURRENT = 0.815; rFUTURE = 0.824).

Host distributional patterns and shifts translate into co-
occurrence meta-networks (figure 3). Our SDMs generally
predict host range expansion and thus greater co-distribution
of hosts, i.e. host pairs not co-occurring currently but predicted
to do so in the future, and we do not observe any instances
where host pairs co-occurring currently become allopatric
in the future (figure 3e). However, we note that these projec-
tions do not take into account current or future range
restrictions due to human settlements or anthropogenic land
use change. According to thresholded predictions, novel host
co-occurrences include those between Ovis dalli (Dall's
sheep), Ovis canadensis (bighorn sheep) or Ovibos moschatus
(musk ox) (figure 3a,e). If, instead of binary predictions, we
use probabilistic predictions instead (see Methods section in
electronic supplementary material, Appendix S1 for details
on probability calculation), then additional novel co-occur-
rences emerge (figure 3b,f ). For example, the white-lipped
peccary, Tayassu pecari, would co-occur with eight hosts
other than Pecari tajacu (collared peccary) andOdocoileus virgi-
nianus (white-tailed deer), though with low probabilities
(figure 3b,f ).

A major assumption likely influencing our results is that
we assume unconstrained dispersal, which has shown to
impact forecasts of host–parasite interactions in viruses [13].
For example, our projections indicate that T. pecari could dra-
matically expand its range with climate change, but it is
currently classified as vulnerable to extinction (IUCN Red
List) andmay bemore likely to experience population declines
and range reduction as current extinction drivers, including
deforestation destruction and hunting, intensify. The practi-
cal utility and limitations of SDMs have been extensively
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Figure 3. Sequential calculation of pairwise parasite sharing among North American ungulate hosts. The framework starts by fitting models for co-occurrence
among pairs of ungulate hosts according to their contemporary (a,b) and forecasted (e,f ) future distributions for the year 2070 under RCP 8.5; (a,e) show the
networks computed based on binary distributions of hosts (co-occurring hosts are marked in green). The next column to the right (b,f ) shows the joint probability
with which each pair of hosts co-occurs. Joint probabilities shown here are summarized across the study area as the upper quartile of sites where each host from a
host pair has a non-zero probability of occurrence. The framework finishes by fitting models of parasite sharing for current (c) and forecasted (g) co-occurrence
among ungulate hosts and each parasite in the dataset, here illustrated with an Orbivirus (blue tongue disease). Example of modelled predictions corresponds to
averaged probabilities across 50 iterations of the parasite sharing model. Uncertainty around predicted probabilities is also reported for current (d ) and future
(h) host co-occurrence. Note that this same figure can be reproduced for all other parasites in the dataset. (Online version in colour.)
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reviewed, documented and discussed elsewhere [72,73], we
therefore refrain from repeating this discussion here so we
are able to focus on the more conceptual advances of our mod-
elling approach.We note, however, that any future shifts in the
distributions of ungulate hosts will likely be more strongly
influenced by humans than by climate.

4. Parasite sharing among host pairs
Step 2 of our framework (figure 1b) models parasite sharing
among co-occurring hosts as a function of host pairwise phy-
logenetic distance, geographic sympatry and ecological or
trait distance. In our case study, we use logistic Generalised
Linear Models (GLMs; see equation (2.7)) rather than more
sophisticated algorithms which tend to overfit (e.g. Random
Forest, Generalized Boosted Models; [74]). The higher uncer-
tainty around GLM predictions may be more suitable for the
multiple sources of uncertainty conditioning future inter-
actions. Nevertheless, any modelling approach for fitting
statistical relationships with a binary response variable—i.e.
presence or absence of a host interaction with a given
parasite—could be used. In principle, a similar cross-validation
approach as applied to SDMs could be used to tune model fit-
ting—i.e. splitting data randomly, calibrating models with a
training subset (e.g. two-thirds of the data) and testing it against
a testing subset (e.g. the remaining third of the data) (see elec-
tronic supplementary material, Appendix S1 for details).

