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Abstract

Cancer represents an evolutionary process through which growing malignant populations 

genetically diversify, leading to tumour progression, relapse and resistance to therapy. In 

addition to genetic diversity, the cell-to-cell variation that fuels evolutionary selection also 

manifests in cellular states, epigenetic profiles, spatial distributions and interactions with the 

microenvironment. Therefore, the study of cancer requires the integration of multiple heritable 

dimensions at the resolution of the single cell — the atomic unit of somatic evolution. In this 

Review, we discuss emerging analytic and experimental technologies for single-cell multi-omics 

that enable the capture and integration of multiple data modalities to inform the study of cancer 

evolution. These data show that cancer results from a complex interplay between genetic and 

non-genetic determinants of somatic evolution.

The evolutionary history of cancer includes malignant transformation, followed by 

progression to more aggressive and resistant forms1, ultimately leading to its devastating 

clinical impact2. Somatic mutations, including single nucleotide variants (SNV) and 

structural variations, are critical for cancer initiation and evolution1,3. Nonetheless, in 

recent years, pervasive somatic mutations have been identified across healthy tissues4–8, 

particularly those exposed to environmental carcinogens, such as skin and the oesophagus, 

which suggests that cancer often arises from pre-malignant clonal outgrowths. Importantly, 

somatic mutations in clonal outgrowths that do not progress, or even regress, overlap with 

recurrent drivers of cancer4–9. These data suggest that genetic mechanisms alone may be 

insufficient to drive malignant transformation10.
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Somatic mutations

Alterations in the DNA acquired post-conception (versus germline mutations) and able 

to be passed onto progeny of mutated cells. Somatic mutations can be detected by 

sequencing in otherwise histologically normal appearing tissue, are often associated with 

age and environmental exposures, and can manifest in cancer driver genes.

Clonal

A population of cells with the same underlying genetic make-up (that is, with the same 

somatic mutations), which can beget subclonal populations that have acquired additional 

genetic aberrancies.

Drivers

Somatic mutations that increase tumour cell fitness.

As malignant populations grow, cells undergo further genetic diversification that enables 

tumour progression, relapse and resistance to therapy3. However, clear genetic drivers 

of progression, metastasis and therapeutic resistance are identified in only a subset 

of tumours, pointing to non-genetic contributors of cancer progression11,12. Recent 

advances, particularly in single-cell technologies, have revealed intratumoural heterogeneity 

in cell states, epigenetic profiles, spatial dynamics and interactions with the tumour 

microenvironment. These axes of potentially heritable intratumoural variation may provide 

additional cues for cancer evolution. Thus, the integration of multiple layers of information 

for individual cancer cells, via single-cell multi-omics, is critically needed for a 

comprehensive understanding of the mechanisms of cancer evolution (FIG. 1).

Cell states

A cell’s phenotype, as inferred by transcriptional or protein markers, that are often 

transitional (for example, intermediate states within a developmental system such as 

haematopoiesis or epithelium).

Single-cell multi-omics

Analytic or experimental integrations of multiple data ‘omics’ modalities in single cells.

Herein, we review recent experimental and analytic innovations in single-cell technologies 

that integrate multiple dimensions of heritable information in individual tumour cells. This 

Review addresses both genetic and non-genetic routes of cancer evolution that can be 

uniquely interrogated through single-cell multi-omics advancements. As comprehensive 

discussions of genetic sources of cancer heterogeneity3 and the technical aspects of 

integrative single-cell analyses13 have been recently undertaken, we focus herein on nascent 

Nam et al. Page 2

Nat Rev Genet. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but compelling evidence that motivates the integration of multiple strata of information in 

single cancer cells to decipher tumour heterogeneity and evolution.

Genetic heterogeneity and lineage tracing

Inference of clonal architecture in bulk sequencing.

Genetic heterogeneity through the continuous acquisition of somatic mutations underlies 

clonal evolution in many cancers. The clonal architecture of these genetically heterogeneous 

populations has been previously inferred through bulk next-generation sequencing14. The 

integration of read depth and variant allele frequencies of somatic mutations in whole-exome 

or whole-genome sequencing (WGS) data can be used to infer tumour purity, ploidy and 

local copy number for each mutation and thus to determine the cancer cell fractions (CCFs) 

harbouring the mutations14. These data can resolve clonal and subclonal relationships to 

a limited extent (FIG. 2a). In aneuploid solid tumours, WGS can help time early versus 

late clonal somatic alterations by determining whether SNVs occurred before or after large 

amplification processes such as whole-genome duplication15.

Variant allele frequencies

Frequencies of mutated alleles in the sequenced reads from next-generation sequencing. 

Variant allele frequencies reflect copy number, zygosity, tumour purity and the fraction of 

cancer cells that harbour the mutation (for example, clonal versus subclonal).

Tumour purity

Per cent of a tumour mass composed of tumour cells, versus admixed non-neoplastic 

cells, such as tumour-infiltrating immune cells and stromal cells.

Cancer cell fractions

(CCFs). Fractions of cells that harbour a given mutation.

When applied to large cohorts, these analyses provide a blueprint of the evolutionary 

sequence in which driver mutations arise. Thus, driver events can be separated into 

early, often ancestral mutations (for example, DNMT3A and TET2 mutations in myeloid 

neoplasms) versus late subclonal drivers that arise as a result of ongoing selection within 

the malignant population (for example, SF3B1, TP53 and NPM1 mutations in lymphoid 

and myeloid malignancies)14,16,17. Similarly, in a large cohort of renal cell carcinomas, 

tumours could be classified into evolutionary subtypes (for example, tumours with driver 

events in PBRM1, which subsequently acquire alterations in SETD2 or PI3K) that could 

be linked with prognostic information (for example, ‘PBRM1 → SETD2’ or ‘PBRM1 
→ PI3K’ subtypes with an attenuated disease course)18. Thus, timing analyses have 

charted different evolutionary trajectories or preferred mutational sequences in cancer, 

which suggest optimized paths and mutational interdependency17,19. While the presence 

of subclonal drivers predicts poor clinical outcome in patients with cancer14,17,20, early 
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clonal drivers that develop years before diagnosis might present opportunities for early 

intervention. Nevertheless, methods that use bulk sequencing inference are fundamentally 

limited in their abilities to resolve the phylogenetic relationships of clones, especially at low 

CCFs21 (FIG. 2a).

Defining clonal dynamics through multi-sampling.

