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Abstract

The costs of an objective structured clinical examination (OSCE) are of concern to
health profession educators globally. As OSCEs are usually designed under generaliz-
ability theory (G-theory) framework, this article proposes a machine-learning-based
approach to optimize the costs, while maintaining the minimum required generaliz-
ability coefficient, a reliability-like index in G-theory. The authors adopted G-theory
parameters yielded from an OSCE hosted by a medical school, reproduced the gen-
eralizability coefficients to prepare for optimizing manipulations, applied simulated
annealing algorithm to calculate the number of facet levels minimizing the associated
costs, and conducted the analysis in various conditions via computer simulation.
With a given generalizability coefficient, the proposed approach, virtually an instru-
ment of decision-making supports, found the optimal solution for the OSCE such
that the associated costs were minimized. The computer simulation results showed
how the cost reductions varied with different levels of required generalizability coeffi-
cients. Machine learning–based approaches can be used in conjunction with psycho-
metric modeling to help planning assessment tasks more scientifically. The proposed
approach is easy to adopt into practice and customize in alignment with specific test-
ing designs. While these results are encouraging, the possible pitfalls such as algorith-
mic convergences’ failure and inadequate cost assumptions should also be avoided.
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Introduction

Assessment of students’ performance across the curriculum involves a variety of

methods that address the assessment of knowledge, skills, and behaviors. Compared

with other methods, an observation measure often yields more information. However,

it possesses multiple sources of measurement errors, for example, rater effects, occa-

sion effects, and item effects. Accommodating this type of assessment, generalizabil-

ity theory (G-theory; Cronbach et al., 1972) provides a statistical solution for both

decomposing the sources of errors on observation measures and indicating the relia-

bility changes of the design manipulations; these two functions are called G-study

and D-study in the literature (Brennan, 1992). To be specific, G-study yields para-

meter estimates of variances of all defined error sources and provides reliability-like

indexes, such as for measurement quality evaluation. On the other hand, if a source of

error (called facet) yielded by a G-study is small/large, the number of observations of

the facet can be reduced/increased, where the consequences are calculated in a D-

study (Brennan, 2010).

Approaches have been proposed to maximize reliability within a budget constraint.

Woodward and Joe (1973) derived equations for their constrained optimization;

Saunders et al. (1989) deployed discrete optimization, which was further updated by

Saunders (1992) with the Cauchy–Schwartz inequity approach; Marcoulides (1993,

1995) as well as Marcoulides and Goldstein (1990, 1991, 1992) had developed the

LaGrange multiplier approach and other related variants to handle the optimization

within both univariate and multivariate G-theory. Meyer et al. (2014) extended the

LaGrange multiplier approaches to G-theory with nested designs. Devising these

approaches to a particular G-theory design requires mathematical deriving proce-

dures, which may be a challenge to many applied researchers.

Different from the aforementioned studies, this article addresses the optimization

problem from a different perspective: Given a minimal reliability value (namely a

reliability threshold), what is the optimal combination of facets’ sample sizes for

achieving the lowest costs? The inquiry’s context stems from practical needs in the

field of medical education, which is demonstrated in the coming section. Instead of

using the existing methods such as the LaGrange multiplier one, this article proposes

a machine-learning approach called simulated annealing (SA) to handle the task of

interest.

Objective Structured Clinical Examination

In the field of medical education, objective structured clinical examination (OSCE)

is adapted to assess clinical skills so that the process can be more consistent and

objective. Harden et al. (1975) proposed the original version of the OSCE—a check-

list to assess students’ clinical skills using direct observation of their interactions

with patients at multiple stations. Studies addressing the use of OSCEs are found to

be tremendous in health professional education (Hastie et al., 2014; Hodges et al.,

2014; Patrı́cio et al., 2013; Setyonugroho et al., 2015; Smith et al., 2012; Walsh
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et al., 2009), and they together verify the necessity of using multiple stations in

OSCEs, as opposed to the traditional long-case examination, which is not adequate

to predict students’ performance in a different clinical situation (Hubbard, 1971).