Our parasite sharing models fitted for each multi-host
parasite species in the North American ungulate dataset
were accurate on average (AUC > 0.7 for 87.9% of 58 parasite
species with models subjected to cross-validation; median
AUC= 0.846; see electronic supplementary material, table
S2 and Appendix S1 for details). These models yield the prob-
ability with which each host pair will share (and thus
exchange) a given parasite currently and with future climate
change. Generalist parasites infecting a high number of hosts
are more often predicted to be shared by co-occurring hosts,
compared to more specialized parasites (electronic sup-
plementary material, table S2). We found a high correlation
between the number of parasites a host infects and its average
probability of being shared between any host pair (r = 0.909;
p < 0.001). There was a high level of variability in interaction
probabilities across parasite species (see electronic sup-
plementary material, table S2; average P(Dx, Hi, Hj) ranging
between 0.012 and 0.367, median = 0.072). Protozoans had
the highest probabilities of being shared (n = 2; median
P(Dx, Hi, Hj) = 0.193), followed by viruses (n = 21; median
P(Dx, Hi, Hj) = 0.111), arthropods (n = 13; median P(Dx, Hi,
Hj) = 0.079), helminths (n = 4; median P(Dx, Hi, Hj) = 0.076)
and bacteria (n = 17; median P(Dx, Hi, Hj) = 0.076). The taxa
level median probability values are summarized across all
host pairs, many of which had predicted probabilities of
zero. To explore whether fitting models with a larger dataset
would increase model accuracy, we repeated this step using
all ungulate species in the Global Mammal Parasite Database
(GMPD; [49]). Overall, parasite sharing models with data
restricted to North American ungulates performed better
than models for all ungulates globally (see electronic sup-
plementary material, figure S3), possibly due to increased
data quality for North American species. Expanding the taxo-
nomic or regional extent of the data does not necessarily
improve model accuracy and performance.

Our approach to modelling parasite sharing limits the
scope of our inference in two major ways. First, we only
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model parasites that are documented to infect more than one
host, because the model can only be fit for multi-host para-
sites. By definition, a single-host parasite cannot be shared
by two or more hosts, and thus the parasite sharing response
variable built for a single-host parasitewould result in a vector
of zeros. This issue could be partially addressed by employing
link-prediction approaches designed to deal with unobserved
interactions among different taxa (e.g. occupancy models [75]
or trait-matching approaches; [76]). However, given our cur-
rent framework, we may be able to increase the number of
parasites that can be modelled by expanding the taxonomic
or geographic extent of the data used to fit the models.
A second, related shortcoming has to do with cross-validation
approaches being only applicable to multi-host parasite
species infecting more than two hosts—otherwise either train
and test data subsets may frequently yield all-zero associ-
ations. Similarly, cross-validation would only be applicable to
parasites infecting less than n – 2, n being the number of hosts
in the dataset. These conditions effectively reduced the
amount of cross-validated parasite species by 84%—i.e. 261
single-host parasites and 41 parasites infecting two hosts
were not evaluable. The challenge of modelling single-host
parasites is not limited to our approach, but applies more
widely to bipartite link-prediction algorithms [53].
5. Forecasts of shifts in parasite sharing due
to climate change

In Step 3 (figure 1c), our framework builds probabilistic
parasite sharing networks for each parasite by combining
host pairwise information on projected host co-occurrences
(Step 1) and predictions from the parasite sharing model
(Step 2). Since co-occurrence networks—either binary or
probabilistic—are easily produced using host contemporary
distributions and projected distributions under climate
change, probabilistic parasite sharing networks for current
and future host distributions can be simply derived from
equation (2.8). Consequently, we are able to compare the
parasite sharing networks inferred for current and future
points in time, and evaluate potential impacts of climate
change on host–parasite interactions (figure 1c). With this
approach, it is possible to quantify shifts in network pro-
perties and structure, and to identify and rank novel
host–parasite associations (i.e. parasites with a high average
probability of becoming shared by hosts). We can also con-
struct geographic projections of the networks to identify
areas with the largest increases in parasite sharing probabil-
ities. In this way, we can predict potentially vulnerable
areas where shifts in host distributions may lead to increased
numbers of spillover events. Using our approach, the change
in parasite sharing across periods is solely a product of shifts
in host distributions. This simplification makes strong
assumptions, for example, that pairwise parasite sharing
probabilities do not change with time and are constant
across each host range. Nonetheless, we believe predictions
from our approach are informative as they tend to reflect
the extreme of possible scenarios because they maximize
the geographic spread of the parasites.