Cancer evolution is a dynamic process, whereby clones of different fitness may reshape the 

genetic make-up of the tumour in the face of challenges such as treatment with effective 

therapeutics. Multi-sampling at different time points during clonal evolution can provide 

higher-resolution phylogenetic relationships even for subclones with low CCFs due to 

coordinated patterns of CCF fluctuations over time22 (FIG. 2b). With a greater number of 

sampling time points, individual subclones can be identified at a CCF significantly different 

from other subclones, especially if they have distinct growth dynamics21. Furthermore, serial 

sequencing not only enhances clonal decomposition but also enables clone-specific fitness 

measurements21,23,24. Indeed, dense temporal sampling for either circulating leukaemia 

cells14,17,21,23,24 or circulating tumour DNA in solid malignancies, enables the measurement 

of clonal growth kinetics in relation to therapy through mathematical modelling25,26. For 

example, chronic lymphocytic leukaemia (CLL) relapsed after chemotherapy demonstrated 

an increased CCF with TP53 mutations compared with the pre-treatment tumour, suggesting 

a greater fitness advantage of the TP53-mutated subclone in the face of therapy17. By 

contrast, targeted CLL therapy provided a fitness advantage to clones harbouring point 

mutations in the target protein (BTK)23. In solid tumours, tracking circulating tumour 

DNA from patients with colorectal carcinomas treated with EGFR blockade identified 

the clonal dynamics of drug-resistant clone expansion upon treatment and a decline upon 

drug withdrawal25. Notably, mathematical modelling of clonal growth enables forward and 

backward extrapolation to predict future clonal fractions and to estimate the number of 

resistant cells at treatment initiation23. These data also pave the way for the algorithmic 

optimization of combination therapies based on continuous measurement of the therapy­

specific fitness effects on different clones27.

Another form of multi-sampling is interrogating multiple regions within a tumour to assess 

for intratumoural clonal spatial composition. Analogous to temporal sampling, multiregional 

sampling of non-small-cell lung carcinomas helped to refine clonal relationships and, 

thus, to improve clinical stratification20. In a striking example of evolutionary selection, 

multiregional sampling revealed the convergent evolution of driver copy number alterations 

(CNAs), whereby the same driver CNA involved distinct parental alleles across the 

tumour20. Multiregional tumour sampling also enables comparison of the primary tumour 

with secondary spread to metastatic foci28, identifying drivers of metastases (for example, 

CNAs in MYC, YAP1 and MMP13 in brain-metastasized lung adenocarcinomas versus 

primary tumours29).

Copy number alterations

(CNAs). Changes in the number of copies of a DNA segment due to deletions or gains in 

the genome.
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While the breadth of genome-wide data enables inference for retrospective lineage tracing, 

a different, focused approach has leveraged the high mutability of microsatellites in 

mismatch repair-deficient colorectal carcinomas. Indeed, microsatellite sites have long been 

appreciated as a molecular clock, providing critical insights into clonal evolution30,31. 

For example, the molecular age of pre-malignant colorectal adenomas was comparable 

to that of adenocarcinomas, arguing against a stepwise progression from adenomas to 

adenocarcinomas30. In a more recent study, microsatellite sites were used for lineage tracing 

in multiregional analyses of only 20 poly-G repeat regions, challenging the ‘sequential 

progression model’, which posits that metastases to distant organs arise from lymph node 

metastases32. This study demonstrated that, in two-thirds of cases, both lymph node and 

distant metastases arose directly from the primary colonic adenocarcinomas32, with clear 

implications for interpreting the staging of biopsy samples. Building on this experience, a 

similar approach was undertaken targeting microsatellite sites to demonstrate that polyclonal 

seeding was more frequent in lymph node metastases than in distant metastases33. Thus, 

analyses of metastatic disease can further elucidate patterns of clonal spread34 and enable 

inferences of tumour evolution migration patterns35.

Retrospective lineage tracing

Clonal architecture and/or phylogenetic reconstruction of primary samples through 

naturally accumulated heritable marks, such as copy number alterations, single nucleotide 

variants or DNA methylation, as opposed to prospective lineage tracing, in which lineage 

barcodes are artificially introduced into a model organism.

Molecular clock

A method to deduce the temporal history (often in terms of number of divisions) of a cell 

or group of cells based on genetic or epigenetic changes that reflect time (or number of 

divisions).

Tracing genetic history in single cells.

Despite the additional resolution that multi-sampling provides to the clonal deconstruction 

of cancer evolution, resolving phylogeny at single-cell resolution is required to derive the 

precise clonal dynamics and evolutionary history of a tumour (FIG. 2c). Prospective lineage 

tracing through optical36–38 or sequencing barcodes39–42 has enabled in vitro or in vivo 

modelling of tumour evolution, including with methods capable of capturing additional 

cellular features such as single-cell gene expression data43–48 (see recent reviews49–51).

However, these methods are not applicable for retrospective lineage tracing in primary 

human tissues, where reliance on ‘native barcodes’ is key (FIGS 2,3). High-throughput, 

single-cell-targeted DNA sequencing, using a droplet-based microfluidics platform, for a 

panel of recurrent driver mutations has allowed the highly sensitive capture of somatic 

genotypes of thousands of cells to reveal subclonal shifts from diagnosis to relapse in 

acute myeloid leukaemia (AML)52. Another leading method of retrospective lineage tracing 

inference, applied directly to human cancers, is single-cell WGS (scWGS). scWGS enables 
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the inference of CNAs that serve as natural barcodes through which the phylogenetic 

relationships between individual cells can be drawn53–55. Early single-cell sequencing 

studies of breast cancers resolved distinct clones within a tumour and demonstrated that 

metastatic foci were seeded from a single expanded clone54. Individual cells with non­

recurrent complex CNAs provided a glimpse of the underlying genetic diversity that fuels 

clonal evolution54. Recently, high-throughput scWGS approaches have been introduced, 

enabling the sequencing of thousands of breast cancer cells and identifying early ancestral 

(for example, MCL1 and MYC) versus subclonal (for example, RAD18) amplifications56. 

scWGS is characterized by sparse coverage of SNVs, limiting the resolution of lineage 

reconstruction based on a relatively small number of large somatic CNAs. Furthermore, 

examples of convergent evolution in which the same CNAs are seen in both parental 

alleles within a single tumour, as noted above19,57, caution against classic phylogenetic 

reconstructions with the infinite sites assumption (that is, that mutations used for lineage 

tracing do not recur and are not lost). Thus, phylogenetic methods with ‘finite sites’ models 

may be better suited to address aneuploid tumours58 (the challenges of tumour phylogenetics 

have been reviewed elsewhere59). Other limitations include the introduction of technical 

errors from whole-genome amplifications such as allelic dropouts, non-uniform coverage, 

and PCR errors and recombinations49. Novel computational tools have been developed that 

adapt the classic phylogenetic methods for species evolution to address the technical noise of 

single-cell data60,61.

Increasing DNA input through the use of single-cell-derived colonies (that is, populations 

of cells derived from a single clone) obviates the technical artefacts from whole-genome 

amplifications. The high-resolution lineage reconstruction of single-cell colony or organoid 

data has been applied to normal haematopoietic development54 and cancerous tissues62. The 

high-resolution trees paved the way for critical inferences derived directly from primary 

patient material of key parameters of somatic evolution such as determining the size and rate 

of growth of the self-renewing haematopoietic stem cell pool in a normal adult63. This study 

also began to link clonal dynamics with lineage fates, demonstrating that the human adult 

haematopoietic stem cells contributed to myeloid and B cells but not to T cells in the 140 

sequenced single-cell clones. While this experiment was limited in throughput, it provided 

a model for retracing the genetic lineage history and fate decisions of normal and cancer 

stem cells in primary human samples, anticipating the integration of genetic data with other 

known axes of variation at transcriptional and epigenetic levels.