Accordingly, a typical OSCE design nowadays is likely to be based on a large sam-

ple of clinical cases and longer testing time, ensuring a satisfactory reliability level.

In addition to reliability, the costs of organizing OSCEs make up another concern.

Compared with other assessment forms, an OSCE tends to be more resource-inten-

sive: It involves examinees rotating round multiple standardized stations responding

to test items or prompts, with or without the standardized patient situation, and raters

scoring examinee performance against some predefined rubrics (Cusimano et al.,

1994). Correspondingly, OSCE providers are required to make a budget for equip-

ment, accommodations, subsistence, standardized patients, staff payrolls, the fee for

content experts/consultants, and others (Brown et al., 2015). As a result, vast invest-

ments in OSCEs across countries are seen each year (Walsh & Jaye, 2013).

The trade-off between the costs and the reliability of OSCEs can be regarded as a

reflection of cost-effectiveness in medical education assessment. Although numerous

studies investigate either of the topics, addressing the two components together is

rarely found in the literature. The fiscal constraints due to COVID-19 and the mer-

ging calls for raising transparency in medical education strengthen the practice of

ensuring that the funding spent on medical education should be as cost-reliable as

possible (Dacre & Walsh, 2013).

Generalizability Theory

A trustable examination demands certain statistical frameworks to provide a scien-

tific understanding of the measurement quality, as it is believed that there are errors

(i.e., variance off the interest) occurring simultaneously during the measurement pro-

cess, which results in a discrepancy between the raw scores and the examinees’ true

skill levels. The errors are called measurement errors, mathematically introducing

construct-irrelevant turbulence into the analysis, posing a threat to the interpretation

of the scores (Downing & Haladyna, 2004; Messick, 1998).

To address the measurement errors, classical test theory (CTT) is often adopted to

yield the reliability, which is defined as a correlation between the true skill levels

and the test scores. That said, the estimation of reliability, referring to the reproduci-

bility of assessment data over time or occasions, is a pathway to ensure appropriate

validity (Downing, 2003). Cronbach’s a is known as a CTT reliability estimate of a

given test: It indicates the proportion of variance in test scores that can be attributed

to true score variance (Cronbach, 1951). The measurement errors in CTT, however,

oversimplify research designs in many situations as it only assumes two components

for a test score (i.e., true score and errors). To overcome the shortcoming, CTT and

a were further extended to G-theory (Brennan, 1992, 2010). There are ways of esti-

mating G-theory, for example, the mean square method (e.g., Cornfield & Tukey,

1956; Henderson, 1953; Rao, 1970), the mixed model method (e.g., Huebner &
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Lucht, 2019; Jiang, 2018; Jiang et al., 2020), and the Bayesian method (e.g., Jiang &

Skorupski, 2018; LoPilato et al., 2015)

Different from traditional tests such as multiple-choice questions and essays,

OSCEs contain more sources of variance contributing to the measurement process.

The variance can therefore be decomposed to more specific facets, for example, the

effects of raters, items/questions, stations, and other sources of variation over which

generalization is desired (Boulet et al., 2003; Myford & Wolfe, 2003). Therefore, a

critical element in OSCE quality control is using a reliability index that takes all rele-

vant measurement errors into the analysis (Haladyna & Downing, 2004). Naturally

compatible with multiple-facet situations, G-theory provides an appropriate solution

to OSCE studies. Articles addressing both summative and formative OSCEs through

G-theory are plentiful in the literature (Baig & Violato, 2012; Donnon & Paolucci,

2008; Newble & Swanson, 1988), and the span of the reported reliability level ranges

from .12 to .85.