For North American ungulates, we find climate change
is likely to have quantifiable effects on the structure of the
parasite sharing network (figure 3c,d,g,h), by increasing the-
connectivity, amount of links, centrality and closeness
of each host pair in the network (Δdegree = 9.0%, Δbet-
weenness = 21.0%, Δcentrality = 15.1%, Δcloseness = 60.1%).
Further, by comparing current and future parasite sharing
networks, we identified parasites likely to increase in their
probability of being shared (electronic supplementary
material, table S3). From these, we identified the parasites
that could be shared by newly co-occurring pairs of hosts
(i.e. hosts that were previously not recorded as a realized
interaction in the GMPD v. 2.0). Examples of novel parasite
sharing included Francisella tularensis infecting Bison bison
(bison) and Cervus elaphus (elk), Nematodirus odocoilei infect-
ing Ovibos moschatus (mule deer), or Protostrongylus stilesi,
and Orf virus infecting B. bison, C. elaphus and Odocoileus
hemionus (see electronic supplementary material, table S1
for a complete list).

While we likely need to wait to validate predictions from
this type of framework, if model predictions are accurate, it
is probable that some predicted interactions already exist in
nature but are simply not included in the database used to
train the link-prediction model. To validate predictions from
Step 3, we evaluated the list of potential novel host–parasite
interactions (table 1) against independent data sources for evi-
dence of any record of a positive association between host and
parasite, for example, in experimental cross-infections or the
veterinary literature. While direct evidence for predicted inter-
actions was found for 34.15% of the cases, indirect evidence of
infection—evidence of the parasite infecting a congeneric host
in a different region or a congeneric parasite infecting the
target host—increased the proportion of links with evidence
to 60.9% (table 1). These numbers suggest that our approach
is able to make realistic predictions of undocumented host–
parasite associations. This also emphasizes that large-scale
host–parasite datasets (e.g. [12]) are likely to be incomplete
[51], due to biased sampling across taxa, omitting interactions
only reported in the ‘grey‘ literature and lack of taxonomic
standardization, and become quickly outdated as our
knowledge of host–parasite association expands [68,104]. In
addition, as digitization efforts have been increasing in
recent years, older literature is resurfacing, whichmay identify
rare interactions that may have been missed during the
compilation of literature-based interaction databases.

Our results demonstrate how forecasts of biotic inter-
actions, such as those between hosts and parasites, can be
used to describe a landscape of potential future interactions.
However, they also highlight the Eltonian shortfall in biodi-
versity science by showing that many predicted interactions
might already be realized, but are not yet captured in current
databases [52].

6. Challenges and limitations
Our case study demonstrates how it is possible to predict the
effects of climate change on parasite sharing networks, but
also raises important questions. Most of these derive from
the strong (but operationally useful) assumptions we make
in our analyses. Important questions include: (i) how are para-
sites typically distributed across the ranges of their hosts?; (ii)
is the probability of parasite sharing between hosts pro-
portional to the degree of host geographic overlap?; (iii) how
closely will host distributions track climate change?; (iv) how
well will hosts track changes in climate in the face of dispersal
restrictions?; and (v) how do climatic conditions influence
arthropod vectors or parasite survival outside of their hosts?



Table 1. Independent validation of model predictions. This table provides a summary of already realized host–parasite interactions predicted to emerge under
climate change by our models. To be included, a predicted host–parasite association had to meet two conditions: an increase in the probability in the parasite
sharing model, and the predicted host–parasite interaction not being recorded in the source data (GMPD v. 2.0; [12]). We assessed if independent evidence for
the interaction was found after a literature search and recorded the type of interaction. Note that most of the supporting evidence for the ‘novel’ host–parasite
interactions suggest gaps in the GMPD database and only a few were recent papers published after the GMPD data compilation. See electronic supplementary
material, table S4 in Appendix S2 for more details on direct and indirect interactions and on host–parasite interactions for which we did not find records in the
literature, and for a complete list of references. Abbreviations in the region column: Eur, Europe; NAm, North America; cosm, cosmopolite; capt, captivity; exp,
experimental setting.

host species (common name) parasite species region references

direct evidence

Bison bison (American bison) Arcanobacterium pyogenes NAm Zamke & Schlater [77]; Rzewuska et al. [78]