Heterogeneity of cell states in tumour evolution

Cell state plasticity as a mediator of cancer evolution.

Intratumoural genetic variability underlies tumour heterogeneity and provides a heritable 

diversity that drives clonal evolution across cancer. Nevertheless, genetic mechanisms alone 

may not capture the full spectrum of intratumoural heterogeneity. One such variability 

that has long been appreciated is the plasticity of cell states within a single tumour. A 

classic example is the epithelial–mesenchymal transition (EMT) in epithelial tissue-derived 

cancers, which is reminiscent of transitions between epithelial and mesenchymal cells 

during embryonic development64. EMT, a heterogeneous and dynamic disposition with 
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intermediary or partial EMT meta-states, is governed by a complex network of transcription 

factors such as SNAI1, SNAI2, ZEB1, TWIST1 and other regulators64. Clinically, EMT is 

associated with varying invasive and metastatic potential65.

More broadly, cancers often recapitulate physiological developmental programmes and 

may thus be composed of stem-like and differentiated cell types, as has been observed 

in heamatopoietic66,67, brain68 and epithelial tumours69,70. These observations support a 

hierarchical model of cancer71. While still debated in the cancer field, in this model, 

cancer stem-like cells are at the apex of the tumour differentiation hierarchy and reflect 

traits of normal stem cells such as an extensive proliferative and self-renewal capacity. For 

example, AML cells with the most immature phenotype demonstrate robust repopulating 

capacities across leukaemia subtypes regardless of distinct somatic drivers67. Consistent 

with the suggestion that cancer initiates in cells with stem-like properties, a primitive 

stem-like programme has been shown to precede malignant transformation10. Specifically, 

activating an embryonic neural crest progenitor state in BRAF-mutated and TP53-mutated 

melanocytes resulted in the induction of melanoma10. These results indicate that somatic 

mutations cooperate with stem-like states for cancer initiation10. While these data provide 

compelling evidence for therapeutically targeting the most stem-like cells, tumour cell 

plasticity may complicate this strategy. Differentiated cancer cells demonstrated the capacity 

to de-differentiate into stem-like states66,69,70, providing evidence for a plastic bidirectional 

interchange between stem and differentiated cell states in malignant populations.

Stochastic cell state transitions can also serve as mediators of cancer resistance. In vitro 

and mouse models have identified transcriptional persister states in rare cells that enable 

survival through drug insult and facilitate the acquisition of full-blown genetically driven 

resistance to therapy11,12,72. Furthermore, lineage plasticity, such as the transformation of 

prostatic73 or lung adenocarcinoma74 into small cell carcinoma or of CLL into diffuse large 

B cell lymphomas in Richter transformation75, has long been appreciated as a non-genetic 

mechanism of therapy resistance. This form of lineage plasticity provides a path to therapy 

resistance via cell-identity reprogramming that eliminates dependencies on therapeutically 

targeted pathways. Collectively, these data show that cancer evolution is a result of a 

complex interplay between genetic diversity and cancer’s ability to toggle between cell 

states that jointly allow cancer populations to scan the fitness landscape for superior 

evolutionary trajectories and roadmaps to circumvent therapeutic barriers. We thus require 

methodologies that integrate cell state heterogeneity with a purely genetic cancer evolution 

model.

Heterogeneous transcriptional states at single-cell resolution.

As transcriptional state heterogeneity is a key ingredient in tumour initiation and 

progression11,12,72, single-cell RNA sequencing (scRNA-seq) of individual cells from 

primary tumours has emerged as a transformative technology. Studies across cancer types 

have revealed intratumoural cell state heterogeneity as the rule rather the exception. 

Heterogeneity in cell states is attributed not only to basic cellular processes, such as cell 

cycle, metabolic and hypoxia-induced stress states, but also to developmental programmes 

and clinically relevant resistance programmes68,76,77.
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scRNA-seq provided high-resolution mapping of stem-like states78 and developmental 

hierarchies68 directly in patient samples. For example, in IDH1/2-mutated 

oligodendrogliomas, scRNA-seq identified stem-like cancer cells with activation of neural 

stem cell programmes at the top of the hierarchy that branches into two distinct cellular 

states resembling astrocytic and oligodendrocytic lineages68. Consistent with the cancer 

stem cell model79, the expression of cell cycle-related genes was highly enriched in stem­

like cells. In single-cell analyses of melanoma, a stemness signature coincided with an 

AXL-high drug-resistance programme to RAF and MEK inhibitors76, directly co-mapping 

critical enabling properties, such as growth and resistance to therapy, to the same cells. 

scRNA-seq further enabled the detection of rare cells in patients who represent residual 

disease after therapy80. Comparison of scRNA-seq of pre-treatment and post-treatment 

multiple myeloma identified residual tumour cells (often comprising a small minority 

of the plasma cell population) based on the known malignant signatures of pre-treated 

myeloma80. Thus, scRNA-seq can distinguish rare tumour cells amid non-neoplastic cells 

for early disease or minimal residual disease detection and for the identification of targetable 

resistance programmes.

Furthermore, not only can scRNA-seq measure cell states at a given time but emerging 

analytic technologies can also leverage scRNA-seq data to inform the likely dynamics 

of cell states. Various methods have emerged that reconstruct differentiation trajectories, 

collectively termed pseudotime projection analyses, based on the inference of similarity 

gradients in transcriptional data50,51. For example, one of the first of these techniques, 

Monocle, constructs minimum spanning trees to build backbones onto which single cells 

are mapped81. This perspective capitalizes on the fact that scRNA-seq is not dependent on 

sorting based on known cell surface markers and thus captures transitional states, which 

may be informative for cell state dynamics inference. Another distinct framework predicts 

future cell states by quantifying the ratio of unspliced to spliced mRNA within standard 

scRNA-seq to determine ‘RNA velocity’, that is, the rate of change in mRNA abundance82. 

As genes that are ‘turned on’ show a higher ratio than ‘turned off’ genes, RNA velocity 

can predict the transcriptional profile that the cell will assume, enabling prediction of the 

future cell state together with measurement of the current cell state. Both these approaches 

provide powerful measurements of cell state dynamics in both normal and cancerous tissues. 

Notably, these approaches are independent of genetic lineage tracing and thus offer the 

tantalizing prospect of linking cell state dynamics with genetic identity through single-cell 

multi-omics integration to elucidate the genetic underpinnings or decoupling of cell state 

dynamics in somatic evolution.

Coupling genetic lineage history with single-cell transcriptional states.

Retracing the lineage history of cancer cells with distinct phenotypic variations (for 

example, along developmental hierarchies or in treatment tolerance) requires the direct 

integration of genetic information with scRNA-seq data. For example, prospective barcoding 

through lentiviral transfection of patient-derived xenografts demonstrated that tumour cells 

with the same barcodes (that is, originating from the same cell) occupied distinct lineage­

specific states, supporting the plasticity of glioblastoma cells77. However, methods that 
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rely on artificial lineage barcodes cannot be applied to primary human samples, which 

necessitate the use of naturally occurring genetic barcodes of somatic mutations (FIGS 2,3).