An OSCE Within G-Theory

The illustration in this section is based on a published report: A G-theory study con-

ducted in National Autonomous University of Mexico Faculty of Medicine in Mexico

City, which organized a multiple-station OSCE in summative end-of-career final

examination and recruited 278 examinees (Trejo-Mejı́a et al., 2016). Specifically,

there were four exam versions, each of which was delivered at 18 equivalent stations

from six areas (pediatrics, obstetrics and gynecology, surgery, internal medicine,

emergency medicine, and family medicine). In total, there were 72 stations of which

the workflows were navigated via the same blueprint and measured the same skills

but in different forms of cases. Finally, the exam was applied in six testing sites and

examinees were randomly assigned to only on site.

Accordingly, four facets (i.e., sources of measurement errors) were considered: the

examinees, the stations, the versions, and the sites. The design, however, is not fully

crossed as examinees were nested within sites. To construct a G-theory model, one

should treat the final scores of the examinees X as the dependent variable, where the

facets u s are the independent variables. Mathematical expressions for the G-theory

model are

Xpilj = m + up + ui + ul + uj + uij + ulj + uli + uilj + ε, ð1Þ

s Xð Þ2pilj = s2
p + s2

i + s2
l + s2

j + s2
ij + s2

lj + s2
li + s2

ilj + s2
ε, ð2Þ

Equation 1 shows that an observed score, X, for examinee p on version j of station l at

site i is made of the grand mean m, examinee effect up (i.e., true skill level of exami-

nee p), site effect ui, version effect uj, station effect ul, both nested- and unnested-

interaction effects, and residual error ε. Correspondingly, the relevant variance

components are outlined in Equation 2. The variance estimates of the G-theory model
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were s2
p = 17.652, s2

i = 0.000, s2
l = 42.157, s2

j = 0.737, s2
ij = 0.867, s2

lj = 38.968,

s2
li = 46.631, s2

ilj = 34.692, and s2
ε = 187.374.

The relative- and absolute-error-based generalizability coefficients (i.e.,

reliability-like index within G-theory framework) can be calculated as follow:

Er2
d =

s2
p

s2
p + s2

d

and Er2
D =

s2
p

s2
p + s2

D

, where s2
d =

s2
ilj

ni�nj
+

s2
ε

ni�nl�nj
and

s2
D =

s2
i

ni
+

s2
j

nj
+

s2
ij

ni�nj
+

s2
l

nl
+

s2
lj

nl�nj
+

s2
il

ni�nl
+

s2
ilj

ni�nl�nj
+

s2
ε

ni�nl�nj
are relative and absolute

error variances respectively. As a result, Er2
d and Er2

D were 0.94 and 0.81, respec-

tively. Both Er2
d and Er2

D were substantially higher than the acceptable range of G-

theory being applied to OSCE research (0.51 to 0.78) according to published reports

(Trejo-Mejı́a et al., 2016). This space provides the possibility of reducing the costs

of the OSCE, while maintaining the generalizability coefficients to certain acceptable

levels.

Method

Simulated Annealing

As an essential component of machine-learning toolkits, optimization can be defined

as a problem where one maximizes or minimizes a target function by systematically

choosing input values from an allowed numerical space and computing the value of

the function (i.e., outcome). That said, optimization is essentially about finding the

best solution. Unlike traditional optimization techniques that heavily rely on deriving

mathematical procedures, machine-learning approaches, also known as metaheuris-

tics, are related with general purpose solvers based on computational methods that

use few domain knowledge, iteratively improving an initial solution (or population

of solutions) to an optimal one at the end (Boussaı̈d et al., 2013). Well-known opti-

mization techniques include SA, tabu search, genetic algorithms, genetic program-

ming, differential evolution, and particle swarm optimization (Goffe et al., 1994).

These techniques are particularly useful for solving:

1. Complex problems where no specialized optimization algorithm has been

developed,

2. Dynamic questions in which a change in the model requires rederiving efforts

to accommodate the new functional needs,

3. Irregular conditions are imposed so that traditional optimization techniques

become inappropriate.