Bison bison (American bison) Nematodirus helvetianus NAm Wade et al. [79]

Bison bison (American bison) Teladorsagia circumcincta NAm Knapp et al. [80]; Samuel et al. [81]

Bison bison (American bison) Toxoplasma gondii NAm Dubey [82]; Moskwa et al. [83]

Odocoileus hemionus (mule deer) Marshallagia marshalli NAm Walker & Becklund [84]

Odocoileus hemionus (mule deer) Nematodirus helvetianus NAm Russell [85]

Odocoileus hemionus (mule deer) Ostertagia trifurcata NAm Walker & Becklund [84]

Odocoileus hemionus (mule deer) Parapoxvirus NAm Tryland et al. [86]

Oreamnos americanus (mountain goat) Marshallagia marshalli NAm Kerr & Holmes [87]; Aleuy et al. [88]

Oreamnos americanus (mountain goat) Nematodirus helvetianus NAm Samuel et al. [81]; Aleuy et al. [88]

Oreamnos americanus (mountain goat) Bluetongue virus NAm Williams & Barker [89]

Oreamnos americanus (mountain goat) Protostrongylus stilesi NAm Thorne & Honess [90]; Jenkins et al. [91]

Oreamnos americanus (mountain goat) Teladorsagia circumcincta NAm Kerr & Holmes [87]

Ovis canadensis (bighorn sheep) Brucella abortus exp Kreeger et al. [92]

indirect evidence (congeneric hosts)

Bison bison (American bison) Francisella tularensis Eur Krzysiak et al. [93]

Bison bison (American bison) Ostertagia trifurcata Eur Karbowiak et al. [94]

Cervus elaphus (red deer) Parapoxvirus Eur Scagliarini et al. [95]

Oreamnos americanus (mountain goat) Arcanobacterium pyogenes NAm Tell et al. [96]

Oreamnos americanus (mountain goat) Bovine viral diarrhea virus 1 capt Doyle & Heuschele [97]; Williams & Barker [89]

Oreamnos americanus (mountain goat) Human parainfluenza virus 3 Eur Frölich [98]; Ataseven et al. [99]

Oreamnos americanus (mountain goat) Toxoplasma gondii cosm Pavone et al. [100]

Oreamnos americanus (mountain goat) Bovine herpesvirus 1 cosm Williams and Barker [89]

indirect evidence (congeneric parasites)

Bison bison (American bison) Marshallagia marshalli Eur Kuzmina et al. [101]

Bison bison (American bison) Parapoxvirus Orf virus NAm Robin et al. [102]

Odocoileus virginianus (white-tailed deer) Alcelaphine herpesvirus 1 NAm Li et al. [103]
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While many assumptions we make may be unrealistic
[13,39,65,66], we suggest they allow us to make predictions
as to the upper limits of the geographic spread of hosts and
their parasites. As such, these results can be used to target
areas and species at higher risk, and thus higher priority for
monitoring.
(a) Uncertainty propagation
An important consideration across all steps of our framework
is how uncertainty is propagated through the different
modelling stages. Both Step 1 and Step 2 generate multiple
predictions, which contain uncertainty (see electronic sup-
plementary material, figure S2; figure 3b,f, respectively).
For illustrative purposes, we have averaged over this
uncertainty before moving onto the next step, but under-
standing the true extent of variability in our predictions
will require that uncertainties from earlier steps be propa-
gated through and accounted for when their associated
predictions are combined in Step 3. Although uncertainty
in estimated parameters and predictions can become rather
large when combining uncertainty from different sub-
models (see e.g. [105]), appropriately propagating uncer-
tainty is a requirement of serious risk assessment
approaches. To date, uncertainty propagation has been
underexplored in the literature aimed at inferring biotic inter-
actions (but see [106]). Operationally, it is unclear how to best
propagate uncertainty in our framework—e.g. how to weight
uncertainties from different sub-models, whether to present
alternative scenarios resulting from sets of assumptions at
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each stage, or if future work would benefit from the develop-
ment of a fully joint model that estimates all parameters
simultaneously. We suggest that future work incorporating
Steps 1–3 into a single model would be a fruitful research
avenue to explore, as it would allow the propagation of uncer-
tainty and the inclusion of other processes such as observation
error directly into the model. Such efforts would be particu-
larly worthwhile when making host–parasite forecasts aimed
at informing policy or management [107–109].