Experimental methods that integrate DNA and RNA expression in single cells have 

been developed83–85. For example, G&T-seq can capture single-cell genomic and whole­

transcriptome data by extracting and separating genomic DNA and mRNA for amplification 

and sequencing85. Another method, sci-L3, improves the throughput of the dual assay 

using combinatorial indexing84. These technologies share the same limitations of unimodal 

single-cell WGS, as discussed above, such as scalability, sparsity, PCR errors and allelic 

dropouts. The application of scWGS has limited value for largely euploid malignancies, 

for which a targeted sequencing approach may be more informative. Still, these methods 

provide the powerful ability to link genetic lineage history with the phenotypic states within 

the same cells for aneuploid tumours.

Furthermore, the rich genetic information available in the transcriptome itself has been 

leveraged to infer CNAs in large gains and losses by assessing imbalances in gene 

expression across chromosomes. This approach enabled the interrogation of the link between 

clonal identities and developmental states in these early landmark single-cell studies of 

aneuploid cancers68,76,78. In the setting of oligodendrogliomas, clonal divergence did not 

align with the predominant cell states, although skewed enrichment of subclones could be 

identified in distinct cell states68. In glioblastomas, specific copy number gains, such as 

those in EGFR, CDK4 and PDGFRA, respectively, underpin the biases in the transcriptional 

identities of tumour cells into astrocytic, neural-progenitor and oligodendrocyte-progenitor 

states77. Advanced analytic methods have since integrated SNPs for copy-neutral loss-of­

heterozygosity events in conjunction with global gene expression levels for CNAs86,87. 

Application of these methods to multiple myeloma linked the subclonal deletion del(16) in 

the initial cancer cells with a transcriptional signature resembling relapsed extramedullary 

myeloma cells, demonstrating a potential link between aggressive behaviour and subclonal 

drivers in the original tumour86.

scRNA-seq data have also been interrogated for SNV drivers via the Smart-seq2 protocol, 

which captures full-length transcripts87. Mutation status in the oncohistone H3K27M was 

determined in 34% of tumour cells, with greater efficiency in the polyadenylated transcript 

H3F3A versus the non-polyadenylated HIST1H3B, reflecting the poly-A capture method 

of the Smart-seq2 platform87. Detection was markedly improved with the addition of 

H3F3A mutation locus-specific primers within the Smart-seq2 procedure (97% of 44 

analysed cells). Similar methods using Smart-seq2 have been developed to link genetic 

alterations and transcriptional states in BCR–ABL-positive chronic myeloid leukaemia 

stem cells to uncover signatures of persistence in the setting of treatment with tyrosine 

kinase inhibitors88. Altogether, these studies demonstrate that clonal divergence maintains 

a complex relationship with cell-state heterogeneity, varying between tumour types. These 

results further highlight the need to integrate genetic identities with transcriptional states at 

the single-cell level at higher throughput.
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Somatic genotyping in high-throughput single-cell RNA-seq.

The efficiency of somatic genotyping in the studies described above was low due to 

sparse coverage and the low throughput of scRNA-seq methods that profile the entire 

transcript (for example, Smart-seq2). Highly sensitive somatic genotyping through targeted 

amplification of both genomic DNA and cDNA enabled the integration of clonal structure 

with transcriptomic states in chronic myeloid neoplasms89. The added advantage of genomic 

DNA amplification is the genotyping of lowly or non-expressed mutations. While this 

method was built within the Smart-seq2 protocol, its throughput was improved to thousands 

of cells with the development of a 384-well format that generates 3´-biased libraries89. 

To measure genotype to phenotype relationships across tens of thousands of cells, the 

detection of SNVs has also been pursued in high-throughput droplet-based scRNA-seq 

(10x Genomics) by deeply sequencing the final library (~200,000 reads per cell versus the 

recommended minimum of ~20,000 reads per cell)90. This approach provided a framework 

to dissect subclonal transcriptional identities of AML such as that of GATA2-mutated 

subclones90.

Our group and others have further modified scRNA-seq platforms to enable the highly 

sensitive capture of somatic mutations in conjunction with whole transcriptomes in tens 

of thousands of single cells via targeted amplification of barcoded cDNA of the mutated 

locus of interest91,92 (FIG. 4a). Leveraging a nanowell-based scRNA-seq technology, 

van Galen et al. performed targeted somatic genotyping in scRNA-seq in the context 

of AML91. These data have demonstrated that AML transcriptional identities reflecting 

haematopoietic differentiation states closely correlated with the underlying genetic drivers 

(for example, FLT3 internal tandem duplications in the primitive progenitor cell state 

versus FLT3 Asn841Lys in differentiated cells within the same tumour)91, analogous to 

the close alignment of genotype and cell state in glioblastoma described above77. While 

the nanowell throughput enabled the transcriptomic profiling of thousands of cells, the 

efficiency of mutation locus capture was low for most targets owing to the low expression 

level of the targeted genes and the distance between the targeted locus and the transcript 

ends. However, the concurrent capture of whole-transcriptome information enabled the 

inference of mutation status based on transcriptional similarities between genotyped and 

non-genotyped cells through a Random forest classifier.

As an alternative approach, we developed Genotyping of Transcriptomes (GoT), which 

modifies droplet-based scRNA-seq (10x Genomics)92. GoT enabled highly sensitive 

genotyping in thousands of cells, resulting in a genotyping efficiency of ~90% for the main 

somatic mutation targets in the CALR driver gene. Nonetheless, the distance between the 

targeted locus and the transcript ends limited the sensitivity of genotyping for some targets, 

likely due to the inefficiency of large amplicons to cluster in standard short-read sequencing. 

To overcome this limitation, we introduced two complementary approaches, including long­

read sequencing and circularization-GoT, in which sequential rounds of circularization and 

inverse PCR remove the intervening sequence between target locus and cell barcodes, 

producing a fragment that can be sequenced with standard short-read sequencing. We also 

noted that cells heterozygous for mutations may be erroneously assigned as wild type 

owing to partial sampling of the mRNA pool in scRNA-seq or as a result of transcriptional 
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bursts. To overcome these potential biases, we undertook down-sampling of genotyping 

unique molecular identifier (UMI) counts for mutation calling and multivariate modelling 

with genotyping UMI. We also systematically examined the relationship of genotype-based 

findings to varying the minimum UMI count thresholds to assess the robustness of the 

findings. While GoT remains a challenge for lowly expressed genes, continued optimization 

of digital scRNA-seq platforms for enhanced overall RNA capture efficiencies will improve 

cDNA-based genotyping rates.