This article adopts SA as it has been widely used in practice and incorporated in most

statistical software programs, in which a user only needs to specify a target expres-

sion (i.e., the function that the algorithm aims at minimizing or maximizing). SA

mimics physical annealing in real life that contains the process of heating up a mate-

rial until it reaches an annealing temperature and then it will be cooled down slowly
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in order to change the material to a desired structure. The SA application for optimal

design problems with associated costs has a successful history, especially in the con-

struction sector where maximization of profit of a project is of interest (Bettemir,

2010; Jaśkowski & Sobotka, 2006; Li & Coster, 2014, Reeves, 1995).

Similar to other machine-learning approaches, SA requires a set of parameters to

drive the algorithm. To be specific, SA requires initial values, starting temperatures,

perturbation determination, temperature changing modes, and others. These para-

meters are proved to be critical in a task as inappropriate selections of them could

result in nonoptimal solutions (Feurer & Hutter, 2019). In this article, the R package

optimization was used to execute SA (Husmann et al., 2017), where the algorithmic

parameters listed in Figure 1 were adopted as they functioned well in our pilot tests.

Proposed by Husmann et al. (2017, p. 9), the vf function in Figure 1 defines that the

solutions yielded by SA should be integers. Alternatively, one can simply specify the

requirement by rounding or ceiling approaches in the target function.

OSCE Cost Specification

The present optimization inquiry falls into the venue of G-theory’s D-study, which is

about manipulating each facet’s level to obtain new generalizability coefficients.

However, D-study does not accommodate the tasks of minimizing the associated

costs of OSCEs. Therefore, the proposed solution, a machine-learning approach, is

used to optimize the cost-generalizability.

Figure 1. Parameters setting for simulated annealing algorithm.
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The costs were summarized from Brown et al. (2015): £15,896 per site, £6,677

per version, and £4,843 per station. With the original levels of the facets, the total

cost was as high as £209,240. It is informative to outline the levels of minimal gener-

alizability coefficients acceptable to decision makers to reduce the costs. Without

loss of generalizability, Er2
D is used to represent the generalizability coefficient as

the optimization requires more parameters to estimate so that the inquiry would not

be oversimplified.

Monte Carlo Simulation

This section consists of two parts. The first part is verifying the utility of the pro-

posed approach by comparing with the LaGrange multiplier approach in the scenar-

ios illustrated in Marcoulides and Goldstein (1990). Specifically, they provided a

closed-form solution for a two-facet fully crossed case (i.e., item and occasion effects

represented by s2
i and s2

o, respectively) with the information about cost per item per

occasion and total budget available represented by c and �c, respectively:

ni =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

pi

s2
po

� �c

c

� �s
and no =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

po

s2
pi

� �c

c

� �s
, ð3Þ

while s2
pi and s2

po are the variance components of interaction effects between exami-

nee (i.e., p) and item as well as occasion facets. With the provided solution, the bud-

getary constraint can be satisfied such that cnino � �c, while the generalizability

coefficient is also maximized. Note that simply rounding the LaGrange multiplier

solutions would result in violating the budgetary constraints. Goldstein and

Marcoulides (1991) proposed a simple table approach that converts optimal noninte-

ger solutions to acceptable candidate integer solutions while satisfying the cost con-

straint can be also met; this approach was used in the simulation. In the example of

Marcoulides and Goldstein (1990), that s2
p = 6.30, s2

pi = 1.60, s2
po = 0.30, s2

ε = 1.95,

c = $5 and �c = $100 yielded ni = 2 and no = 10 via Equation 3, which resulted in the

maximum generalizability coefficient Er2
d = 0.94; the simulation adopted the same

two-facet fully crossed design as well as the c and �c values but randomly generated

variance parameters by uniformly sampling from [s2 � s2

2
, s2 + s2

2
]. For example, in

an arbitrary replication, s2
p is uniformly sampled from [6:30� 3:15, 6:30 + 3:15] and

other variance components are also sampled in the same fashion. It was replicated

200 times where the optimal solutions yielded by SA approach and the LaGrange

multiplier approach were compared.