(b) Evaluation and independent validation
Model evaluation and validation for SDMs (figure 1a) has
been extensively discussed elsewhere [59–62]. However,
there is less literature contrasting methods for validating pre-
dictions of biotic interactions, and thus, there is currently no
consensus on best practices for predicting networks, or split-
ting data into training and testing sets for prediction of
ecological interactions (but see [110,111]). In the case of para-
site sharing networks, previous work has examined the
frequencies with which different hosts share viruses [13,55];
this validation scheme differs from ours in that its focus
is on viral sharing, not on predicting individual host–
parasite associations. The cross-validation approach we
employ allows us to consider individual network links, but
has the inconvenience of only being operative for multi-host
parasites, which decreases the number of modelled parasites
(see §4). Expanding the number of hosts to include species
from other regions or even other taxa could help predictions
as this will tend to re-classify single-host parasites in our
database as multi-host parasites, but could also inflate the
sparseness of the matrix, or increase the number of single-
host parasites if the additional hosts and parasites are less
well-studied. One way to reduce this bias would be to expli-
citly apply thresholds to predicted probabilities (see e.g. [53]),
similarly to approaches in the SDM literature. This would be
another interesting avenue to explore further.

(c) Applying models to single-host parasites (specialists
versus generalists)

The focus of our methods on documented multi-host parasite
species is both a strength and a limitation. Focusing on multi-
host parasites could be considered conservative. If a parasite
has demonstrated the ability to transfer between two or more
hosts, then that parasite could be predicted to be more likely
to gain an additional host than a historically single-host para-
site [112]. However, specialist parasite species also have the
potential to gain the ability to infect multiple hosts [113] or
may already be generalists with undersampled host ranges.
One approach that could allow us to include predictions for
single-host pathogens would be to consider their true host
range as unknown, and model their expected host breadth,
for example, using phylogenetic imputations [114]. In
addition to phylogenetic imputation, information on ecologi-
cal proximity, when available, could also be incorporated
to better inform projections of host–parasite associations
[48]. However, such approaches would require information
not only on the host phylogeny, but also on the phylogeny
of parasites, which is often less well known.

(d) Types of transmission and intermediate hosts
Our framework may be considered ‘host-centric’ because
even though it is applied individually to each parasite
species, the sharing of that parasite depends on host proper-
ties and may shift with host distributions. Our predicted
parasite sharing networks assume that geographic range
overlap provides a useful proxy for potential parasite trans-
mission. However, our model, as presented, does not
consider the different modes of transmission that characterize
different parasites, and this may have a large impact on
predictions and on the need for additional layers of infor-
mation to be incorporated into the models. For example,
ectoparasites (e.g. arthropods) and parasites with free-living
developmental stages (e.g. eggs and larvae in helminths)
could have additional climatic constraints on their geographic
distributions [41,65]. Similarly, the distribution of non-
ungulate hosts should also be modelled for parasites with
intermediate hosts or vector-borne parasites. For example,
in the North American dataset, the bacteria Ehrlichia
chaffeensis is predicted with moderate accuracy by our
models (AUC = 0.88; see electronic supplementary material,
table S2), but it uses the lone star tick, Amblyomma
americanum, as a vector [115], and thus the tick’s distribution
should be also accounted for when forecasting responses to
climate change. Adding in these additional steps would be
methodologically straightforward, for example, including
an extra probability Hk to the framework either in Step 2, or
thresholding co-occurrence networks in Step 1 (figure 1).
However, the availability of the high-quality data needed to
accurately model the distribution of intermediate hosts or
vectors presents an additional constraint on model fitting.
We suggest a useful first step would be to explore model
accuracy for parasites with different transmission modes.
An additional step would incorporate the complex inter-
actions among climatic factors that may determine parasite
distributions [116], especially for ectoparasites and parasite
species with free-living stages.