The ability of GoT to jointly capture cell state and genotype information at high­

throughput showed that, in CALR-mutated myeloproliferative neoplasms, the predominant 

transcriptional identities of haematopoietic progenitor cells were uncoupled with the 

somatic mutation status; that is, mutant and wild-type cells were mingled throughout the 

haematopoietic differentiation tree, confirming that precision genotyping is necessary to 

distinguish mutant from wild-type cells92. Thus, in this context, GoT enables the overlay of 

the mutant differentiation trajectories onto the normal map of haematopoietic development 

within the same individual, eliminating potential biological confounders and technical batch 

effects (FIG. 4b). The direct comparison of mutant and wild-type differentiation landscapes 

identified that the mutant cell frequency increased with myeloid differentiation, suggesting a 

differential fitness advantage as a function of progenitor identity. To corroborate this result, 

we integrated pseudotime analysis (to provide cell state dynamics) with genetic mapping 

of the cells and demonstrated that mutated cells were biased towards a differentiated state 

compared with wild-type cells. Consistently, the mutation-related cell cycle gene expression 

increase was more pronounced in differentiated progenitors, such as megakaryocytic 

progenitors, compared with haematopoietic stem cells. Mutation-induced alterations in the 

unfolded protein response, NF-κB activity and JAK–STAT signalling all varied as a function 

of progenitor type and stage of maturation, demonstrating that the underlying cell identity 

constrains the impact of the driver mutation and that the resulting cancer cell phenotype is a 

function of the interaction between cell identity and the somatic mutation (FIG. 4c).

Such methods may be particularly helpful in studying early clonal expansions in human 

tissues93. Recently, clonal expansions within morphologically normal tissues, resulting in 

somatically acquired mosaicisms, were identified throughout the body4–6. These clonal 

expansions often harbour somatic mutations in known cancer drivers (for example, TP53 
and NOTCH1), especially in tissues under environmental stress such as the skin, oesophagus 

and lung4,5,7,8. Similarly, within the haematopoietic system, recurrent drivers of myeloid 

malignancies, for example, DNMT3A and TET2 mutations, have been demonstrated often 

at low variant allele frequencies in individuals without haematological abnormalities94. 

This state, termed ‘clonal haematopoiesis’, nonetheless predisposes these individuals to an 

increased risk of developing blood cancers94,95 and cardiovascular disease96. However, a 

critical question remains as to the phenotypic consequences of these mutations that enable 

their clonal outgrowth. Thus, the application of multi-omics technologies to these otherwise 

normal-appearing tissues may help identify deviant transcriptional programmes that enable 

the earliest clonal growths in human tissue.

Expanding highly sensitive somatic genotyping to a larger number of loci may also enable 

clonal reconstruction and high-resolution retrospective lineage tracing coupled with cell 
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identity and cell state information. For this purpose, any mutation, including those in 

mitochondrial DNA97–99 or microsatellite sites100, may serve as a lineage marker (FIGS 

1d,2,3). The incorporation of these naturally occurring genetic barcodes into multi-omics 

single-cell sequencing may provide high-resolution phylogenies coupled with nuanced cell 

state data, ultimately allowing us to decipher the cell fate decisions of cancer cells.

Epigenetic plasticity in cancer evolution

Epigenetic profiles underlie cell states.

The cancer-enabling phenotypes described above, such as persistence, self-renewal and 

lineage plasticity, need to be inherited to contribute to the evolution of cancer to 

progression and resistance. However, these cell states have often been shown to be 

uncoupled from genetic identity. Accumulating data suggest that cell states may be 

encoded and propagated epigenetically12,101–103, consistent with epigenetic encoding of 

cell identity in normal developmental biology. Epigenetics encompasses additional layers of 

heritable changes104, including DNA methylation (DNAme), chromatin accessibility states 

and histone modifications, mediated largely through the propagation of key transcription 

factors105. As a whole, however, epigenetic modifications result in the highly coordinated 

regulation of transcriptional activity, which is important for normal development and tissue 

specification.

In cancer, the high prevalence of mutations in epigenetic modifiers, such as TET2, 

DNMT3A and ASXL1 in haematopoietic neoplasms16,106, and SWI/SNF (BAF) chromatin 

remodelling complexes in solid tumours107, points to the significance of epigenetics in 

mediating tumorigenesis. In addition, recent mechanistic explorations have pointed to 

epigenetics as underlying transcriptional signatures of persistence and resistance11,102. 

In glioblastomas, persistent tumour stem cells displayed a global reconfiguration of the 

repressive histone methylation (H3K27me3), with a focal increase in the active enhancer 

mark (H3K27ac) associated with Notch signalling and quiescence108. In oestrogen receptor­

positive breast cancer, KDM5 histone demethylase expression underpinned transcriptional 

heterogeneity and drug resistance102. Thus, a growing body of evidence points to the 

significance of epigenetic encoding of cell states in cancer.

Corrupted epigenetic identities enable tumour plasticity.

Epigenetic identities are faithfully propagated from the first transformed cell, allowing 

inference of cell of origin109–111 akin to the faithful propagation of the genetic information 

of the ancestral cancer cell. Nonetheless, the epigenome also parallels the genome in 

undergoing diversification in the growing malignant population. Thus, just as stochastic 

errors in the genome result in genetic intratumoural heterogeneity, stochastic aberrations in 

the epigenome generate epigenetic intratumoural diversity. This understanding has emerged 

from measurement of DNAme at the level of the single DNA fragment. These studies, 

based on bulk bisulfite sequencing, have shown thousands of loci that exhibit a ‘noisy’ 

stochastic pattern of DNAme changes, representing large heritable cell-to-cell variation in 

the epigenome of somatic tissues, both normal and cancerous112.
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Building on these foundational studies112, the examination of primary cancer tissues 

revealed that tumour cells exhibit DNAme diversification in parallel to genetic evolution. 

Sampling of multiple regions within the primary tumour, metastases and pre-malignant 

outgrowths in prostatic adenocarcinomas revealed that lineage tracing via DNAme 

heterogeneity closely mirrored the phylogenetic relationships built based on copy number 

genetic diversity113. Similarly, in colorectal cancer models, DNAme analysis of single­

cell-derived colon cancer organoids revealed a marked DNAme heterogeneity that was 

propagated stably, in parallel with genetic diversification62. Large-scale analysis of DNAme 

in primary CLL samples confirmed greater intratumoural DNAme heterogeneity than 

normal B cells and was predictive of adverse outcome114.

Multiple, coordinated epigenetic layers regulate gene expression and cell identity, and 

early data suggest that epigenetic diversification extends beyond the level of DNAme. For 

example, corrupted coordination between layers of the epigenome resulted in co-mapping 

to the same genomic loci of typically mutually exclusive activating and repressive histone 

modifications in CLL, likely reflecting cell-to-cell diversity in histone modification and 

associated with greater transcriptional diversity115.