The second part of the simulation section is based on present OSCE planning

inquires: minimizing costs when a generalizability coefficient threshold is given. Let

[0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80] be the levels of minimal Er2
D. The task of

interest then becomes finding the optimal combination of the facet levels without

producing a Er2
D lower than the selected threshold. The evaluation was essentially
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conducted a Monte Carlo simulation design, meaning we used computers to simulate

different conditions based on a real setting and examine the performance of the pro-

posed approach within these conditions. Assuming that b is the generalizability

threshold, the target function f that SA attempts to minimize in the present context is

f = £15, 896 � ni + £6, 677 � nj + £4, 843 � nl,

while

s2
p

s2
p +

s2
i

ni
+

s2
j

nj
+

s2
ij

ni�nj
+

s2
l

nl
+

s2
lj

nl�nj
+

s2
il

ni�nl
+

s2
ilj

ni�nl�nj
+

s2
ε

ni�nl�nj

� b:

Results

In the first part of the simulation study, SA results had a perfect match with the

closed-form solutions (i.e., 200/200 replications that two approaches produced equal

solutions), meaning that the proposed approach has great utility for conditional opti-

mization works in the present context. In addition to the replications, the results yield

by SA approach and the LaGrange multiplier approach were identical in the example

of Marcoulides and Goldstein (1990).

For the second part of the simulation study, Table 1 lists the combinations yielded

by SA optimization. Unsparingly, the OSCE cost reduces as the generalizability coef-

ficient threshold falls, as the facets’ levels are lessened. Meanwhile, the actual Er2
D s

are quite close the thresholds showing that the optimization converges well to a desir-

able degree. It can be interpreted as, for example, if Er2
D � 0.65 is an acceptable con-

dition, an OSCE testing setting with three sites, two versions, and 13 stations will

result in £114,769 as the associated cost. Compared with the original amount, the cost

decreases by £94,471. Other rows of the results in Table 1 can be explained similarly

and therefore will not be repeated here.

Table 1. Optimization Results via Simulated Annealing Approach.

Threshold Actual Er2
D Costs(£) Site Version Station

0.50 0.51 85,717 3 2 7
0.55 0.57 95,401 3 2 9
0.60 0.60 102,078 4 2 9
0.65 0.66 114,769 3 2 13
0.70 0.71 131,130 4 2 15
0.75 0.75 147,491 5 2 17
0.80 0.80 176,078 4 3 21
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Discussion and Conclusion

This article provides an interdisciplinary study for OSCE planning, fiscal elements,

psychometric properties, and data science optimization. Although the optimization

can be achieved by exhaustive search, trying all possible combinations of the solu-

tion set is not viable (sometimes even wholly impossible) when the problem of inter-

est is complex. The growth of the facet size can result in an exponential increment of

the exhaustive search’s trial-and-error attempts. For example, many OSCE providers

would like to consider the rater effect, the occasion effect, and their interactions with

other facets.

The example above may be not generalizable as OSCE testing settings, and the

associated costs can be quite different; however, the proposed approach can be easily

adopted and customized to meet the practical requirements. OSCEs are both money-

and time-consuming; scientific tools and methods should be applied to the validity of

the exam per se and also the planning from the fiscal standpoint. The definitions of

‘‘cost-effectiveness’’ are not consistent in different contexts. This article treats OSCE

generalizability as the ‘‘effectiveness,’’ where other studies may consider the term as

the proportion of examinees that become qualified physicians/doctors.

Using optimization approaches, like any techniques, is not risk-free. Algorithmic

failures and local convergences should always be cautioned. That said, if the optimi-

zation stops unexpectedly or yields a nonoptimal solution, the results can be mislead-

ing to decision makers. A recent trend in the machine-learning literature is calling for

an ensemble paradigm, which operates various optimization approaches simultane-

ously and combines the results via a certain weighting schema.
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