(e) Mechanistic versus phenomenological models
Common approaches to inferring host–parasite interaction
networks have relied on phenomenological, correlative
models, particularly so when targeted networks encompass
multiple hosts and parasites, or broad geographic extents
(e.g. [13,53,68]). These approaches are constrained by data
availability and trade off with how realistic model outcomes
are. Mechanistic, process-based models incorporating demo-
graphy or epidemiology in a spatially explicit context can
lead to substantially more realistic predictions of host–
parasite interactions (e.g. [117]). However, implementing
mechanistic models at macro-scales may only be feasible for
a few, intensely studied diseases [118] and to date are more
often used in the crop literature [119]. Developing ‘full joint
models’ may be an alternative in the middle ground between
simplistic approaches and more sophisticated ones. Doing so
would help incorporate uncertainty across different steps of
the model (rather than picking single alternative scenarios
at different points in the modelling process).
7. Concluding remarks and future directions
Our approach to forecast parasite sharing models to future
scenarios of shifted co-occurrence among hosts enlarges the
toolbox aimed at predicting disease threats resulting from cli-
mate change. Such frameworks can help prioritize regions
and species that may become increasingly vulnerable to
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emerging diseases in the future [12,25]. We present a novel
framework to address this challenge and demonstrate our
approach with a case study of host–parasite interactions for
North American ungulates. Our results are promising as
both cross-validations of parasite sharing models and inde-
pendent validation suggest high accuracy in our predictions
of novel interactions (table 1; electronic supplementary
material, table S2). We also highlight key limitations of our
approach and suggest some critical research to improve pre-
dictions. We believe our framework provides a useful first
step and allows us to present a possible scenario of maximal
disease spread under future climate change scenarios. Here,
we outline how predictions could be further refined and
suggest some potentially useful ways forward:

(1) Targeted parasite surveillance—our framework makes pre-
dictions on likely hosts and regions of parasite sharing;
we suggest these predictions could help in the targeting
of parasite surveillance programmes. This exercise could
also help fill gaps in parasite databases and thus feedback
to improve the information available for predictive models.

(2) Forecasting zoonotic diseases—making accurate forecasts of
host–parasite interactions is important for both wildlife
and people. Many human diseases have zoonotic origins
[120,121]. Expanding forecasts to encompass humans
and other potential wildlife reservoirs will help identify
areas and taxa with a high risk of disease spillover (see
e.g. figure 2c), and allow for proactive measures to
reduce disease risk.

(3) Increased modelling realism—all models are a simplifica-
tion, and we make several simplifying assumptions in
our framework. By incorporating additional layers of
information, it may be possible to further refine our
future prediction. For example, spatial information on
current and future land use change and vegetation distri-
bution would aid in refining forecasts of host geographic
distributions and subsequent parasite sharing potential
[122]. Information on human population density and
connectivity could additionally help in identifying areas
with high risk of zoonotic disease emergence [123,124].

(4) Parasite distributions within host ranges—potential vari-
ation in the distribution of parasites within their host
geographic extents is a major limitation of data feeding
our models. One approach to address this imitation
would be to fit SDMs for the parasite species directly;
while we often lack geolocation data on parasite occur-
rences, such approaches will be increasingly possible as
more parasite occurrences become available (see [39]).
Parasite SDMs could then be combined with host SDMs
to project geographical landscapes of host–parasite
interactions, or host distributions could be included as
predictors within parasite SDMs.

(5) Transcending phenomenological models—SDMs are a
powerful tool for projecting species distributions, and
when applied to host extents, they provide us with the
foundations on which spatial parasite sharing networks
can be constructed. Nevertheless, mechanistic models
[117] may help avoid simplifying assumptions which
are no longer required if demographic, epidemiologic
or other relevant processes could be modelled directly.
Clearly, process-based modelling approaches trade off
with more simplistic ones in their data needs, and thus,
which model to apply will ultimately depend on what
data is available for which geographic and taxonomic
scope.

The framework presented here represents a step forward
to forecasting host–parasite associations as climate continues
changing and host redistributions lead to novel interactions.
In the scenario of maximum parasite spread depicted by
our models, climate change can have profound consequences
on the disease risk landscape for North American ungulates
by increasing host sympatry and facilitating parasite trans-
mission. As data accumulate and deeper methodological
insights are gained, we should be able to move towards
increasingly process-based models, allowing precise predic-
tions and high-resolution disease risk maps that will be
able to inform policy and better prepare for the future disease
risk landscape.
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