Importantly, recent evidence supports the notion that selection may operate on epigenetic 

diversity, akin to the well-established genetic diversity model of clonal evolution116,117. In 

IDH-mutant gliomas, stochastic hypermethylation of the CTCF insulator protein-binding 

motifs resulted in the loss of insulation between enhancers and genes, which could then be 

hijacked as a mechanism for oncogenic gene activation116. Conversely, aberrantly restrictive 

states, through promoter hypermethylation or polycomb-mediated repression, can inhibit the 

induction of differentiation programmes, arresting the cancer cells at a proliferative state, 

as was shown in EZH2-mutated B cell lymphomas117–119. Finally, corrupted epigenetic 

encoding through the process of epimutation (for example, stochastic DNAme changes) 

can lower the barriers for transition between cell states117 (FIG. 5). This phenomenon may 

underlie the increased plasticity of malignancies, undermining differentiation hierarchies 

and enabling processes such as de-differentiation into stem-like states114,117. Such plastic 

differentiation topologies have been shown through mathematical modelling to amplify 

positive selection and therefore the evolutionary capacity of cancer120. Taken together, 

epigenetic information emerges as a central heritable encoding of critical cell states and may 

thus provide an additional field of operation for the evolutionary process of diversification 

and selection115 (TABLE 1).

Epimutation

Heritable stochastic errors in epigenetic marks (best described in DNA methylation).

Multi-omics technology links genetic, epigenetic and transcriptional information in single 
cells.

Novel analytical and experimental methods are under development to capture the single-cell 

epigenome alongside cell state readouts such as transcriptional and protein expression 

phenotypes121. scRNA-seq with integration of protein expression122,123 and single-nuclei 
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chromatin accessibility assays (ATAC-seq) have been performed in parallel on the same 

cancer samples (FIG. 1c), with analytic linking of transcriptional states with dysregulation 

of the regulatory networks as inferred from chromatin accessibility124. In mixed lineage 

biphenotypic leukaemias (with markers of both myeloid and lymphoid differentiation in the 

same leukaemia), mapping tumour cells to the map of normal haematopoietic differentiation 

with both mRNA and ATAC-seq data enabled causal linking of transcription factor 

activation with its downstream targets (for example, RUNX1 upregulating CD69)124. Further 

application of such analytically or experimentally joined dual high-throughput scRNA-seq 

and ATAC-seq protocols (for example, sci-CAR)125 to cancer specimens will likely help 

discern precise cis-regulatory sites and target genes and identify the key regulatory networks 

that govern clonal evolution.

The experimental extraction of DNAme and transcriptomic information from the same 

cells has been achieved by modifying plate-based scRNA-seq protocols, for example, 

Smart-seq2, in which both RNA and DNA are respectively isolated from the same cells 

for whole-transcriptome and DNAme data (through bisulfite sequencing)85,121,126–129. One 

method, scTrio-seq was applied to multiregional sampling of hepatocellular and colorectal 

carcinomas to retrace the genetic lineage histories of cancer cells in the context of 

transcriptional and methylation states126,127. In colorectal carcinomas, methylation profiles 

were closely linked with genetic lineages as defined by CNAs127. While transcriptional 

programmes were negatively correlated with the methylation of promoters, as expected, 

transcriptional states were not consistently linked with subclonal genetic identities.

Linking DNAme and whole-transcriptome data in single CLL cells revealed that the cell-to­

cell methylation variation was closely associated with gene expression changes121. While 

the limitation of sparsity in single-cell genomics data also extends to single-cell bisulfite 

sequencing data (resulting in a capture rate of ~10% of the targeted methylome per cell), 

global changes in DNAme provide valuable insights into clonal evolution such as the 

ability to measure epimutation rates. Notably, heritable DNAme epimutations also serve 

as a molecular clock130–134 and can therefore be exploited as native barcodes to directly 

infer the high-resolution phylogenetic history of tumour cells in primary CLL samples 

(FIGS 1b,3). Further integration of somatic genotyping in this multi-omics procedure was 

applied to the subclonal SF3B1 mutation, which revealed that mutated cells congregated 

within one clade in the DNAme-based phylogenetic tree with distinct transcriptional output, 

providing orthogonal validation to tree inferences and enabling the estimation of nodal 

age at SF3B1 mutation acquisition121. Finally, the multi-omics projection of transcriptional 

information directly onto the lineage tree revealed the activation of distinct pathways in 

different clades with therapeutic exposure121. While the application of joint single-cell 

epigenetic multi-omics platforms135,136 to cancer is still nascent, these data highlight the 

promise of single-cell integrations of various heritable, yet plastic, dimensions of cancer 

cells for tracking — and ultimately predicting — clonal evolution.
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Spatial dynamics and the microenvironment

Spatial dynamics as a heritable source of tumour heterogeneity.

Spatial localization represents another heritable dimension in tumour cell evolution 

associated with fitness, as tumour cells tend to co-localize with their parent cells in spatially 

constrained growth19,20,54,137. In certain cases, for example, cells at the leading edge of 

a solid tumour mass are in the active cell cycle (‘boundary-bound’ growth), pointing to 

spatial constraints as an important heritable trait of fitness related to metastatic potential 

and survival138,139. Recent data suggested that the spatial distribution of tumour cells 

is associated not only with fitness but also with clonal evolution140. The multiregional 

sampling of single glands (composed of <10,000 cells) within the same tumour further 

revealed a high degree of clonal mixing in colorectal carcinomas in striking contrast to 

pre-malignant adenomas of comparable size, which demonstrated segregation of clonal 

identities140 (FIG. 5). Consistent with these data, mathematical simulations identified the 

clonal mixing of tumour cells to be an early event of colorectal carcinomas141. Thus, 

analogous to the ongoing corruption of epigenetic profiles of cancer cells, the break-down 

of tissue architecture may be a critical feature of clonal evolution, as even minute cell 

dispersals increase tumour fitness and its ability to overcome therapeutic challenges142. 

Notably, while leukaemias, or more broadly blood cancers, are less strictly bound by spatial 

constraints, the disorganization of the bone marrow is a long-appreciated feature of myeloid 

neoplasms143 and, thus, the distortion of tissue architecture is a shared feature of progression 

between solid cancers and blood malignancies.

Spatial embedding of the evolutionary process also results in varying microenvironmental 

interactions for the growing malignant population. Across all cancer types, the tumour 

ecosystem, including the immune cells, endothelial cells and stromal cells, has been 

demonstrated to be a critical determinant of transformation, progression and response to 

therapy144–146. In a recent fascinating example, non-small-cell lung carcinomas were found 

to modulate neoantigen expression for immune escape through either promoter methylation 

or CNAs in a manner highly correlated with specific immune microenvironments147. 

Similarly, tumour-to-immune cell interactions were observed in multiregional sampling 

of high-grade ovarian carcinoma148, demonstrating that tumour-associated T cells 

negatively correlated with clonal heterogeneity, selecting for clones with immune escape 

mechanisms148. These investigations have shown that heritable evolutionary changes (at 

either the genome or epigenome level) vary within the same malignant population as a 

function of the local interactions with the non-malignant cellular neighbours. Specifically, 

these studies suggest that the microenvironment is exerting selective pressures on subclones 

and actively moulding cancer evolution.

The tumour microenvironment at single-cell resolution.

While the above-described bulk multi-omics analyses of primary cancer samples have 

provided strong support for the impact of the microenvironment on the evolutionary process, 

the cellular complexity of the microenvironment requires single-cell analysis to provide 

a high-resolution map of its interactions with the tumour. In head and neck squamous 

cell carcinomas, through scRNA-seq, interactions between tumour cells with a partial 
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EMT programme and the stromal compartment were identified149. The complexity of the 

microenvironment has also been recently demonstrated with scRNA-seq, showing biases 

in the immune microenvironment that support immune evasion such as through expansion 

of T cells with exhaustion programmes76. Indeed, single-cell omics profiling has been 

transformative for the fields of immunology and immuno-oncology150,151; however, an 

in-depth discussion of immune cell biology is beyond the scope of this review and has been 

reviewed recently elsewhere150,151.

Nonetheless, as scRNA-seq is typically performed on fully dissociated tissue, it does not 

preserve the architecture of the tumour cells and microenvironment. Cell-to-cell interactions 

may be nonetheless inferred from scRNA-seq by correlating the expression of known 

ligands and receptors152,153. While analytic tools have also been developed to predict the 

spatial arrangement of highly structured tissue architectures154,155, highly disordered cancer 

tissues may prove more challenging for inferences based on scRNA-seq of dissociated 

samples.

Examining tumour microenvironments with spatially aware single-cell technologies.

Spatially aware single-cell platforms may thus be particularly transformative in the study 

of the cancer microenvironment. For protein detection, multiplexed labelling with metal 

isotopes (for example, imaging mass cytometry (IMC)156 and multiplexed ion beam imaging 

(MIBI)157) or fluorophores (for example, multiplex immunofluorescence (MxIF)158 and 

cyclic immunofluorescence (CycIF)159) enable the detection of dozens of markers at 

cellular or subcellular resolution. The application of these methods to cancer samples 

revealed significant intratumoural heterogeneity, including spatially dependent diverging 

signalling pathways158. The detection of mRNA with immunofluorescence (for example, 

multiplexed error robust-fluorescence in situ hybridization (MERFISH)160 and sequential 

FISH (seqFISH)161,162) and in situ RNA sequencing of amplified cDNA (FISSEQ and 

STARmap)163,164 have increased the targets to hundreds of genes. Spatial transcriptomic 

platforms that utilize molecular barcodes for the detection of mRNA molecules have 

drastically increased the dimensionality165,166 (FIG. 1e). These data can be analytically 

integrated with high-throughput scRNA-seq platforms to inform each dataset, whereby the 

dissociated cells from the scRNA-seq data may be remapped to their spatial positioning 

based on spatially patterned gene expressions167,168. The multiplexing of protein and 

gene expression was achieved through extension of the IMC platform by integration of 

in situ hybridization of targeted mRNA molecules such that RNA to protein expression 

correlations could be determined169. For example, in breast cancer, HER2 gene and protein 

expressions were highly correlated, whereas CK19 showed poor correlation between protein 

and corresponding gene levels. The same method identified the T cell-recruiting cytokine 

CXCL10 as expressed in tumour cells associated with T cells, providing insights into 

the tumour–immune cell interface. Computational tools have been developed in parallel 

to quantify contributions of gene expression or protein expression from cell-intrinsic 

versus environmental factors170, with respect to both spatial positioning171 and cell-to­

cell interactions172. Application of these spatially aware platforms, integrated with high­

throughput single-cell multi-omics, promises to enhance our understanding of the cell-to-cell 
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interactions and spatial constraints that enable the fitness optimization and evolution of 

cancer cells.

Conclusions and perspectives

Cancer evolution encompasses a complex interplay of genetic, cell state, epigenetic, spatial 

and microenvironmental factors. Recently, novel multi-omics technologies have begun to 

integrate across these genetic and non-genetic determinants of tumour evolution at the 

critical resolution of the single cell — the fundamental evolutionary unit.

These methods pave the way to address central questions on cancer evolution through 

the study of human tissue. For example, to define the factors that drive the malignant 

transformation versus involution of clonally expanded cells requires the ability to genotype 

cells for driver mutations as well as to gather information about their transcriptional 

and epigenetic states. Another open field of investigation in human malignancies is the 

assessment of lineage fate decisions of cancer stem cells that culminate from the interactions 

of somatic mutations with cell states. These cell states may in turn be determined by 

intrinsic epigenetic underpinnings and/or extrinsic cues from the environment, emphasizing 

the need for multi-omics single-cell data integration across modalities.

As a final perspective, single-cell multi-omics profiling of malignancies and clonal 

expansions in normal tissues may help unravel the underlying model through which 

rogue somatic evolutionary processes are suppressed in the multicellular human host (FIG. 

5). Emerging data that show the pervasiveness of somatic driver mutations in normal 

tissue4–6,94 suggest that genetic constraints (that is, the time needed for the accumulation 

of multiple driver events)173 may need to act in concert with other mechanisms to suppress 

somatic evolution. One such mechanism may involve spatial constraints, as in the case of the 

colonic crypts that reduce the effective population size by splitting the overall population 

of colonic stem cells to isolated habitats, thereby favouring drift over selection36,174. 

Greater spatial mixing with malignant progression can thus serve to amplify selection 

and the development of resistance to therapy142. Another such mechanism may be the 

complex differentiation hierarchies; this notion is supported by mathematical modelling 

of evolutionary dynamics, showing that evolutionary graphs that reflect differentiation 

hierarchies have an organization that suppresses positive selection120. By contrast, the 

patterns of de-differentiation related to the relaxation of epigenetic identity barriers in cancer 

may have the opposite effect, leading to evolutionary graphs that serve to amplify positive 

selection117,120. Of note, these differentiation hierarchies may be encoded extrinsically in 

highly organized tissues, such as epithelial organs via cytokine gradients175, or intrinsically 

in less spatially defined tissues, such as the bone marrow, through complex, deep epigenetic 

hierarchies176. As clonal outgrowths represent a first critical step towards circumventing this 

barrier to somatic evolution, they tend to affect cytokine-related mechanisms in epithelial 

tissues (for example, mutations related to Notch and WNT signalling) and epigenetic 

mechanisms in haematopoietic tissue (for example, DNAme modifier mutations). Growing 

clonal populations can then serve as a superior substrate for an effective evolutionary 

process, ultimately leading to the selection of malignant clones.
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In other words, we envision that the application of single-cell multi-omics to somatically 

evolving human tissue will provide critical clues as to the basic system properties that 

discourage the trillions of somatic cells from rescinding the multi-cellular contract and 

optimizing their fitness at the expense of the host. Such integrative analysis, empowered 

by the simultaneous interrogation of the multi-faceted axes of diversity that fuel somatic 

evolution, may thus advance this exciting new frontier in evolutionary biology at the 

intersection between multi-cellular species evolution and asexual reproduction of somatic 

cells more akin to unicellular lifeforms.
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Fig. 1 |. Single-cell multi-omics for deciphering clonal evolution in cancer.
Analytic or experimental integrations of multiple data ‘omics’ modalities in single-cells 

advance our understanding of mechanisms of clonal evolution. a | Cancer cell representation 

with heritable traits that can be interrogated via multi-omics platforms. b | Extracting DNA 

methylation (DNAme) and transcriptomic information from the same cells experimentally 

has been achieved by modifying plate-based single-cell RNA sequencing (scRNA-seq) 

protocols (for example, Smart-seq2), in which both RNA and DNA are respectively 

isolated from the same cells for whole-transcriptome and DNAme data through bisulfite 

sequencing121,128,129. Heritable stochastic DNAme changes can then be exploited as native 

barcodes to directly infer the high-resolution phylogenetic history of tumour cells121. c 
| scRNA-seq with integration of protein expression measurements can be performed in 

parallel for the same cells122,123. DNA-barcoded antibodies, acting as synthetic transcripts, 

are used to convert the detection of proteins into a quantitative readout. This allows the 
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immunophenotyping of cells to be integrated with an unbiased transcriptome analysis 

using existing single-cell sequencing approaches. d | High-sensitivity somatic genotyping 

in which, for instance, any mutation in mitochondrial DNA may serve as lineage markers. 

Interrogating these naturally occurring genetic barcodes within scATAC-seq97 (or scRNA­

seq) provides high-resolution phylogenies coupled with cell state information. e | As an 

example of spatially aware platforms160,162–164,166,169, spatial transcriptomics165 utilizes 

molecular barcodes for the detection of mRNA molecules and maps them to their spatial 

positioning. gDNA, genomic DNA; indels, insertions or deletions; scRRBS, single-cell 

reduced-representation bisulfite sequencing; SNVs, single nucleotide variants.
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Fig. 2 |. Phylogenetic inference for retrospective lineage tracing.
a | Bulk next-generation sequencing allows inference of clonal architecture phylogenetic 

trees of genetically heterogeneous populations. However, these data can resolve clonal 

and subclonal relationships to a limited extent by enabling the assessment of the order of 

acquisition of mutations (A–D) and are limited in their abilities to resolve the phylogenetic 

relationships of clones, especially at low cancer cell fractions (CCFs). b | Multi-sampling 

at different time points (T1, T2) during clonal evolution or at different regions (R1, 

R2) within a tumour (to assess for intratumoural clonal spatial composition) can provide 

higher-resolution phylogenetic relationships, even for subclones with low CCFs, owing to 

coordinated patterns of CCF fluctuations over time. c | Even though additional resolution is 

gained through multi-sampling, resolving phylogeny at single-cell resolution (by single-cell 

whole-genome sequencing or targeted sequencing) is required to derive the precise clonal 

dynamics and evolutionary history of a tumour. High-resolution trees pave the way for 

critical inferences derived directly from primary patient tumours for defining key parameters 

of somatic evolution. VAF, variant allele frequency.
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Fig. 3 |. Interrogating native barcodes for retrospective lineage tracing.
Clonal architecture and/or phylogenies can be reconstructed from primary samples through 

naturally accumulated heritable marks, that is, ‘native barcodes’, such as copy number 

alterations (CNAs), single nucleotide variants (SNVs), small insertions or deletions (indels) 

in microsatellite repeat regions, DNA methylation changes, and mutations in mitochondrial 

DNA (mtDNA). Emerging and potential multi-omics technologies for lineage inference 

display a trade-off between throughput and lineage inference resolution (black bars). For 

instance, single-cell retrospective lineage tracing inference methods using CNAs (from 

single-cell whole-genome sequencing or single-cell RNA sequencing datasets) provide a low 

resolution of the underlying genetic diversity that fuels clonal evolution but can be applied 

to high number of cells. High-sensitivity somatic genotyping of a large number of loci 

may enable clonal reconstruction and a high-resolution retrospective lineage tracing with 

methods that interrogate mtDNA or microsatellite sites. Finally, heritable stochastic DNA 

methylation changes can serve as a molecular clock and therefore be exploited as native 

barcodes to infer phylogenetic history.
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Fig. 4 |. Somatic mutations reshape differentiation topologies.
a | A schematic workflow of genotyping in single-cell RNA sequencing (scRNA-seq) by 

which cell state and somatic genotyping can be simultaneously captured for single cells. 

High-throughput digital scRNA-seq platforms (shown on the left) employ tagmentation or 

fragmentation for transcript-end biased cDNA short-read sequencing. Thus, loci harbouring 

somatic mutations are often lost. To overcome this limitation, these multi-omics techniques 

split the full-length cDNA for the targeted amplification of loci of interest on the one hand 

(shown on bottom panel with blue background) and for standard digital scRNA-seq on the 

other (shown on top panel with orange background). The two libraries are then intersected 

via shared cell barcodes analytically (not shown) to co-map somatic mutations and whole 

transcriptome data at single-cell resolution. b | The direct linking of somatic genotypes 

with whole transcriptome enables researchers to superimpose and chart two differentiation 

topologies within the same sample, namely the native wild type and the mutated one, thus 
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turning the co-mingling of mutated and wild-type cells from a limitation to an advantage. 

The differentiation topologies (graphs) are built from scoring of stemness, pseudotime and 

differentiation states (that is, cell fate #1 and #2). c | By superimposing two differentiation 

topologies, we can identify the fitness impact of a somatic mutation within each cell state. 

Differential gene expression between mutant and wild-type cells can be identified (as shown 

by the volcano plots of differentially expressed genes). Pathway enrichment analysis of 

differentially regulated genes reveals activated or downregulated pathways (as shown by the 

annotated points on the volcano plots and heatmap, showing degree of enrichment). The 

differentially expressed genes and regulated pathways may vary as a function of cell state 

(that is, stem versus cell fate #1 versus cell fate #2). WT, wild type; MUT, mutant.
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Fig. 5 |. An integrative model of cancer progression.
Single-cell multi-omics profiling of malignancies and clonal expansions in normal tissues 

may help unravel the underlying model through which rogue somatic evolutionary processes 

are suppressed in the multi cellular human host. Emerging data suggest that genetic 

constraints (that is, the time needed for the accumulation of multiple driver events)173 

may need to act in concert with other mechanisms to suppress somatic evolution. One 

such mechanism may involve spatial constraints, as in the case of the colonic crypts that 

reduce the effective population size by splitting the overall population of colonic stem cells 

to isolated habitats, thereby favouring drift over selection36,174 (top panel). Greater spatial 

mixing with malignant progression can thus serve to amplify the selection and development 

of resistance to therapy142. Another such mechanism may be the complex differentiation 

hierarchies that suppress positive selection120. Thus, the patterns of de-differentiation related 

to the relaxation of epigenetic identity barriers in cancer may have the opposite effect, 

serving to amplify positive selection117,120 (bottom panel). Of note, these differentiation 

hierarchies may be encoded extrinsically in highly organized tissues, such as epithelial 
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organs via cytokine gradients175, or intrinsically in less spatially defined tissues, such as the 

bone marrow, through complex, deep epigenetic hierarchies176.
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